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EXECUTIVE SUMMARY

The Mine Environment Neutral Drainage (MEND) Program is developing tools for prediction of waste
rock dump leachate quality.  The first objective of this study was to evaluate a recently proposed empirical
approach for predicting concentrations of metals in waste rock dump leachate primarily using pH (Morin
and Hutt 1993).  The method has previously been successfully applied at two mines.  The second objective
was to investigate refinements to the approach.

Five waste rock piles were selected for the study.  Vangorda Plateau (Yukon Territory) and Sullivan (south
eastern British Columbia) mines are volcanogenic massive deposits.  The Cinola project, Queen Charlotte
Islands, British Columbia was a previous MEND study of small test waste rock piles at a proposed
sediment-hosted epithermal gold deposit mine.  Mine Doyon is a gold vein deposit located between Val
D'Or and Rouyn, Quebec.  Eskay Creek is a stratiform and stratabound gold and silver deposit located in
northwestern British Columbia.  Usefulness of the datasets was limited by missing data, variable detection
limits and lack of associated flow information (where applicable).

The first step involved examination of histograms for each variable and calculation of regression equations
for pH and conductivity against all other parameters.  The study confirmed the utility of the empirical
approach.  Element concentrations were generally negatively correlated with pH but positively correlated
with conductivity.  Geochemical evaluation of the trends using the equilibrium solution speciation model
MINTEQA2 was not useful.  However, evaluation of regression equations for sulphate and element
concentrations showed good correspondence with predicted geochemical behaviour, consistency with site
mineralogy and strong similarities between sites suggesting common mineralogical controls.

The major problems encountered with the empirical models were outliers and excessive positive skewness,
variable detection limits, non-normality of residuals, departures from linearity and sub-populations. 
Several refined data screening methods were evaluated to address these problems, however, the effect on
estimates of regression parameter is minimal.  Alternatives to least squares regression and separation of
data according to sub-populations can be considered.

The second step involved investigation of several multivariate techniques: multiple regression, Principal
Components Analysis (PCA) and Cluster Analysis.  Due to the excellent inter-correlation of many
parameters, multiple regression does not increase the predictive power of bivariate regressions.  PCA and
Cluster Analysis have no predictive power but are useful as initial data screening tools to restrict the
number of bivariate regressions required to model leachate chemistry.
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GUIDE FOR PREDICTING WATER CHEMISTRY
PHASE I

CONTRACT SQ.23440-4-1391

1.0  INTRODUCTION

1.1 BACKGROUND

The Mine Environment Neutral Drainage Program (MEND) Prediction Committee has recently
initiated studies to develop tools and models to predict leachate quality for for waste rock dumps.  This
follows the previous effort by MEND to develop a predictive model for acid generating tailings
(RATAP).  The objectives of these models will be to provide reliable long term predictions of seepage
chemistry based on knowledge of the physical and chemical characteristics of the waste rock, and
ambient environmental conditions, such as temperature and infiltration rates.  The models should also
allow prediction of seepage chemistry under various control options to evaluate these controls.

There are essentially two approaches to development of such models.  The first is to use a
deterministic approach in which the mechanisms of weathering and contaminant transport are
modelled from first principles.  The recent study reported by Perkins et al. (1995) identified several
geochemical models which might form the components of this model.

The second approach is empirical.  This approach ignores the complex source and transport
interactions, and attempts to reduce the prediction of seepage chemistry to a few easily measured
parameters.  This approach is very attractive given the extreme mineralogical, geochemical and physical
complexity of waste rock dumps, and the difficulty of adequately characterizing these variations.  The
purpose of this study was to investigate an empirical approach proposed by Morin and Hutt (1993,
1995) and Morin et al. (1995) based on studies at BHP Minerals Canada's Island Copper Mine and
Noranda Minerals Inc.'s Bell Mine.  Both operations are large open pit porphyry copper mines.

Morin and Hutt (1993) proposed that concentrations of metals can be predicted based solely on pH. 
Their method involves the following steps to developing an empirical model based on pH
measurements:

1. Log transformation of metal data to reduce the variability of the data distribution.

2. Identification of major causal factors, such as pH, flow rate and temperature.  For the Bell
Mine Study (Morin et al. 1995), pH was identified as a significant factor affecting copper
concentrations whilst flow rate in drainage collection ditches did not appear to be significant.

3. Determination of regression relationships between metal concentrations and pH.  The
relationships may be segmented to allow for obvious trend variations across the pH range.  The
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fit is optimized by adjusting the prediction error.

Morin et al. (1995) have applied their empirical model approach to:

! prediction of key variables from pH;

! analyzing short term peaks in concentrations of key parameters;

! evaluation of the effect of secondary minerals on water chemistry;  and

! prediction of the long term evolution of water chemistry.

It was considered that the main limitation of the approach would be the quality of the dataset.  The
large datasets used by Morin were compiled over several years.  To an extent, this limits the effect of
data variability due to random factors such as field and laboratory error.  As datasets get smaller,
random scatter and the effect of anomalous results becomes more significant, potentially limiting the
usefulness of the approach.

1.2 OBJECTIVES OF THE PROJECT

The objectives of the project were to:

! Expand the application of the approach to other types of mines and mineral deposits;

! Compare the relationships obtained at different sites and evaluate the geochemical significance;
and

! Consider the application of other (multivariate) statistical methods.

1.3 SELECTION OF TEST SITES

MEND provided datasets for two mines (Doyon, Quebec and Eskay Creek, British Columbia). 
Additional datasets were obtained by Norecol, Dames & Moore and T.W. Higgs Associates.  The sites
were Cinola Waste Rock Pads, Cominco Ltd's Sullivan Mine Lower Mine Yard and Anvil Range's
Vangorda Mine.  Permission to use these sites was obtained from MEND, R.G. Gardiner (Cominco)
and G.A. Jilson, respectively.

All chemical data have been compiled using Microsoft Excel 5.  This file format can easily be converted
to other formats such as other versions of Excel, Lotus or dBase.

The background information on the five sites is summarized in Table 1-1.  The data sources were as
follows.

1.4 PROJECT TEAM

The project team consisted of:
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! Stephen Day, Norecol, Dames & Moore, Inc.;
! Tom Higgs, TW Higgs Associates; and
! Michael Paine, Paine, Ledge & Associates.
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2.0  DATA SOURCES AND STATISTICAL OVERVIEW

2.1 VANGORDA

2.1.1 Data Sources

Water chemistry data for Vangorda was supplied by several organizations including Access Mining
Consultants (Greg Jilson), Robertson Group (Linda Broughton), and Indian and Northern Affairs
Whitehorse, (Wayne Kettley).  Additional data on Vangorda was also extracted from the 1991 and
1992 Annual Reports filed with the Yukon Territorial Water  Board.

2.1.2 Site Description and Background Information

The Vangorda site is illustrated in Figure 2-1.  The deposits at Vangorda consist of sediment-hosted,
stratiform, pyritic massive sulphide.  The waste rock consists mainly of massive sulphide rock and
phyllite.  Most of the data consist of water chemistry data from V-21 which is a seepage collection
ditch below the Vangorda Waste Dump.  This location is a monitoring station defined by the Water
Licence #IN89-002.  The seepage collection ditch is fed from a series of six drains constructed through
the till berms surrounding the waste dump.

The data set is a good example where oxidation readily occurring but the rate of acid generation is not
high enough to overwhelm the neutralization capacity of the waste rock which is hosting the sulphides.
 At some point in the future, this neutralization capacity may be consumed and ARD may be produced.

2.1.3 Database Description

The water chemistry data available are from five locations at Vangorda waste dump.  The raw data
from Vangorda are provided in Appendix A.  Data collection started at V21 in January 1991 with a
requirement for monthly sampling.  These data were submitted with the 1991 Annual report for the
property.  ICP scans were not completed on the samples collected in 1991 - only those metals required
by the Licence (total Cu, Fe, Pb, Zn and As) and dissolved Zn.  Limited data were available from 1992.
 The mine was closed in 1992.  Sampling was re-started in early 1995 due to planned re-opening of the
mine.

V21 is the main station for collection of the waste dump seepage.  The remainder of the stations are
Drains 3, 5 and 6 which feed into the sump.  No samples were collected from V21 from July, 1992 to
December, 1992 as no flow was registered in the seepage collection trench or the drains.  Data for
1993 or 1994 were not collected for Licence compliance purposes when the mine was shutdown. 
Some samples were collected by Water Resources of DIAND during 1994 on both V-21 and on
Drains 2, 3, 5, and 6.  Data have also been collected by Water Resources on these drains in 1995.

2.1.4 Summary Statistics and Data Quality

The monitoring stations and the parameters analyzed as part of the Vangorda seepage collection
program are summarized in Table 2-1.  The complete analytical results from the individual monitoring
stations is provided in Appendix B.  A total of 42 samples were collected from the seepage associated
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with the Vangorda waste dump.  Thirty-three samples are from V21, nine samples are from Drain #3,
three samples are from Drain 5 and seven samples are from Drain 6.  Trends in pH, sulphate and zinc
for V21 are shown in Figure 2-2.

The data were generated by different labs using different detection limits for some elements.  Samples
were collected by employees, contractors and government employees.  The property was managed by
a receiver during 1993 and 1994 prior to re-activation of the property in 1995.  When the company
was in receivership sampling was not conducted since is was not required under the terms of the Water
License which designated it as being in Temporary Closure.  The data are, therefore, of variable
quality.  No quality control information was available.

2.1.5 Conclusions

The following general conclusions can be drawn from the data:

1) The data consists of water chemistry from seepage associated with sulphide-bearing waste rock
that currently has sufficient alkalinity to maintain neutral pH conditions.

2) The seepage contains elevated concentrations of sulphate and zinc.  Other metals present in the
seepage include Al, Ni, and Fe.

3) The data have been collected over a period of 4 years but not consistently as the mine was
shutdown in 1993 and 1994.  The analyses have been conducted using different analytical
methods and detection limits.

2.2 CINOLA

2.2.1 Data Sources

The Cinola data set are appended to MEND Report 015SQ.23440-2-9271 (Norecol, Dames & Moore,
Inc. 1994.)  The data were supplied in CSV (comma separated value) file format.

2.2.2 Site Description and Background Information

A number of ARD assessment programs were conducted at the Cinola site between 1987 and 1992. 
One of these projects involved construction and monitoring of four 20- to 30-tonne on-site waste rock
test pads designed to assess the kinetics of acid generation under actual field conditions for four of the
main rock types encountered at the Cinola property.  The material placed on each pad was as follows:

Pad 1 Five-year weathered Silicified Skonum Sediments (20+)
Pad 2 Silicified Skonum Sediments (30+)
Pad 3 Argillically-Altered Skonum Sediments (30+)
Pad 4 Brecciated Skonum Sediments (30+)

The rock contained a few percent sulphur with negligible neutralization potential.  The leachate from
each of these pads was collected by an underdrain system and directed to collection barrels which were
sampled periodically.  The monitoring intensity was greatest in 1987 and 1988 when the property was
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being actively developed.  Sampling was suspended between October, 1988 and July 1990 (Figure 2-3)
when active development of the property was halted.  Sampling and monitoring was reactivated in
1990 and continued until April, 1992 under a MEND contract.

2.2.3 Database Description

The water chemistry data was generated from analyses of the leachate from the four waste rock test
pads described above.  Approximately 57 leachate samples were collected from the each of four pads
over a six year period from February, 1987 to April, 1992.  All samples were analyzed for pH,
conductivity, alkalinity, sulphate, acidity to pH 4.5, acidity to pH 8.3, SiO2, and dissolved metals by
ICP including Hg.  The data are provided in Appendix B.

2.2.4 Summary Statistics and Data Quality

The monitoring program conducted for the Cinola test pads is summarized in Table 2-2.  A total of 57
samples were collected from each test pad over the 5-year period, however no samples were collected
in 1989 and only one sample was collected in 1990 (Figure 2-3).  The data set is fairly comprehensive
in that it includes a complete ICP metal data and was collected over two full year periods in 1987 and
1988.  All test materials generated acid (pH<4) throughout the monitoring program.

Detection limits utilized, especially after late 1990, were high relative to the current limits used for
assessment of environmental samples.  No data quality control monitoring was completed.  Values less
than detection limits were recorded as detection limits (i.e., with no "<").  Therefore, values below
detection limits could not be identified and distinguished from values at detection limits.

2.2.5 Conclusions

The following general conclusions can be drawn for the Cinola data set:

1) The water chemistry data provides a comprehensive data set over a time frame of five years
from four different rock types.  These rock-types were prone to acid generation due to their
very low carbonate contents.

2) The data includes complete ICP metals and major anions for many of the samples.

3) All leachates with the exception of Pad 1 contained elevated concentrations of Fe and
significant concentrations of Zn and Cu.

2.3 SULLIVAN MINE

2.3.1 Data Sources

The Sullivan data set was extracted from a report titled "Waste Characterization, Hydrogeological and
Water Quality of the Lower Mine Yard Sullivan Mine" prepared by Dames & Moore.  Permission to
use the data was provided by R.T. Gardner of Cominco Ltd., Kimberley Operations.

2.3.2 Site Description and Background Information
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Sullivan Mine is located in southeastern British Columbia near Kimberley.

The Lower Mine Yard of the Sullivan site and the relative locations of the monitoring stations are
shown in Figure 2-4 and 2-5.  Waste rock containing 1 to 3% total sulphur was deposited along valley
sides from 1903 to the mid-1930's (Figure 2-4).  The rock contains negligible neutralization potential
and is strongly acid generating (Table 1-1.)

2.3.3 Database Description

Water chemistry has been monitored at 13 seepage or groundwater stations in waste dump areas
(Figure 2-4) and six surface water sampling stations on Mark Creek (Figure 2-5).  The samples were
collected in August, 1992; March, 1993; and June, 1993.  All samples were analyzed for pH,
conductivity, alkalinity, sulphate, acidity and ICP dissolved metals.  The same laboratory was used
throughout the monitoring program.

2.3.4 Summary Statistics and Data Quality

The monitoring program for the selected groundwater and surface water stations at Sullivan is
summarized in Table 2-3.  The raw data is provided in Appendix C.  Sixty-five samples are included in
the data set.  Considerable variation in pH, sulphate and dissolved metals was observed.  The
groundwater pH ranged from 8.47 to 1.85 with a mean of 5.4 while sulphate ranged from 9 to 14000
mg/L SO4 with a mean of 800 mg/L.  Metal concentrations exhibited similar variation.  Low detection
limits for the metals were consistently used.  Surface water pH ranged from 8.3 to 2.53 with a mean of
6.1 while sulphate ranged from 2900 to 0.5 with a mean of 256.

Quality control monitoring included sampling blanks and for duplicates.  Ion balances were less than
"20% for all samples.

2.3.5 Conclusions

The data set provides comprehensive information from a spatial distribution perspective but represents
a limited time frame of one year.

2.4 MINE DOYON

2.4.1 Data Sources

The Mine Doyon data set was extracted from an unpublished MEND report supplied by Natural
Resources Canada, Canada Centre for Mineral and Energy Technology, (Carl Weatherell).  The data
were supplied in Excel 5.0 format.

2.4.2 Site Description and Background Information

Doyon gold mine is located between Val D'Or and Rouyn, Quebec.  A general layout drawing for the
Mine Doyon site is provided in Figure 2-6.  From 1978 to 1989, the open pit mine generated 47 million
tonnes of overburden and waste rock.  The waste was placed in two dumps designated as the "North"
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and "South" dump.  Both dumps contained 20 million tonnes of waste.  The south dump covers about
53 hectares and is 40 metres deep.  Rock types found in the waste include intermediate tuffs,
volcanoclastics, schists, diorite and alaskite, with pyrite concentrations ranging from a low of 1.5% in
the diorite to 7% in the schist.  The reactivity of the pyrite is accentuated by the friable nature of the
sericite schist.  This highly reactive sericite schist makes up 50% of the composition of the South
dump.  The South dump was the focus of a major MEND Prediction committee research project that
has generated an extensive data set for a series of groundwater and surface water stations.

2.4.3 Database Description

The Mine Doyon Monitoring Program is summarized in Table 2-4 with the raw data provided in
Appendix D.  The dataset includes 16 groundwater monitoring stations in the waste dump area and
three collection ditch stations downstream of the Dumps.  Sample collection and analyses from these
stations was intensive with 89 samples from the groundwater stations between March 1991 and
December 1992, and 607 samples from the collection ditches between January 1991 to December
1992 period.  The groundwater samples were analyzed for pH, Eh, conductivity, specific gravity, total
dissolved solids, acidity, sulphate and metals in some cases.  In many cases, the chemical composition
of the samples was calculated using TDS or conductivity data based on relationships derived by
Choquette et al. (1993).  The data set also includes historical data from ditch monitoring stations prior
to 1991, available for three sampling points (D-301, 302 and 309).  Station D-301 was located in the
southern portion of the eastern ditch, monitoring the leachate coming from the eastern part of the
dump.  Station D-302 was located in the north-west corner of the dump, approximately 100 m to the
north-west of monitoring station D-510.  D-309 was located in the eastern part of the south ditch. 
Monitoring station D-511 collects the leachate from both east and south ditches.

2.4.4 Summary Statistics and Data Quality

The data base from Mine Doyon is extensive and covers an area closely associated with the South
Dump.  The data set was collected over a relatively short time frame and utilized a relatively frequent
schedule.

No QA/QC information was available

2.4.5 Conclusions

The data set is extensive in terms of the physical parameters but contains limited ICP metal data.  The
data set relies heavily on calculated values for data interpretation.  The approach taken in the Mine
Doyon study was similar to that proposed for this program.

2.5 ESKAY CREEK MINE

2.5.1 Site Description and Background Information

The Eskay Creek Mine is located approximately 94 km north-northwest of Stewart in northern British
Columbia.  The Mine is located in a very mountainous area approximately 50 km from the BC/Alaska
border.  The site drains to Eskay Creek which ultimately drains to the Unuk River which flows to
Alaska.
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The 21B deposit, which is currently being mined, is characterized by stratabound and stratiform
high-grade gold and silver bearing base metals sulphide layers.  Banded sulphide mineralization occurs
in carbonaceous and tuffaceous mudstones of the contact unit.

2.5.2 Database Description

The water chemistry data set from Eskay used for this program consisted of 69 waste dump discharge
samples (Station D-2) collected over a four year period from January 1991 to June 1995 (Table 2-5).

Approximately 70,000 tonnes of waste rock was removed from the upper portal during mine
development.  This rock was placed on a waste dump adjacent to the portal.  The composition of
dump was as follows:

Argillite 10,000 t
Massive Rhyolite 10,000 t
Brecciated Rhyolite 20,000 t
Dacite 30,000 t

Seepage run-off from the waste dump was collected and discharged to a settling pond constructed to
remove sediment from mine water.  A drawing showing the relative locations of the portal, waste
dump and seepage collection pond is provided in Figure 2-7.  Monitoring of the waste dump seepage,
designated as Station D-2, indicated in 1992 that acid generation was occurring in the dump (Figure 2-
8).  In 1994 a portion of the waste rock dump was moved and deposited in a waste rock impoundment,
referred to as Albino Lake.  The Eskay Creek Mine started up in April 1995.  Most of the dump was
moved to the impoundment in 1995, while the remainder will be moved in 1996.

The data set includes a complete parameter list of all major anions and an ICP multi-element scan for
both total and dissolved metals.

2.5.3 Summary Statistics and Data Quality

The data set is a very comprehensive from a single source of ARD.  The data was generated using one
lab only and the ICP metals were analyzed to low detection limits for As and Hg due to concern with
leaching of these elements.

No QA/QC information was available for the data set.

2.5.4 Conclusions

The following general conclusions can be drawn from the data set for Eskay Creek.

1) The water chemistry data provides reasonably comprehensive information over four year
period for a dump containing a mixture of different rock types.  This dump include both highly
reactive and non-reactive materials.

2) The data includes complete ICP metals and major anions.
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3) The data set includes samples prior to the onset of acid generation.

2.6 DETECTION LIMITS

Detection limits varied considerably both between data sets and within each data set.  Improvements in
instrumentation and procedures have consistently reduced detection limits in recent years.  Detection
limits for As, Sb and Hg (if determined) also vary considerably since these elements can require
separate procedures if low detection limits are required.  In general the data set from Sullivan has
utilized consistently low detection limits, e.g. As - 0.0001 mg/L, Cd - 0.00002 mg/L, Cu - 0.001 mg/L.
 Detection limits for the Vangorda data set varied considerably since the samples were collected by
different individuals and were analyzed by different labs over an extended time frame.  Detection limits
for several metals in the Cinola data set were increased after monitoring resumed in 1990.
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3.0  APPLICATION OF THE
EMPIRICAL MODELLING APPROACH

3.1 INTRODUCTION - METHODOLOGY DESCRIPTION

3.1.1 Statistical Modelling

For each site, all available water quality data were combined into a single spreadsheet file.  Records
with no pH or conductivity data were deleted.  Parameters with n<10 were also deleted.  All
parameters except pH were log-transformed.  Finally, values less than detection limits were set to 0. 
These values were not included in plots and statistical analyses because values of 0 cannot be
log-transformed.  This approach was taken since detection limits for most data sets were extremely
variable.  For the Cinola data set, values less than detection limits were recorded as detection limits, so
all values were used in regressions.  Over 200 scatter plots of commonly detected metals and
metalloids versus pH, conductivity and sulphate were then generated.  The plots were examined to
determine if one regression was adequate to fit the data, or whether separate regressions were required
for different sites or other subsets of the data.

Required regressions, or in some cases, means, were calculated using SYSTAT statistical software
(Version 5.3; Wilkinson 1990).  Outliers, if present, were deleted, and the regressions recalculated. 
Outliers were defined as cases with absolute values of Studentized residuals >3.  A Studentized
residual is approximately equivalent to the number of SD a residual is from the mean or regression line;
a more precise definition is given by Velleman and Welsch (1981). If new outliers were identified when
the regression was recalculated with the first set of outliers deleted, no further data trimming was
performed.  To conserve time and paper, histograms of residuals were not plotted for each regression. 
Instead, stem-and-leaf plots were made.  These plots are described in detail in Wilkinson (1990; p.
550), and are generally more informative than histograms.

SD of residuals were not calculated.  Morin and Hutt (1993) calculated SD of residuals, but that is
statistically incorrect.  The correct statistic describing the variation of the residuals or precision of
predicted values is the standard error of the estimate (Sxy).  The standard error of the estimate
accounts for the fact that two parameters (slope and intercept) must be estimated from the sample in
regression, rather than the one (mean) estimated in calculating the SD.  Sxy can be obtained by
multiplying SD of residuals by ({n-1}/{n-2})2.  The difference between Sxy and SD of residuals is trivial
(<3%) except for small data sets (n<20).

3.1.2 Overall Comments

Figures 3-1 to 3-18 provide plots (including regression lines) and histograms of residuals for a selected
subset of data.  Tables 3-1 to 3-5 summarize regression statistics (intercept {b}, slope {m}, R2, P) for
all calculated regressions for each site.  In some cases, regressions were calculated for subsets of data,
separated by sample site or type, or by pH range.  Specific examples are discussed below and in the
sections on each site.  When no relationship was evident, means rather than regressions were
calculated.  Since values less than detection limits were usually excluded, these means are biased
upwards.  Slopes and intercepts in Tables 3-1 to 3-5 are based on log10 transformations.
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Most regressions were significant at P<0.05, and usually at much lower P values.  The low P and high
R2 values clearly demonstrate the success and utility of the empirical approach described by Morin and
Hutt (1993).  Furthermore, all slopes of significant regressions on pH were negative, and all slopes of
significant relationships with conductivity and sulphate were positive, with two exceptions: slopes for
Sr and U versus pH for Eskay Creek were positive.  Regressions for both elements were based on
small sample sizes (n<20) and a restricted pH range (pH>6).  Uranium may behave differently from
other elements due to oxidation state variability; however, the result for strontium cannot be explained
as it normally shows similar behaviour to calcium.

Although the empirical approach was generally successful, there were some problems with specific
regressions and the methods of Morin and Hutt (1993).  These problems were:

! non-linearity of relationships;

! non-normality of residuals;

! large influence of extreme points;

! use of histograms to assess residuals; and

! values less than detection limits.

These problems were related, and are discussed briefly with examples below and in the sections on
each site.  Most of the problems can be eliminated using methods applied in this study, or by refining
the methods of Morin and Hutt (1993) to conform with standard regression and statistical diagnostic
procedures (e.g., Draper and Smith 1981).  These refinements will be discussed and demonstrated in
Chapter 4 of this report.  Specific regressions in Tables 3-1 to 3-5 and from other data sets should
never be applied uncritically.

Some relationships were non-linear even after log transformation.  Many of these relationships could be
linearized by separating sites, as done for Cinola and Mine Doyon.  In other cases, relationships were
linear over the lower portion of the pH range, and flat at higher pH.  The relationship between
dissolved As and pH for Eskay Creek demonstrates this "hockey stick" type of relationship (Figure
3-17a).  A linear regression (="shaft") existed below pH=6.  Above pH=6, there was no relationship
and Figure 3-17a) shows the mean As over this range (="blade" or negative asymptote).  In this
example, the pH break point between the blade and shaft was visually obvious, and the same break
point also applied to Mg.  Relationships of As and Mg with conductivity and sulphate followed a more
linear relationship (Figure 3-17a).  In other cases, such as B, Cu, Fe, Ni and PO4 versus pH for
Sullivan, a break point was evident but differed among the parameters.  Again, relationships with
conductivity and sulphate were smoother, with no obvious break point.  These hockey stick and other
non-linear relationships were impossible to detect without examining plots and regression diagnostics,
and often provided significant log-log relationships (Tables 3-1 to 3-5).

Many of the distributions of residuals appeared non-normal, although that was sometimes an artifact of
the class intervals selected (see below).  Non-linearity was one cause of non-normal distributions. 
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Other causes included truncation by deletion of values less than detection limits for means and blades,
outliers, and cases where only a few discrete concentration values were measured.  These issues are
considered in the discussion of histograms.

Some regressions were highly significant, with high R2, only because of the influence of a few extreme
observations at either end of the regression line.  For example, relationships between Cu and Zn for
Pads 2-4 from Cinola were strongly influenced by a few points at the lower right (i.e., pH >5) (Figures
3-4a and 3-5a).  These points are arguably no different from the Pad 1 values.  If these points were
deleted, the slopes of the relationships for Pads 2-4 would be much steeper.  Residuals from these
relationships appeared bimodal or at least non-normal and asymmetric (Figures 3-4b and 3-5b).  The
influence of these extreme values can be removed by removing the observations at pH>5; by weighting
them less than other observations; or by collecting additional observations for pH values between 3 and
5.  The latter option is preferred when feasible.

Histograms were used to assess normality of residuals, following Morin and Hutt (1993).  However,
histograms are not suitable unless n is large (i.e., >50-100) and intervals are chosen carefully.  If n is
small, there are few observations in any interval.  For example, the distribution of residuals from the
regression of Zn on conductivity for Vangorda appears non-normal (Figure 3-2b) but that might be an
artifact of the limited number of observations (#6) in each interval.  In other cases, the interval chosen
may bias the appearance of histograms.  For example, the distribution of residuals from the Zn versus
conductivity regression for Cinola Pads 2-4 appears to be shifted right, with the mode at 0.20 rather
than 0 (Figure 3-7c).  This apparent non-normality is an artifact of the interval selected.  Each interval
spans 0.20 log units (e.g., the 0 interval spans -0.10 to 0.10).  Negative and positive residuals tended to
be clumped towards the low end of interval ranges; the interval mid-points overestimate the mean of
the values within each interval.

Biases in histograms occur in part because of the continuous distribution of predicted values versus the
discrete distribution of measured values.  A predicted value may be 48.87965 mg/L, but measured
values may be restricted to whole numbers.  Problems of continuity were greatest for means calculated
for values near detection limits, since there might only be two or three possible measured values.  For
example, if detection limits are 1 mg/L, and measured values are whole numbers ranging from 1-5,
there are only five possible values for residuals.  The resulting histogram will show peaks for the
intervals containing the five possible values, and no observations in other intervals.  This clumped type
of distribution is evident for some of the Cinola Pad 1 "regressions" which are just horizontal lines
corresponding to the mean of detected values.

Most of the problems associated with histograms can be avoided by using other diagnostic plots such
as box-and-whisker plots, normal probability plots, and plots of residuals versus estimates.  As Figure
3-17a demonstrates, residuals from two separate relationships should not be pooled.  The residuals
from the shaft are relatively continuous, whereas the residuals from the blade tend to be clumped in a
few intervals corresponding to a limited number of measured values near detection limits.  The
variances of residuals from the two parts of the hockey stick were also different.

Values less than detection limits pose special problems.  Removing them or treating them as 0 may bias
regressions and estimates of means.  Using one-half detection limits for values less than detection limits
gives a better estimate of the mean, but creates biases and problems with continuity and normality of
residuals.  In many cases, values less than detection limits may not be of concern environmentally, and
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can safely be ignored.  The shaft or linear portion of hockey stick relationships is more important,
because this is the region in which high concentrations occur and need to be predicted.  Finally, all
values less than the Practical Quantitation Limit (PQL; usually -5 times detection limits) are arguably
qualitative not quantitative, and should be treated as such (Taylor 1987; see also Section 4.1). 
Investigators specifically interested in predicting low concentrations should use lower detection limits
in the initial data set used to develop empirical models.

Finally, although regressions within mines were generally significant and successful, slopes and
intercepts differed among mines for any specific set of Y and X.  The significance of these differences
among mines was not tested formally, but could be done as part of the next phase.  Similarities and
differences in slopes are discussed in Section 3.2.

3.1.3 Site Results

Vangorda

Regressions for Vangorda were generally less significant than those for other mines, partly because
sample sizes were smaller.  Of the measured metals, only Zn (Figure 3-1 to 3-2) and Fe were
significantly correlated with all three independent variables (pH, conductivity, sulphate).  As was
significantly correlated with sulphate only; Cu was significantly correlated with conductivity only
(Figures 3-3); Pb was not significantly correlated with any independent variable.  The relatively weak
relationships may reflect the fact that acidification had not progressed to where low pH and high metal
concentrations are routinely or frequently measured.

Cinola

Regressions for Cinola included values less than detection limits since these were recorded as detection
limits in the data set provided.  No regressions were conducted for Cd and Pb because detection limits
were raised in 1990 to 0.5 and 0.1 mg/l, respectively.  These detection limits were well above any
values measured from 1987 to 1989.  Detection limits were also raised in 1990 for Co, Hg and Ni.
Most concentrations from 1987-89 for Pad 1 were below the later detection limits, so no regressions
were calculated for Pad 1 for these metals.  However, most 1987-89 values for Pads 2-4 were above
the later detection limits, so regressions were calculated for Pads 2-4.

As expected, relationships between metals and independent variables for the weathered Pad 1 were
weak or non-existent, and pH were higher than in Pads 2-4 (Figures 3-4 to 3-7).  Some furthering
leaching may be expected at Pad 1 as some regressions were significant and some metals remained well
above detection limits.  The other pads had lower pH and higher metal concentrations, and the strong
relationships for these pads indicated the effects of leaching at lower pH.  For some metals (e.g., Mn,
Mg) relationships for Pad 4 differed from those for Pads 2 and 3.  This is related to the total metal
content of the test materials.

Sullivan

All regressions listed in Table 3-3 for Sullivan mine were significant, most at P<0.001 (Figures 3-8 to
3-9).  Some of the relationships were driven by a few extreme points with high concentrations at low



15

pH; these extreme observations had greatest influence for the linear or shaft portion of hockey stick
relationships for B, Cu, Fe, Ni and PO4.  Relationships between these five parameters and conductivity
and sulphate were apparently curvilinear and log-log regressions given in Table 3-3 are suspect. 
Ground- and surface water samples were pooled for the regressions, as differences between the two
water types (which have the same origin) were not visually obvious.

Mine Doyon

Regressions based on measured rather than calculated values for Mine Doyon seepage and borehole
samples listed in Table 3-4 were all significant, usually at P<0.001.  Selected regressions are provided
in Figure 3-10 to 3-13.

Eskay Creek

Regressions for the Eskay Creek data were all significant, usually at P<0.001 (see also Figures 3-14 to
3-18).  Break points for hockey stick relationships for As and Mg versus pH were evident at pH=6
(As, Figure 3-17).  Despite the limited sample sizes for the shaft (n=26 for As), regressions for pH#6
were significant at P<0.001.  Relationships in the blade region were not significant at P<0.05.

The Eskay Creek data set and regressions were used for an intensive examination of outliers.  Table 3-
6 summarizes the outliers observed.  Primary outliers were values with absolute values of Studentized
residuals >3.  Secondary outliers were values with absolute values of Studentized residuals >3 in
regressions with the primary outliers omitted.  Morin (Morin and Hutt 1993; comments on a previous
draft of this report) treats outliers as "real" (i.e., valid short-term peaks or lows in metals
concentrations).  Some of the outliers observed, especially those which were outliers for several metals,
probably were real.  However, most outliers appeared to be represent measurement or data entry errors
for either the Y or X variable.  The frequency of real outliers versus measurement or data entry errors in
empirical models will depend on the quality of the data, indicating that data quality should always be
checked and improved if possible.

The sample collected February 28, 1995, with pH=13.9, was eliminated from all analyses of Eskay
Creek data.  This sample was probably preserved with NaOH for cyanide analyses, and inadvertently
submitted for other analyses.  Note that conductivity in this sample was much higher than conductivity
in other samples in Table 3-6, presumably reflecting the high Na content after NaOH addition.

When samples are outliers for regressions on only one X-variable (e.g., pH), investigators should
suspect that the X-variable may be in error.  For example, the sample collected March 16, 1992, was an
outlier (positive) for most regression of metals on pH.  The pH in this sample was 10.3, >2 pH units
higher than in any other sample except the sample with pH=13.9.  The pH measurement was probably
a measurement error, since pH>10 are not characteristic of natural surface or ground waters
(McCutcheon et al. 1993; his list includes thermal springs with pH.9.0-9.5).

Outliers for regressions of Sr and U on all three X-variables were similar, and reflected limited sample
sizes and the large influence of a few points.  For some reason, these two elements were measured only
in samples with pH>6, so the range of the X-variables was restricted.
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Some samples were outliers, often only secondary outliers, for only one or two of the 45 regressions
calculated.  These outliers were probably more indicative of natural variability than any specific peak or
low contamination event.  Studentized residuals with absolute values >3 will occur at a low frequency
(#1% for the Eskay Creek regressions), even if distributions of residuals are normal with no real
outliers.

Some samples were outliers for only one metal.  For example, the sample collected May 31, 1995, was
a positive primary outlier for all three Pb regressions.  The Pb value was probably a measurement or
data entry error, as there was no reason to expect only Pb to be elevated.  However, the hypothesis
that the sample may represent some specific heavy-metal contamination peak cannot be totally rejected
because Cd and Zn measurements were also positive secondary outliers.

Finally, there were some samples which probably did represent real peak or low contamination events,
as these samples were outliers for several different combinations of Y and X variables.  Examples
include the two samples collected May 14 and 22, 1992, which may represent peak contamination
occurring over a week or more due to snow melt.  No flow data were available to test this conclusion. 
This was a fundamental shortcoming of all the datasets.

3.1.4 Summary and Conclusions

In most cases, the empirical approach described by Morin and Hutt (1993) was successful, as
regressions were significant and accounted for much of the variance of dependent variables (i.e., metals
and metalloids).  Most problems identified could be solved by applying standard statistical and
diagnostic procedures to refine the methods of Morin and Hutt (1993).  Thus, metal concentrations
within any site could be predicted from easily measured and inexpensive parameters such as pH,
conductivity and sulphate rather than measured directly.  Costs of water quality monitoring could be
lowered and/or sampling frequency increased.  Although empirical relationships were significant, they
probably differ among mines and even among sites or sample types within mines.  Comparison of
relationships for different sites is provided in Section 3.2.  This issue, plus the refinement of the Morin
and Hutt (1993) methods will be considered in Section 4.0.

3.2 GEOCHEMICAL MODELLING

3.2.1 Methodology

Introduction

The objective of the geochemical modelling was to ascertain whether the statistically quantified
bivariate relationships could be related to actual chemical conditions within the waste rock piles being
monitored.  The main features to be explained are:

1. The strong negative correlations between element concentrations and pH; and

2. The strong positive correlations between conductivity and element concentrations.

In its simplest terms, the chemistry of waters in contact with mine waste rock is controlled by the
chemistry of the water entering the pile and interactions with minerals contained in the rock.  The
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dominance of sulphate and the strong correlation of sulphate with other parameters indicates that the
main chemical processes are oxidation of sulphide minerals, release of acidity and leaching of minerals
along drainage pathways.  Leaching occurs in proportion to the amount of acidity available and
continues until the solution is buffered at a pH in equilibrium with the weathering products.  Reactions
are not likely to proceed to true equilibrium since percolating groundwaters are not in contact with any
individual mineral grain long enough to allow development of equilibrium conditions.  Nonetheless, the
bulk chemistry of the waters may appear to be in equilibrium with the percolating waters if the pile is
relatively consistent in mineralogical composition, and large enough to allow water chemistry to
approach a chemical endpoint.

The steps used to evaluate the derived statistical relationships with respect the geochemical processes
were as follows:

1. Use the equilibrium speciation model MINTEQA2 to determine whether water chemistry is
potentially controlled by dissolution of minerals potentially present in the waste rock.  This step
was divided into an overall comparison of saturation indices for many minerals and a specific
investigation of pH vs element relationships for specific hydroxide and carbonate minerals.

2. Compare bivariate relationships with expected relationships due to leaching of minerals in the
absence of chemical equilibrium.

Application of MINTEQA2

MINTEQA2 (Allison et al. 1991) is a modified version of MINTEQ (Felmy et al. 1984).  MINTEQA2
has a larger thermodynamic database than MINTEQ and also implements the calculations differently. 
The models permit calculation of geochemical equilibrium speciation using chemical analyses and
mineral assemblages as inputs.  The fundamental limitation of these models is that it is assumed that
equilibrium is attained.  No allowance is made for reaction kinetics which may preclude the formation
of dissolved species and solids.  Output from MINTEQA2 must be considered in this context.

A feature of MINTEQA2 is that the model allows saturation of the solution with respect to all minerals
in its database for which components have been specified to be assessed.  Based on the solution
speciation, the model calculates the ion activity product (IAP) for each mineral.  For example, the IAP
for anhydrite (CaSO4) is:

where a is the activity of the individual species, which is less than the concentration by the activity
coefficient.  The IAP is compared to the solubility product (ksp) for the mineral and presented as log of
the saturation index (SI):

log (SI) = log (IAP/ksp).

If log(SI) is greater than 0, the solution is said to be oversaturated with respect to a particular mineral,
suggesting that the mineral is forming.  If log(SI) is less than 0, the solution is undersaturated,

4
2 - 2 +SO Caa .a
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suggesting that the mineral is dissolving.

For each model run, MINTEQA2 was allowed to calculate SIs for each mineral.  Although the model
allows solids to be dissolved or precipitated, this was not done.  The SIs were evaluated to assess
which minerals if any would be saturated and therefore controlling the overall chemistry of the solution.

Selection of Samples

Since four of the five databases indicate very strong inter-correlation between sulphate, pH and many
other parameters, samples were selected for each correlation trend to represent high, intermediate and
low total dissolved solids (TDS) represented by electrical conductivity.  The exception was the Cinola
site for which distinctive trends for the different pads were modelled separately.

Specific Limitations of MINTEQA2

In addition to the general constraints imposed by the assumption that equilibrium conditions develop,
several specific limitations were encountered for this project, as described below.

! Absence of Aqueous Species.  None of the datasets included a comprehensive analysis of all
potential ions.  In some cases, major cations (such as Ca2+, Mg2+) and anions (Cl-, F-, PO43-)
were not determined.  This shows up as a charge imbalance.  MINTEQ can reject excessive
charge imbalances, however, this was not allowed.

Although silica has a zero charge in solution (H4SiO4
o), the lack of silica analyses in some

databases prevents assessment of the contribution of silicates.

Analysis of trace ions was also not complete and variable between the datasets.

! Absence of Gas Data.  No gas data were available.  Therefore, partial pressures could not be
reliably estimated for O2 and CO2.  Oxygen was not specified as a component (see "Absence of
Oxidation-Reduction Data" below).  Carbon dioxide was constrained at atmospheric partial
pressure (10-3.5 atm) for acidic piles.  If alkalinity was measured, it was specified, and, in
conjunction with constrained pH, defined the CO2 partial pressure.

! Absence of Oxidation-Reduction Potential (ORP) Data.  Four of the five datasets had no
measures of oxidation-reduction conditions.  ORP was not determined, nor were
oxidation-reduction couples measured.  Mine Doyon was the exception.  Both Fe2+ and Fe3+

were measured in solutions.  For all other sites, only total Fe was determined.  This was
arbitrarily entered as Fe3+.  Oxidation states were also assigned to Mn(III), V(III), As(V),
Cr(VI) and S(VI).

! Interpretation of Alkalinity.  Since most waters were acidic, alkalinity was not determined.  For
slightly acidic and alkaline waters, total alkalinity was reported as mg CaCO3/L.  MINTEQA2
allows alkalinity to be entered in this format.  However, the analytical total alkalinity includes
all species that can consume acid, these include not only bicarbonate and carbonate but also
other aqueous species and suspended matter.  This complication was ignored for this project
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since the majority of waters were acidic (negligible bicarbonate alkalinity).

! Modelling of Adsorption Processes.  MINTEQ allows adsorption processes to be modelled;
however, no data are available to allow specific adsorption sites to be modelled.

3.2.2 Results of MINTEQA2 Modelling of Water Chemistry

Modelling runs are summarized in Tables 3-7 to 3-11.  Only minerals for which log(SI)s are greater
than -1 are reported.  All other minerals are omitted for clarity.

Vangorda

The Vangorda Mine dataset is unique for this project in that the seepage mostly has pH>7.  A strong
correlation was observed between TDS (conductivity) and many other parameters.  Low TDS
corresponded to low concentrations and higher pH.  High TDS corresponded to higher concentrations
of metals and lower pH.  There is a distinctive grouping of the data for these two conditions. 
Therefore two samples were selected to represent high and low TDS conditions.  The high TDS
sample was dominated by sulphate and elevated heavy metal concentrations.  The low TDS sample had
an order of magnitude less sulphate and about the same alkalinity.  Modelling results for the two
samples were dissimilar, although this was partly due to the lack of a consistent dataset for the two
samples.

Results for two samples were very similar (Table 3-7.)  The solutions were over-saturated with respect
to limonite-type minerals (jarosite, ferrihydrite, goethite, hematite and lepidocrocite).  The dominant
complexing anion in solution was OH-.  Both solutions were oversaturated with respect to smithsonite
(ZnCO3).  The low TDS sample was saturated with respect to several zinc hydroxides indicating that
solution chemistry was being controlled by these minerals.

Cinola Gold Project

The Cinola Gold Project differs from the other sites in that different trends in conductivity vs. sulphate
and other parameters were observed for Pad 1 when compared to Pads 2, 3 and 4.  Pads 2 and 3 also
showed distinctively different bivarite trends from Pads 1 and 4 when considering magnesium vs.
conductivity and pH.  Seven different sample cases were modelled to evaluate the differences between
the various trends.

Results from the model runs showed very little difference between any of the cases (Table 3-8.) 
Oversaturation with respect to the various limonite minerals (ferrihydrite, jarosite, geothite, hematite,
lepidocrocite) and manganese hydroxides and oxides was predicted.  The presence of a
montmorillonite-type clay was predicted by oversaturation with respect to notronite.  Although
significant differences in trends in bivariate space are apparent, the MINTEQA2 modelling offered no
explanation for the trends.
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Sullivan Mine

The Sullivan Mine dataset contains water chemistry for groundwater monitoring wells located
upgradient, within and downgradient of waste rock placed on the sides of a valley.  The waste rock is
at least 60 years old and visibly heavily oxidized.

The data belong to a single trend in 2-dimensional space.  High TDS values correspond to low pH
(<4), and high concentrations of sulphate and dissolved metals.  These waters originate from within the
waste rock.  Higher pH (between 7 and 8) waters originate from wells upgradient of the waste rock. 
These latter waters are not indicative of interaction with waste rock but with local unmineralized
bedrock and surficial materials.  Three samples were selected for modelling, representing extremely
acidic (~2), very acidic (~3.5) and neutral (~7) pH.

Both the extremely and very acidic samples were indicated as being over-saturated with respect to
limonite-type ferric minerals (geothite, lepidocrocite, hematite, jarosite), gypsum (anhydrite will not be
stable), celestite and manganese hydroxide (MnOOH, manganite) (Table 3-9.)  Weathering products of
alumino-silicates were indicated as over-saturation with respect to various forms of silica (chalcedony,
cristobalite, quartz and silica precipitates) and montmorillonite-type silicates (nontronite).  The very
high log(SI)s for nontronite indicates that this mineral in particular was not present and that some other
clay mineral was probably controlling solution chemistry.  Since the modelling results were very similar
for the two samples despite the difference in TDS, it appeared that the strong bivariate correlations
between all parameters were driven by the linkage between sulphate, acidity and leaching rather
saturation controls.

Since pH was low, there were no indications of saturation with respect to the trace heavy metal
sulphates, hydroxides or carbonates (for example, Zn, Pb, Cu).

These modelling results were consistent with the strongly oxidized nature of the waste rock.

In comparison, the chemistry of upgradient groundwater appeared to be controlled by interaction with
calcite and possibly dolomite.  Silica concentrations appeared to be near saturation for quartz.

Mine Doyon

As with the foregoing sites, the Mine Doyon dataset showed a strong relationship between
conductivity and most other parameters.  Metal concentrations were also correlated with pH.  Lower
pH generally correlated with higher metal concentrations.  The majority of samples collected from
waste rock sites at Mine Doyon were very strongly acidic.  Although both Fe2+ and Fe3+ were
determined, Fe3+ is clearly dominant.

Three samples were selected representing high, medium and low TDS.  The high TDS sample did not
have a silica or aluminum analyses therefore saturation with respect to alumino-silicates could not be
addressed.

Results for the intermediate and low TDS samples were very similar, and after allowing for missing
data, the high TDS sample was also similar (Table 3-10.)  Oversaturation with respect to the various
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limonite minerals (ferrihydrite, jarosite, geothite, hematite, lepidocrocite) and manganese hydroxides
and oxides was predicted. The high and intermediate TDS samples were predicted to be oversaturated
with respect to gypsum.  The intermediate and low TDS samples  were predicted to be oversaturated
with respect AlOHSO4.  Dissolution of silicates and precipitation of secondary silicates was indicated
by the montmorillonite-type minerals nontronite.

Eskay Creek

The Eskay Creek database is the only example of data spanning a transition from high to low pH
resulting from loss of buffering minerals.  Unfortunately, different parameters were analyzed at various
times.  Silica analyses were not available for the acidic drainages.

The results for this site are very similar to the other sites (Table 3-11.)  Oversaturation with respect to
the various limonite minerals (ferrihydrite, jarosite, geothite, hematite, lepidocrocite) is predicted for
two acidic samples.

3.2.3 Comparison of Metal pH Results for Different Sites

Regression relationships for pH vs. several metals (Fe, Al, Cu, Zn and Pb) determined for each site are
compared in Figures 3-19 and 3-20.  Since the regression lines were developed for defined pH ranges,
line segments are shown on the individual plots.  For a theoretical comparison, solubility curves for
common secondary minerals are also shown.  These curves were generated using MINTEQA2 from
simple solutions containing only the particular ion shown.  For the three carbonate minerals (malachite,
smithsonite and cerrusite), the atmospheric carbon dioxide partial pressure (10-3.5) was used.  Metal-pH
comparisons for each metal are summarized below.

Fe-pH

The Fe-pH plot (Figure 3-19a) suggests that waters from several mines were significantly over-
saturated with respect to Fe(OH)3.  The Cinola and Sullivan relationships were similar, and low pH
relationships for Doyon, Sullivan and Cinola converged.  At higher pHs (in the region of over-
saturation with respect to Fe(OH)3), there was considerable variation in the regression relationships. 
At lower pHs, iron is probably primarily in solution as Fe3+, resulting in control by Fe(OH)3, whereas at
higher pHs, iron concentrations are low, near the detection levels and most stable as Fe2+.  This latter
condition results in oxidative instability of water during sampling.  The spread of relationships may
partially reflect oxidation of the sample during collection resulting in precipitation of Fe(OH)3.  Since
the oxidation of Fe2+ to Fe3+ is slow, the effect can lead to a wide range in iron concentrations
depending on conditions at the time of sampling.

Al-pH

Al-pH for the various sites were parallel (on a log scale), suggesting a common chemical control. 
However, several lines crossed the solubility curve for amorphous Al(OH)3 indicating that this
compound is probably not controlling chemistry.  Log saturation indices for AlOHSO4 were near 0 for
several sites suggesting that this compound may be controlling leachate chemistry.  Since it contains
sulphate, the solubility curve cannot be represented on a two dimensional since sulphate concentrations
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would also control solubility.  This may explain the parallel relationships.

Cu-pH

Relationships for Cu varied widely though like Al had similar slopes at lower pHs (Figure 3-20a). 
Malachite was apparently not controlling water chemistry, and concentrations were too low to be
limited by copper sulphate solubility.  None of the sites were copper mines which may indicate the
abundance of copper in the waste rock may have been a limiting factor.

Zn-pH

Zinc concentrations were much lower than would be generated by a zinc carbonate (smithsonite)
constraint for most sites (Figure 3-20b).  At lower pH, zinc sulphate is highly soluble indicating that the
observed relationships are probably affected by dissolution kinetics and dilution (see below).  For
Vangorda, higher zinc concentrations are present at higher pH close to the smithsonite solubility curve.
 If the carbon dioxide concentration in the dump were greater than atmospheric (as is likely in a alkaline
system), the Vangorda relationship would indicate smithsonite control.  As shown in Figure 3-20b, the
smithonsite solubility curve is shifted to the left if the partial pressure of CO2 is 10-1 atm.

Pb-pH

The Pb-pH relationship (Figure 3-20c) is similar to zinc.  The Vangorda relationship approaches
solubility control by cerussite.  The control at low pH is complex, since in locally strongly acid
generating conditions in the vicinity of galena, anglesite (PbSO4) probably controls lead concentrations
since it is relatively insoluble compared to zinc and copper sulphates.

3.2.3 Mineral Leaching

Introduction

The foregoing discussion indicates that modelling of solution chemistry using the equilibrium chemical
speciation model MINTEQA2 provides very little insight into the source and evolution of waste rock
dump leachate.  The purpose of this section is to examine the strong positive correlations and temporal
relationships between dissolved solids and determine whether the observed regression relationships can
be related to the ideal relationships expected for leaching specific minerals present at the sites.

In this section, bivariate regression relationships for products of sulphide oxidation and acid
consumption are evaluated.  Sulphate is frequently measured and can be related more or less to
sulphide oxidation unless soluble sulphates (e.g. gypsum) are present.  Other elements are related to
sulphide oxidation (eg. Fe, Mn, Co, Ni etc.) and acid consumption by carbonates and silicates (Ca, Mg,
Al, K, Na, P).  Considerable overlap between these groups exist due to the inclusion of siderophile and
chalcophile elements in carbonates and silicates.

Conductivity is not considered since it is a gross parameter resulting from the overall effect of all
dissolved and suspended solids.  Total dissolved solids (TDS) is also not useful for this reason. 
Although pH is a more useful measure of a specific chemical condition, it is unreliable for comparisons
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between sites since it is affected by sampling method and storage conditions.  Point-of-sampling
measurements of pH are preferred although field technician methods may vary widely.

Expected Relationships

The expected relationship between sulphate and other parameters can be illustrated by considering the
dissolution of calcite by acidity produced by pyrite oxidation.

The pyrite oxidation reaction could be described by:

when iron is precipitated as Fe(OH)3 or, at pH less than 2.3 to 2.5, the Fe3+ is not precipitated as
Fe(OH)3 but remains in solution:

A further complication is that Fe3+ in solution from leaching of other minerals as well as oxidation of
pyrite is also a strong oxidant:

Equation 3 is more likely to represent actual conditions for a strongly sulphidic oxidizing waste rock
dump.

The moles of H+ released by these reactions varies from 1 to 16 moles per mole of pyrite, or 0.5 to 8
moles per mole of sulphate.

The H+ will react with calcite according to:

at near neutral pH, or according to:

2 2 2 3 4
2 - +FeS  + 

15

4
O  + 

7

2
H O  Fe(OH )  + 2 SO  + 4 H®

(0)

2 2 2
3 +

4
2- +FeS  + 

15

4
O  + 

1

2
H O  Fe  + 2 SO  + H®

(0)

2
3+

2
2 +

4
2 - +FeS  + 14 Fe  + 8 H O  15 Fe  + 2 SO  + 16 H® (0)

3
+ 2 +

3
-CaCO  + H   Ca  + HCO® (0)



24

under acidic conditions.  Either of equations 4 and 5 could be paired with equation 1, resulting in the
expected relationships in solution of:

Ca2+ = 0.5.SO4
2-

log Ca2+ = log(0.5) + log SO4
2-

at near neutral pH and

Ca2+ = 1.SO4
2-

log Ca2+ = log(1) + log SO4
2-

as the overall conditions become more acidic.  Since the overall transition to acidic conditions is
gradual as different parts of the dump become acidic, the regression slope for log SO4 vs log Ca may
be greater than 1.  Under strongly acidic conditions in which calcite is not sufficiently available to have
a significant on overall acidic conditions, equations 3 and 5 combined would yield (in molar terms):

Ca2+ = 0.25.SO4
2-

log Ca2+ = log(0.25) + log SO4
2-

From this example, it can be seen that under the ideal conditions indicated the slope of log-log graphs
of Ca vs. SO4 should always be 1, and that the intercept will vary.  These relationships will be
preserved at low and high dissolved concentrations since the volume of water the molar quantities are
present in cancels from both sides of the equation.  Deviations from this expected behaviour would be
encountered if:

! the leachate is saturated with respect to calcium sulphate, in which case the slope of the log-
log, sulphate vs calcium graph would be approximately -1 and the log intercept log(ksp):

! the availability of calcite decreases (slope<1), or the pyrite oxidation rate slows to the point
where release of calcium is due to leaching of calcite by non-acidic water (slope>1).

3
+ 2 +

2 3
0CaCO  + 2 H   Ca  + H CO® (0)

sp SO Cak  = a .a
4
2 - 2 +

log log log(k ) = (a ) + (a )sp SO Ca4
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Figure 3-21(a) summarizes expected trends in Ca and SO4 based on the above discussion.  The Figure
illustrates the predicted relationship between SO4 and Ca in relation to progression of sulphide
oxidation.  For each segment, the expected correlation coefficient for the trend data is shown. 
Correlations are expected to be weakest early and late in the process.  It should be noted that if all
trends were present in a particular dataset, the correlation coefficient would be weak or statistically
insignificant due to data scatter.

When considering elements, such as Fe and Al which are controlled by the solubility of secondary
minerals, the application of this example becomes more complex.  For example, Al concentrations in
solution may be a result of leaching of feldspars (anorthite).  At pHs greater than 4.5, aluminum
concentrations in solution will be low due to the precipitation of aluminum hydroxide at the reaction
site:

CaAl2Si2O8 + 2H+ -> Ca2+ + 2Al(OH)3 + 2H4SiO4
0

However, as pH drops and Al appears in solution:

CaAl2Si2O8 + 8H+ -> Ca2+ + 2Al3+ + 2H4SiO4
0,

similarly for chlorite, a common hydrothermal alteration product:

Mg5Al2Si3O10(OH)8 + 16H+ -> 5Mg2+ + 2Al3+ + 3H4SiO4 + 6H2O

The expected relationships between SO4
2- and Al3+ in combination with equation 1 would be:

Al3+ = 2SO4
2- (anorthite)

Al3+ = 4SO4
2- (chlorite)

The log-log slopes are both 1 and the intercepts are log(2) and log(4) respectively.

Figure 3-21(b) summarizes the expected relationship between SO4 and Al according to progression of
pH conditions and sulphide oxidation.  The early stages controlled by Al(OH)3 are expected to produce
a weak trend.  However, as pH decreases below 4.5, the abundance of aluminosilicates is expected to
produce a well correlated trend with a slope of 1.  This is a result of both transition to pH conditions
under which Al(OH)3 is soluble and loss of carbonate minerals produces residual acidity which reacts
with aluminosilicates.

Similar conclusions can be drawn for all elements.  The purpose of the next section is to test these
conclusions for the five mine datasets.  Regression equations for sulphate against each element
determined are summarized in Table 3-12.  The table provides regression slopes relative to 1 and the
approximate predicted concentration (y100) of each element at sulphate=100 mg/L.  Selected scatter
plots are also shown in Figures 3-22 to 3-26.  These figures show slope=1 lines to allow comparison of
the different sites.  The following sections summarize trends for elements determined frequently.

Results
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Aluminum

Aluminum follows the predicted pattern for all sites.  Near-neutral pH conditions at all site correspond
to lowest sulphate concentrations and poor correlation of sulphate and aluminum.  This is particularly
evident for Eskay Creek where the dataset spans a transition from non-acid to strongly acidic leachate.
 The presence of regression slopes near 1 for acidic waters at all sites correlates with the universal
abundance of alumino-silicates.  The closeness of y100 values (2 to 5 mg/L, Table 3-12) suggests a
common mineralogical control, for example, Al(OH)3, although these y100 values do not correspond to
any particular mineral.

Barium

Barium was determined infrequently.  It occurs as barite, witherite and barian feldspars (celsian).  At
two sites (Vangorda and Sullivan), the regression slopes were negative.  This suggests that solution
chemistry was being constrained by saturation with respect to BaSO4 which has a very low solubility
(refer to Table 3-8 for Sullivan Mine).  Barium is expected to be associated with these lead-zinc
volcanogenic massive sulphide deposits.

Calcium

Regression relationships for calcium can be grouped into slope near 0 (Vangorda at high sulphate, and
Mine Doyon), slope~1 (Cinola) and slope<1 (Sullivan and Eskay) (Figure 3-23).  The slope near 0
implies saturation control by calcium sulphate.  As calcite is virtually absent at Cinola and Sullivan, the
trends suggest leaching of calcium silicates (probably feldspars at both sites).  The waste rock in both
cases is clastic sedimentary rock.  At Eskay Creek, calcite was present early in monitoring as shown by
pH~7 but diminishing in availability resulting in acidic conditions.

Cobalt

For all sites where cobalt was analyzed, the regression slope was near 1 and correlations with sulphate
were very strong.  Since cobalt commonly occurs as an impurity of pyrite and pyrrhotite, the
correlation with sulphate is expected.  The difference in y100 is probably a result of differences in the
cobalt concentrations in iron sulphides at the sites.

Copper

Copper concentrations at higher pHs are constrained by the solubility of copper hydroxides and
carbonates resulting in poor correlation at low sulphate concentrations (all sites) (Figure 3-24).  At
lower pHs, regression slopes are very close to 1 reflecting the release of copper either by oxidation of
chalcopyrite or iron sulphides which contain copper as an impurity.

Iron

Iron versus sulphate has a slope very close to 1 for Cinola, Mine Doyon and Eskay Creek at high
sulphate (low pH) (Figure 3-25).  Sullivan showed no discernible relationship.  A slope of 1 would be
expected if sulphide oxidation is occurring, since iron is released with sulphur.  Similar y100 values
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would be expected for each site and are observed (20 to 30 mg/L, Table 3-12).  The lack of a
correlation for Sullivan may be a result of the advanced oxidation of the waste rock.  At this site, iron
concentrations are three orders of magnitude lower than at the other three acidic sites.  This confirms
that iron sulphide oxidation is not the main source of iron and sulphate in waste rock dump leachate.

Magnesium

Magnesium showed slopes near 1 for all sites and y100 was close to 10 mg/L for all sites except Cinola
(1 mg/L) (Figure 3-26).  The similarity of results suggests a common mineralogical control for
example, magnesian carbonates or silicates.  Since magnesian carbonates would not be expected to be
present under strongly acidic conditions at Mine Doyon and Sullivan, silicates are the likely candidate. 
Chlorite is a common alteration product in many types of hydrothermal systems and would be expected
to be readily dissolved by strongly acidic solutions.  This may also explain the strong correlation with
aluminum.

Manganese

Common slopes of 1 for all sites but variable y100 (Table 3-12) implies a very strong link to sulphide
oxidation.  Manganese substitutes for iron in sulphides, thereby explaining the observed correlations.

Sodium and Potassium

Sodium and potassium show confusing though in some cases similar trends (Table 3-12). 
Concentrations are limited for several sites regardless of the sulphate concentration suggesting a
saturation control.  These elements occur in Na- and K-jarosite therefore solubility may be limited by
these secondary minerals.

Nickel

Nickel, like cobalt, occurs as a trace level impurity in iron sulphides.  Hence, slopes are near 1 but y100
values are variable probably due to varying levels of nickel in pyrite and pyrrhotite.

Lead

Lead generally shows a very weak correlation with sulphate because lead sulphate is highly insoluble. 
Four of the sites are large waste dumps and lead sulphate saturation control is very likely in conjunction
with lead mineralization at Vangorda, Sullivan, Mine Doyon and Eskay Creek.  A slope of 1 was
obtained for Cinola probably due to very low lead concentrations in the waste material.

Zinc

For Sullivan and Mine Doyon where conditions are strongly acidic and zinc mineralization occurs,
slopes of 1 were obtained presumably due to oxidation of sphalerite by ferric iron.  The slopes much
greater than 1 for Vangorda and Eskay Creek may represent increasing leaching of zinc due to
decreasing pH conditions within the waste.  At Eskay Creek, the transition to acidic conditions
occurred.  At Cinola, zinc concentrations are very low and zinc in leachate may represent leaching of
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zinc hosted by silicates.

3.2.4 Conclusions

The strong bivariate statistical relationships observed between dissolved concentrations of elements,
sulphate and pH are not easily linked to primary or secondary mineral control.  Modelling of whole
solution chemistry using MINTEQA2 indicated that secondary iron minerals are commonly over-
saturated which implies formation of the minerals.  However, use of the model was restricted by the
absence of specific data for iron oxidation state forms (ferric and ferrous) as well as gas data.

Comparison of pH-metal regression equations with solubility curves for common minerals was also not
useful.  The regression equations did not mimic the solubility curves.  For iron and aluminum, the
solutions appeared to be strongly over-saturated with respect to Fe(OH)3 and Al(OH)3, respectively. 
In the case of iron, the assumption than the iron in solution is present principally in the ferric form is
probably incorrect.

The investigation of the very strong correlation of element concentrations and sulphate indicated that
solution chemistry is a result of varying degrees of leaching and dilution of the resulting leachates.  The
log ratio of element to sulphate is preserved allowing mineralogical controls to be evaluated.  The
results showed excellent agreement with expected behaviour for many elements and very strong
similarities between sites.
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4.0  REFINEMENTS OF THE
EMPIRICAL MODELLING APPROACH

This section discusses refinements to the basic bivariate regression approach described by Morin and
Hutt (1993) and used in Section 3.0.  Analyses were conducted on selected subsets of the data to
illustrate specific techniques.  References are provided for other techniques discussed but not illustrated
in detail.  These other techniques should be used only by experienced investigators.  Sections 4.1 and
4.2.1 are intended primarily for investigators specifically interested in developing empirical models to
predict metal concentrations from easily measured variables such as pH or conductivity.  Sections 4.2.2
and 4.2.3 are intended for investigators interested in exploratory and other analyses as well as
prediction.  All analyses were conducted using SYSTAT Versions 5.03 (Wilkinson 1990) and 6.0
(Wilkinson and Hill 1994a,b).

General statistical texts such as Snedecor and Cochran (1980) and Sokal and Rohlf (1981) include
chapters on linear regression and other methods discussed in this section.  Draper and Smith (1981) is
the standard reference on linear regression; Hocking (1983) and associated discussion papers in
Technometrics 15(3) provide a good review of regression methods and diagnostics and their
application.  Hirsch et al. (1993) review the application of statistics, including regression, to
hydrological data.  Prairie et al. (1995) discuss problems with empirical models based on limnological
field data.  They provide methods for interpreting empirical models, and determining underlying
structural or functional relationships among variables.  This report, and Section 4.1, was primarily
concerned with prediction, but interpretation of empirical models through comparison with expected
relationships is the obvious next step in modelling acid mine data.

Tabachnik and Fidell (1989) review multivariate statistics, and provide example analyses using the
statistical software packages BMD, SAS, SPSS and SYSTAT.  Multivariate analyses are often used in
chemometrics, or the application of statistical and mathematical methods to chemical data, because
most chemical data (e.g., ICP metal scans) are multivariate.  Brereton (1990) provides a good
introduction to multivariate methods in chemometrics, and includes calculations and algorithms suitable
for spreadsheet programs.  His examples focus on experimental and laboratory data, and the methods
and approaches may not always be applicable to exploratory analyses of observational data collected in
the field.  Meloun et al. (1992) review exploratory chemometric methods which are generally suitable
for data such as those in this report.  Brown et al. (1992) review recent developments in chemometrics
and associated software.

4.1 BIVARIATE RELATIONSHIPS

4.1.1 Data Screening and Analysis of Residuals

Data screening in Task 2 (Section 3.0) was restricted to visual examination of bivariate scatter plots. 
Analysis of residuals was restricted to examination of frequency histograms.  As recommended in
Section 3.0, data screening and analysis of residuals should be expanded to include standard screening
and diagnostic procedures described in Draper and Smith (1981), Hocking (1983), Tabachnick and
Fidell (1989) and Wilkinson and Hill (1994a,b).  Some of these procedures are described below, using
examples from the five site datasets.
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Data screening and analysis of residuals includes evaluating:

! goodness of fit

! normality of residuals

! equality of variance (homoscedasticity)

! the influence of extreme observations, including outliers

A good empirical model should fit the underlying statistical model (e.g., linear regression) used, and the
residuals should be normally distributed.  The variance of residuals should be similar across the entire
range of the independent (X) variable.  The model should not depend on a few extreme observations,
and outliers should be identified and evaluated.

This section recommends a graphical approach to data screening and analysis of residuals.  Specific
graphical procedures illustrated are:

! scatter plot matrices (SPLOM or casement plots)

! smoothing functions (other than linear)

! normal probability plots of residuals

! plots of residuals vs predicted values

! box plots of residuals

Tests for normality and outliers are also discussed briefly.  Procedures are illustrated using data from
Eskay Creek Mine and the Mine Doyon historical data set.

The Eskay Creek example data set consisted of three variables:  Mg, pH and sulphate.  These variables
were chosen because all three were measured for 48 of 52 samples, and because no values of Mg were
below detection limits.  Also, previous analyses had indicated that the relationship between Mg and pH
was non-linear.  One obvious outlier, with pH=13.9, was eliminated from analyses (see Section 3.1.3),
to provide a data set of 47 observations.

The Mine Doyon historical example data set consisted of four variables:  Fe (= Fe2++Fe3+), pH, acidity
and sulphate.  Five observations with missing values or values below detection limits for one or more
variables were excluded, leaving 104 observations for analyses.  These data have been used by others
for empirical models (e.g., Choquette et al. 1993).  Fe was a useful independent (Y) variable because it
was detected in most samples.  These data were also used to illustrate multiple regression in Section
4.2.1.

Eskay Creek Example
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Figure 4-1 provides a scatter plot matrix (SPLOM) for pH, sulphate and Mg concentrations from the
Eskay Creek data set.  Figures 4-2 and 4-3 provide residual diagnostic plots for regressions of Mg on
sulphate and pH, respectively.  The regression of Mg on sulphate is used as an example of a reasonably
good linear regression model; the regression of Mg on pH is used as an example of a poor model.

In Figure 4-1, frequency distributions of the three variables are provided along the diagonal of the
SPLOM.  These histograms are useful for assessing the shape of the distribution, and identifying
extreme values.  Scatter plots are provided below the diagonal.  These scatter plots can be used to
evaluate the fit of the data to linear or other regression models.  A smoothed line has been fitted to the
points in each plot to assist in evaluating the fit to a linear model.  A LOWESS (Locally Weighted
Scatter-plot Smoothing) function was used; details of the function are given in Hirsch et al. (1993). 
Other smoothing functions are available, but the LOWESS function is more robust than most
(Wilkinson and Hill 1994a).

The LOWESS smoothing function removes point-to-point fluctuations of the Y variable to provide
general trends.  If a linear regression is a good fit, the smoothed line will approximate a straight line, as
it did in the plot of Mg versus sulphate.  If the linear regression is a poor fit, the smoothed line will be
non-linear, as it was in the plot of Mg versus pH.  In Section 3.0, this relationship was treated as a
segmented relationship with a linear relationship to the left at lower pH and no relationship at higher
pH.  In Figure 4-1, the relationship at higher pH seems to be linear but in the opposite direction of the
relationship at lower pH.  Over the entire pH range, the relationship was U-shaped.  However, analyses
in Section 3.0 indicated that there was no significant relationship between Mg and pH at pH>6. 
Smoothed lines are reliable as indicators of the goodness of fit to linear or other models, but are less
reliable as indicators of specific alternative models.  For example, although the LOWESS smoothed
line suggests a quadratic relationship between Mg and pH, a quadratic model (i.e., with ph and pH2 as
X-variables) is a poorer fit than the segmented model used in Section 3.0.

The non-linear relationships for Mg and pH reflects the following seasonal and leaching effects:

! under neutral pH conditions (monitoring from early 1991 to mid-1993), slightly lower pH
(between 6 and 7) and lower magnesium concentrations coincided with rapid infiltration at the
tail of the snow melt event, and higher pH occurred in the summer, fall and winter due to
greater contact between acidic water and neutralizing minerals;

! strongly acidic conditions from 1994 onwards and enhanced leaching of magnesium containing
minerals.

Figure 4-2 provides the frequency histogram (top left) for the residuals from the relationship between
Mg and sulphate.  The curve corresponds to a normal distribution with the same mean and variance as
the actual distribution (bars).  The mode of the observed values is shifted slightly left of the mode for
the normal curve, and there were more observations than expected at both tails of the distribution (i.e.,
the frequency distribution had "heavy tails").  Heavy tails were apparent in distributions of residuals
from most regressions in this project, and are considered in more detail below.  Nevertheless, the
distribution of residuals from the Eskay Creek Mg versus sulphate regression was closer to normal than
most others presented.
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Figure 4-2 also provides normal probability plots (bottom left) and box plots (bottom right), which can
be used to assess normality and identify potential outliers.  The normal probability plot plots expected
values from the normal distribution against the observed values.  If the observed values are normally
distributed, the plotted points will form a straight line.  In Figure 4-2, the points form a straight line in
the middle of the plot.  However, the plot flattened to the left and right, indicative of the heavy tails.

Box plots are constructed and interpreted as follows (Wilkinson and Hill 1994a; Hirsch et al. 1993):

! The vertical line in the middle of the box is the median.  The box encompasses roughly 50% of
the data (the interquartile range).

! The length of the box is called the H spread; a step is defined as 1.5 times the H spread.  The
horizontal lines or whiskers extending from the box encompass all points # 1 step from the
box.

! Asterisks denote outside values or observations between 1 and 2 steps from the box. Open
circles denote far-outside values or observations >2 steps from the box.

For a normal distribution, and also for symmetrical non-normal distributions, the median will be in the
centre of the box.  For residuals, the median will also be 0 or the mean.  The whiskers at both ends of
the box will be of equal length.  There should be few or no outside values, as the expected frequency of
outside values in a normal distribution is less than 1%.  There should be no far-outside values, except in
data sets much larger than any reviewed in this report, as the expected frequency of far-outside values
in a normal distribution is less than 0.0003% (1 in 300,000).  For the purposes of this report, and most
data sets, far-outside values can be considered outliers.

The box plot in Figure 4-2 conforms reasonably well to that expected from a symmetrical distribution
with heavy tails.  The median is .0 and in the centre of the box.  However, there were three outside
values and five far-outside values, many more than expected with 47 observations.

Box plots are particularly useful for indicating the presence of multiple outliers, which may not be
revealed by examination of Studentized residuals for single samples.  For the Mg versus sulphate
regression, only one primary and one secondary outlier were identified (Table 3-6).  Had we persisted
in deleting secondary, tertiary, etc. outliers based on Studentized residuals, most of the outside and far-
outside values may have been deleted, but that would depend on the criterion for deletion.  This
tedious step-wise deletion might never begin, if no Studentized residuals greater than the criterion
selected were identified initially, or might end only when a large proportion of the data had been
deleted (e.g., the 8 outside and far-outside values, or >15% of the data).  When box plots identify
multiple outliers, such as those arising from heavy tails, alternative regression methods which reduce
the influence of the outliers should be considered (Section 4.1.3) instead of wholesale deletion of
observations.

The final plot in Figure 4-2 is a plot of residuals versus predicted values (top right).  These plots are
useful for evaluating goodness of fit and equality of variance.  There will be some systematic
relationship between residuals and predicted values if relationships are curvilinear (see discussion of Mg
versus pH regression).  In Figure 4-2, there is no relationship, confirming the linear relationship in
Figure 4-1.  However, the residuals should also be spread evenly across the plot, centred around 0 on
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the Y-axis (the mean).  The points were centred around 0, but the vertical spread (variance) increased
at both ends of the plot, again indicating heavy tails.

In summary, the residual diagnostics for the Mg versus sulphate relationship indicated that the linear
log-log model was appropriate but that the distribution of residuals had heavy tails.  When heavy tails
are present, investigators should immediately suspect that variance may not be equal along the Y or X
axis (Snee 1983), which will often be the case for chemical data.  Note that the largest departures from
the LOWESS line (effectively, the linear regression) in Figure 4-1 tend to occur at the ends of the line
rather than in the middle.  In general, variances of chemical concentrations increase as values approach
detection limits (Taylor 1987), which can explain the greater departures at the left end of the Mg
versus sulphate regression.  Variance of Y may also increase at high values, since samples have to be
diluted several times for ICP analyses, increasing measurement error (Shawn Heier, ZENON
Laboratories, Burnaby, B.C.; pers. comm.).  There may also be increases in variance or decreases in
precision of measurements of X at either end of the scale, especially for pH meters.

Heavy tails will not substantially affect regression parameters (slope, intercept) if distributions of
residuals are symmetrical (i.e., with a similar number of positive and negative outliers).  However,
heavy tails will lead to non-normal distributions, and affect conclusions based on using probabilities
from the normal distribution (e.g., the probability of exceeding some water quality criterion).

Figure 4-3 provides residual diagnostic plots for the linear regression of Mg on pH. Since the
relationship was not linear over the entire pH range, the diagnostic plots should reveal various
"pathologies" and did.  The LOWESS smoothed line in the SPLOM (Figure 4-1) clearly identifies the
departure from linearity.  The histogram, normal probability plot and box plot in Figure 4-3 do not
reveal any pathologies, because the distribution of residuals from the linear regression was relatively
symmetrical, if not normal.  However, the LOWESS smoothed line in Figure 4-3 clearly identified the
U-shaped or parabolic relationship between residuals and predicted values.  Remember that there
should be no systematic relationship between residuals and observed values if relationships are linear. 
The presence of a parabolic relationship indicates that the linear model overestimates Mg values in the
mid-range and underestimates Mg values at the extremes.

Mine Doyon Example

Figure 4-4 provides the SPLOM for Fe and the independent variables in the Mine Doyon historical
data set.  Linear, rather than LOWESS, functions were fit.  Fe concentrations were strongly correlated
with the three independent variables (bottom row of plots).  Relationships between Fe and sulphate or
acidity were tighter (less scatter) than the relationship between Fe and pH.  Conductivity, sulphate and
acidity were better predictors of most metal concentrations than pH.  The relationships between Fe and
the predictor variables generally fit the linear model, but there were a few points well below the fitted
line for each relationship, especially at the upper end of the Fe range.

Figure 4-5 provides the residual diagnostic plots for the relationship between Fe and pH.  The
frequency distribution was unimodal, but skewed left, with the left tail stretched beyond the normal
distribution, and the right tail truncated.  The normal probability plot was not linear, indicating some
departure from normality.  The points below the line in Figure 4-4 stretch the left end of the probability
plot, indicating some left skew.  The central part of the plot was reasonably linear, but the right end
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terminated abruptly, reflecting truncation of the frequency distribution.  The box plot revealed the
asymmetric distribution evident from the frequency histogram, and indicated that one outside value and
two far-outside values or outliers were present.  The spread of the residuals increased at higher
predicted values, because of the outside and far-outside values.

Collectively, the diagnostic plots for Fe versus pH indicated that the linear model was a reasonable fit
to most points, but that there were two outliers, and that the frequency distribution of residuals was
truncated at the right.  The truncation probably indicated that there was an upper limit to Fe
concentrations, regardless of pH, imposed by solubility.  The distribution of Fe values in Figure 4-4
was also truncated, as maximum values were >10,000 mg/L, indicating iron mineral solubility control.

Regressions of Fe on acidity and sulphate were also approximately linear, although the same outliers
were present (Figure 4-4).  When those outliers were eliminated, new outliers were generated as the
variance of residuals was reduced.  Continual generation of new outliers after removal of old outliers
was common for many of the relationships between metals and conductivity, sulphate and acidity. 
Outliers were more frequent from regressions on conductivity, sulphate and acidity than for regressions
on pH, because prediction errors were smaller, not because absolute deviations were larger.  A point
0.1 log units from the fitted line might be an outlier for a regression of Fe on sulphate, but not for a
regression of Fe on pH.  Thus, the outliers were not a problem, except when they may have affected
statistical tests (see following sections).

Statistical Tests for Normality and Outliers

The graphical methods presented above for screening data and analyzing residuals are subjective, with
no firm "accept/reject" criteria.  Formal tests for normality and outliers are potentially less subjective
alternatives to the graphical methods.

Lilliefors' Test, which is a modification of the Kolmogorov-Smirnov (KS) One-sample Test, is the best
test for normality, especially for small sample sizes (Sokal and Rohlf 1981).  KS One-sample Tests may
only be used if the data have been standardized.  Based on Lilliefors' Test, the distributions of residuals
for all regressions discussed in Section 4.0 were significantly non-normal (P<0.05), largely because of
heavy tails.  With large sample sizes (n>50), Lilliefors' and other tests will often detect significant
departures from normality which have little or no effect on linear regressions and statistical tests.  A
lower P-value (e.g., 0.01 rather than 0.05) can always be used for rejection of normality, but that will
not address the central problem with formal tests.  As sample sizes increase, the tests are more likely to
detect departures from normality, yet those departures are less likely to affect linear and other
regression models than at smaller sample sizes.  Also, tests for normality are not useful for suggesting
possible transformations, identifying outliers, and revealing other systematic departures from normality
(e.g., heavy tails).  For those reasons, tests of normality are not recommended.

Grubbs (1969) reviews statistical tests for identifying outliers.  He first discusses his own test, which
compares the difference between a suspected outlier and the mean to the standard deviation (SD; the
prediction error would be used for residuals).  That test is similar to the method used by SYSTAT to
calculate Studentized residuals, except that the SD or prediction error used by SYSTAT is calculated
excluding the suspected outlier.  The SYSTAT approach can be extended to multivariate analyses,
with the suspected outlier compared to the remainder of the sample using multivariate tests
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(Tabachnick and Fidell 1989, pp. 96-104).  Grubbs (1969) also discusses a test developed by Dixon
(1953), which uses differences between the suspected outlier and various other observations.  Dixon's
Test can be used for rapid screening, without the need to use a computer or even a calculator. 
Effectively, the test replaces the SD with the trimmed or untrimmed range.  The method used to
identify outside and far-outside values in a box plot represents another approach, using the interquartile
range (H spread), rather than SD.  Finally, Grubbs (1969) considers tests for simultaneous rejection of
more than one outlier.  These tests are preferable to stepwise tests of single outliers which may simply
lead to generation of new outliers, but usually identify the same observations identified as outside or
far-outside values in box plots.

Tests for outliers suffer from the same problems as tests for normality.  As sample sizes increase, the
tests are more likely to detect significant outliers, but those outliers are likely to have less effect on
regression models.  Furthermore, the tests do not indicate any potential solutions such as using a
transformation.  Grubbs (1969) provides the same advice for treating outliers as do Tabachnick and
Fidell (1989) and others relying mostly on graphical methods:

! search for a specific cause for the outlier (e.g., analytical or data entry error)

! if no specific cause is found, compare results from analyses conducted with and without the
outlier and/or conduct analyses using some of the alternatives described in Section 4.1.3

Conclusions and Recommendations

This report recommends that graphical procedures, rather than formal tests, be used for screening data
and analyzing residuals from empirical models.  That recommendation is consistent with other sources
such as Green (1979), Tabachnick et al. (1989) and Hirsch et al. (1993).  Formal tests are self-
defeating with large sample sizes, and do not indicate any potential solutions to problems with non-
normality and outliers.  Any approach to data screening and analysis of residuals, and the ultimate
decision to accept or reject a specific model, will necessarily be subjective.  For that reason,
investigators should always explore alternatives (e.g., analysis with and without outliers) and report any
deletions of outliers and apparent problems with the model chosen.

4.1.2 Analysis of Subpopulations

There are two general cases in which investigators may be interested in comparing regressions among
subpopulations.  In the first case, subpopulations are discrete and identifiable a priori, such as different
sampling sites within a mine or even different mines.  In the second case, subpopulations represent
different ranges of the independent or X-variable, and may or may not be obvious a priori. 
Relationships for the second type of cases are referred to as segmented models.
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Comparison of Discrete Subpopulations (e.g., Sites)

Analysis of covariance (ANCOVA) is the appropriate method for comparison of discrete
subpopulations.  The following discussion assumes that readers are familiar with ANCOVA (Snedecor
and Cochran 1980; Sokal and Rohlf 1981; Tabachnick and Fidell 1989).  ANCOVA is actually a form
of multiple regression, in which additional dummy variables are used to test for differences in slope and
intercept among subpopulations.

In ANCOVA conducted for this section, equality of slopes was tested first, then equality of intercepts
was only tested if slopes were not significantly different (P<0.05).  In model terminology, a model
including X, categorical variable SITE (comparison of intercepts) and SITE*X (comparison of slopes)
was first tested.  If SITE*X was not significant, it was dropped from the model.  The SITE and
SITE*X terms can be tested simultaneously, which is effectively a test of the null hypothesis that the
regressions do not differ.  However, we used the sequential approach because we were specifically
interested in whether slopes or intercepts differed.  We suspected that intercepts would differ because
of differences in mineral content of source rock or soils.  However, it is reasonable to expect slopes,
which are rates of change of metal concentrations with changing pH or other independent variables, to
be similar among sites.

Cinola Example

Use of ANCOVA was illustrated using the Cinola data, with Pad 1 excluded.  Section 3.0 indicated
that regressions for Pad 1 were different from those for other pads; the Principal Components Analyses
(PCA) described in Section 4.2.2 confirmed that Pad 1 was clearly different from Pads 2-4.  Fe
concentrations were used as the dependent variable because Fe was measured and detected in most
samples from Pads 2-4.  pH and conductivity were used as independent variables.  After deletion of
observations with missing or non-detect values for any of the four variables, there were 157
observations in the data set.

Even after deletion of some outliers, both elevations and slopes of Fe versus pH relationships differed
significantly among pads (P<0.05).  Regressions for Pads 2 and 4 were similar and slopes and
elevations were not significantly different (P>0.05).  However, the slope for Pad 3 was lower than
slopes for Pads 2 and 4.  The relationships for the three pads converged at low pH, a phenomenon
evident in other data sets (see Mine Doyon example).  The shallower slope for Pad 3 is partly an
artifact of the limited range of pH, the independent variable.  Slopes will usually be depressed and
correlations lower when the range of the covariate is narrow.  As a result, the difference in slopes
among pads may be an artifact of differences in ranges of the covariate, a common problem with
ANCOVA.

Relationships between Fe and conductivity for the three pads are shown in Figure 4-6b.  Regression
lines were similar among pads but several points from Pads 2 and 4 lay below the regression lines. 
These apparent outliers could be deleted, which would probably remove any differences among pads. 
However, there are >10 points well below the lines in Figure 4-6b, and wholesale deletion of points
without any rationale is not recommended.  Based on analyses presented in Section 4.2.2, it was
expected that the outliers in Figure 4-6b were observations from early in the monitoring program when
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the pads first underwent weathering.  Figure 4-6c, which excludes observations made prior to June,
1987, confirmed this hypothesis.  There was one obvious outlier from Pad 2, which is arguably an
analytical or data entry error since it was the lowest Fe value recorded and the only value <1 mg/L. 
However, this sample was also a negative outlier for several other metals, suggesting that it might
represent a valid low-contamination event or some systematic analytical error for all metals.

Intercepts differed significantly among pads even after the one obvious outlier was deleted (Table 4-1).
 There were other suspected outliers, mostly resulting from heavy tails (see below), which may have
affected the test for equality of intercepts.  However, these outliers also inflated error variance (MSE),
reducing the power of the test for equality of intercepts.  The test for equality of intercepts is too
powerful.  The variance or sums-of-squares (SS) explained by the PAD term (difference in intercepts)
is unimportant compared to the variance explained by conductivity.  The differences among intercepts
were small, and only significant because error variance was also small.  Pooling data from the three
pads would result in little change in the accuracy and precision of predictions.  If the PAD term is
dropped (i.e., the pads pooled), R2 for the pooled regression would decrease from 0.932 to 0.928,
which is an unimportant reduction.  In terms of multiple regression, addition of the dummy variables
used to test for differences in intercept did not substantially improve the fit of the model.

Figures 4-7 provides diagnostic plots for the residuals from the pooled regression.  There were six far-
outside values (outliers), evident from the normal probability and box plots, and indicating the presence
of heavy tails.  However, the regressions lines for each pad, and for all pads pooled were linear with
little scatter (Figure 4-6c).  The outliers were also partly a function of the tight fit of the regression
through the remainder of the points.  More than 50% of the residuals lay within "0.1 log units of the
mean (0), indicating that >50% of observed values were within 25% of predicted values (antilog
0.1=1.26).  Furthermore, the outliers were symmetrically distributed and would have little effect on
predicted values.  In general, the pooled regression was one of the best (least biased and most precise)
presented in this report.

Other Examples

There were significant differences among regressions of Fe on pH among the Mine Doyon data sets
(Figure 4-8; the seepage observations at the upper left obscure observations from the other data sets)
and between surface and groundwater samples from Sullivan mine.  Some of these differences may be
attributable to artifacts, such as differences in width of pH ranges among subpopulations (e.g., as in the
Cinola and Mine Doyon data sets).  Similar results were obtained for regressions of Cu and Zn on pH
(e.g., as in Cinola and Mine Doyon), although sample sizes were smaller because fewer values were
above detection limits and/or measured (the distinction was not always clear in the original data sets). 
In most cases, slopes differed among subpopulations, and regressions converged at low pH, as they did
in Figures 4-6a and 4-8.

Regressions of Fe, Cu and Zn on conductivity or sulphate were less likely to differ among
subpopulations, although heavy tails and other outliers render probabilities from ANCOVA suspect. 
Even when there were significant differences among subpopulations, they were often trivial, as in the
Cinola example.  Therefore, pooling of conductivity and sulphate regressions within mines may be
justified in many cases.  However, some "detective" work, similar to that conducted for the Cinola data
set, may be required to remove outliers and other irregularities, and to homogenize regressions.



38

Segmented Models

As discussed in Section 3.0, non-linear regression (NLR) packages can be used to generate segmented
models.  In Section 3.0, there were several relationships between metals and predictor variables
(especially pH), in which the relationship was linear over some portion of the dependent variable range,
but flat over the remaining portion.  The flat portion usually represented values near or below detection
limits.  In some cases, the flat portion can be ignored because low metal concentrations are not of
concern, and a linear model fit to the remainder of the data.  If the values near or below detection limits
are of concern, they should generally be measured by using different or improved analytical methods,
rather than estimated.  However, it can be useful to objectively estimate the point (i.e., pH value) at
which the relationship becomes flat, rather than choose that point visually.  For example, one might use
that point as a critical value for determining whether to intensify monitoring of metals.  There are
models in the toxicological literature, referred to as linear plateau models, which can be used for that
purpose (Cox 1987).  Wilkinson and Hill (1994b) provide instructions for fitting these models in
SYSTAT.  These models can also be fit to cases in which metal concentrations reach an upper plateau,
set by solubility.

Wilkinson and Hill (1994b) provide instructions for fitting other segmented models, such as two or
more separate linear regressions.  They concluded that NLR is subject to the same problems as simple
linear regression (lack-of-fit, non-normality and heteroscedasticity of residuals, outliers), and several
additional problems (e.g., failure to converge on a unique solution).  Anyone fitting segmented models
should be experienced with NLR, and aware of its pathologies.

Conclusions and Recommendations

Regressions of metal concentrations on predictor variables, especially pH, are likely to differ among
subpopulations.  In some cases, as in the regressions of Fe on conductivity for the Cinola data, those
differences may be small and can be ignored if there are advantages to a more general model based on
pooling subpopulations.  Nevertheless, differences among subpopulations should be assessed, and will
often limit the generality of specific models.  Finally, our initial hypothesis that intercepts, but not
slopes, would differ can probably be rejected.  Instead, slopes generally differed but regressions,
especially on pH, converged.  The convergence may be attributable to an upper limit set by solubility or
to some other factor.

4.1.3 Alternatives to Least-Squares Regression (LSR)

The analyses in this report were based on standard LSR techniques.  LSR fits lines by minimizing the
sum of the squares of deviations from regressions.  LSR has some advantages, primarily in statistical
testing and calculating distributions and probabilities of expected values, because of its relationship with
the normal distribution.  However, conducting statistical tests and estimating probability distributions
are not always objectives of empirical modelling.  Furthermore, if data do not meet the assumptions of
LSR and other parametric analyses, probability distributions derived from LSR will be suspect.  No
relationship in this project produced a normal distribution of residuals and dealing with heavy tails and
other outliers was always a problem.  Furthermore, the objective of many empirical models is simply to
accurately predict metal concentrations; outliers and non-normal distributions may bias predictions
made by LSR, especially if the data and residuals are not carefully screened.
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This section discusses some alternatives to LSR, and specifically how these alternatives could be used
to address treatment of outliers and values less than detection limits.

Alternatives Based on Other Distributions

LSR is based on the normal distribution and linear relationships.  In this study, log transformations
were used to linearize relationships and normalize the distribution of residuals.  However, if NLR is
used, there is no reason to linearize the relationship, although the residuals may not be normally
distributed.  More generally, regressions based on other distributions such as the Poisson or logistic
(Generalized Linear Models or GLIM), or on the log likelihood function (Maximum Likelihood
Estimation or MLE), can be used.  These alternatives may have advantages in analyses of biological or
sociological data.  However, most chemical concentrations are log-normally distributed, and log-log
relationships are usually linear.

Log-log relationships based on LSR are usually adequate for developing empirical models for mine
water quality data.  However, regressions based on alternative distributions can be superior for treating
data sets with values less than detection limits (DL).  Distributions with values less than detection limits
are referred to as left-censored, because values at the left (low) end are censored (unknown or
unmeasurable).  A special form of MLE regression, Tobit regression, can be used to estimate models
for left-censored data when there are relatively few (i.e., <20%) censored values (Hirsch et al. 1993,
pp. 17.50-17.51; Slymen and de Peyster 1994).  Tobit regression basically estimates the distribution of
censored values from the distribution of uncensored values; the distributions of uncensored values are
usually assumed to be log-normal.  Hirsch et al. (1993) caution that Tobit regression is regarded as
experimental, at least in the field of hydrology (applications in toxicology are more common).

Hirsch et al. (1993) also note that if values <DL are common (>20%), variables such as metal
concentrations can be treated as categorical (i.e., <DL; $DL) and analyzed using logistic regression. 
The approach can be extended to use more categories (e.g., <DL; <10DL; $10DL), or categories
based on other separators (e.g., Practical Quantitation Limits; water quality criteria; toxicological
endpoints such as LC50).  Logistic regression using categories can be useful for reducing or eliminating
problems with outliers.  For example, suppose that an investigator wants to use an empirical model to
predict the probability of exceeding a water quality criterion for Cu at various pH.  If outliers are
present, predicted frequencies of exceedances based on a linear log-log regression may be suspect.  A
logistic model based on two categories (# the criterion; > the criterion) should provide a better
estimate of the probability of exceedances.  With the categorical approach, outliers will usually no
longer be outliers - we do not care how much above or below the criterion they are.  LSR is designed
for predicting a continuous distribution of Cu values but we are interested only in the frequency of two
discrete categories.

Alternatives Based on Other Loss Functions or Trimming

In LSR, outliers have strong influence on regressions because LSR minimizes the sum of the squares of
deviations from the regression line.  In statistical terms, the squares of the deviations are used as a loss
function.  Since many outliers are arguably analytical or data entry errors, or reflect increased analytical
variance at one or both ends of the chemical concentration scale, it is not clear that they should
influence regressions so strongly.  The only advantage to using the squares of the deviations as a loss
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function is that various statistics calculated can be related to the normal distribution.  If outliers are
present, residuals are likely to be non-normally distributed, and that advantage is reduced or eliminated.

An obvious alternative is to minimize the sum of the absolute values of deviations, rather than the sum
of their squares.  More generally, the sum of any function of the deviations can be minimized, provided
that absolute values are used when both positive and negative values are possible.  For example, the
sum of the inverse of the squares of the deviations could be minimized to severely reduce the influence
of large deviations.  A less extreme alternative would be to use the deviations to some power between
-2 and 2 as a loss function.  More complex functions can also be used as loss functions.  Wilkinson and
Hill (1994b) describe several robust estimation procedures which use complex loss functions to reduce
the influence of outliers.  One common robust method, effective when distributions of residuals from
LSR have heavy tails, is to weight values by the inverse of their variance.  Variance can be estimated
from the data, or one can use the measurement error estimated independently during calibration of the
analytical method.

Removing outliers is the most extreme method of removing their influence.  Before removing outliers,
the original data (e.g., analytical reports) should be inspected to ensure that the outliers are not data
entry errors.  Large numbers of outliers should not be removed, unless there is a logical reason to do so
(e.g., as in removal of early data from the Cinola data set).  In review projects such as this one, it is
often difficult or impossible to check original data, and systematic trimming may be justified.  Trimmed
regression techniques calculate a regression based on all data, then recalculate the regression after
removing the p% of the residuals with the largest absolute values.  Usually p is #5%; removing a
higher percentage of the data is not recommended unless there is a rationale.

Conclusions and Recommendations

The recommended approach to regression depends on the objective of the analysis and the nature of
the data.  If continuous probability distributions are required, then LSR or GLIM should be used. 
However, Tobit and logistic regression should be used if separation of concentrations into two or more
categories adequately addresses objectives.  If the primary objective is to accurately predict metal
concentrations, or if data violate the assumptions of parametric analyses, then altering the loss function
or trimming can be justified and may remove biases introduced by outliers in LSR.  Those alternatives
could have been used in this study, as outliers were frequent.  However, if outliers are symmetrically
distributed about regression lines, their net influence on regression parameters will be minimal, and
LSR and alternatives will produce similar results.  In this study, most regressions fell into one of two
classes:

! outliers were relatively few and symmetrically distributed around the regression line (e.g.,
Figure 4-2 and Figure 4-6c, after deletion of the most obvious outlier; most regressions on
conductivity and sulphate);

or

! pathologies were extensive (e.g., relationship between Mg and pH for Eskay Creek in Figure
4-1; many regressions on pH)
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In the first case, LSR and alternatives will provide similar regressions, and the alternatives serve mostly
to increase confidence in the robustness of the empirical models.  In the second case, no technique will
be suitable, and the situation cannot easily be addressed.

4.1.4 Overall Conclusions and Recommendations

Based on Section 3.0, and further analyses in this section, the major problems with empirical models
are:

! outliers and heavy tails

! values less than detection limits

! non-normality of residuals

! departures from linearity

! heterogeneity of regressions (i.e., differences among subpopulations)

The data screening and residual diagnostics outlined in Section 4.1.1 identify these problems more
readily than the simpler techniques used in Section 3.0.  In many cases, these problems do not affect
estimates of regression parameters (m,b) and can probably be ignored.  Most remaining problems can
be addressed using alternatives to LSR such as those recommended in Section 4.1.3, or by calculating
separate regressions for different subpopulations.  Regardless of the approach adopted, and the final
model (if any) chosen, deviations from standard LSR regression and any remaining potential problems
should be reported.  Finally, any predictive model should be validated by testing it on other data sets
(Hocking 1983; Snee 1983).  For example, the regression of Fe on conductivity for Pads 2-4 for the
Cinola Gold Project appears acceptable but should be validated using more recent data.  If the
recommendations in this section are adopted, empirical models can be developed which will provide
accurate predictions of metal concentrations from less costly predictor variables.

4.2 MULTIVARIATE TECHNIQUES

Multivariate techniques discussed in this section include multiple regression, ordination (especially
Principal Components Analysis) and, cluster analysis.  The discussion assumes that readers are familiar
with multivariate analyses.  Readers unfamiliar with multivariate analyses should consult Tabachnick
and Fidell (1989).

4.2.1 Multiple Regression

Multiple regression uses more than one independent or X-variable.  In this study, metal concentrations
were highly correlated with several independent variables (pH, conductivity, sulphate, acidity), and it is
reasonable to ask if multiple regression improves the predictive power of regressions (i.e., reduces the
difference between predicted ad observed values).  Adding independent variables will almost always
increase R2.  However, continued addition of independent variables provides ever diminishing returns in
terms of improving predictive power, and may introduce problems with robustness and residuals. 
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Thus, the objective of multiple regression is to derive a model which minimizes the number of
independent variables while maximizing R2 (=minimizing residual or error variance) (Tabachnick and
Fidell 1989).

There are many ways to optimize multiple regressions; stepwise regression with forward and backward
stepping was used for this study.  The stepwise procedure in SYSTAT is described in detail by
Wilkinson and Hill (1994a).  Forward stepping begins by first entering the independent variable with
the highest correlation with the dependent variable.  Additional variables are added sequentially if they
meet several criteria (usually if partial correlations are significant at some specified P).  Backward
stepping begins with all variables in the model, and removes them sequentially until there are no more
partial correlations which are not significant at some specified P.  For this study, we used P=0.5, the
default option in SYSTAT.  Lower P may be more appropriate when correlations among independent
variables are as high as in this study (Wilkinson and Hill 1994b).

Alternatives to stepwise regression include:  setwise regression, in which models based on different
subsets of independent variables are compared; hierarchical regression, in which independent variables
are sequentially added and tested in an order specified by the investigator; and standard multiple
regression, in which all independent variables are entered simultaneously, and those which meet some
criterion (e.g., P-value for partial correlation) retained (Tabachnick and Fidell 1989).  Because choices
of procedures and criteria for entry and removal of variables are arbitrary, there is no "best" model.  In
this project, the primary objective was to determine if multiple regressions could generally improve
predictive power without introducing other problems; the specifics of the final model were of less
interest.

The first example chosen was the Mine Doyon historical data.  Fe was the dependent variable; acidity,
sulphate and pH were the independent variables.  Figure 4-4 provides the SPLOM for these variables;
Table 4-2 provides the correlation matrix.  Section 4.1.1 and Figure 4-4 indicated that the major
problem with linear regressions of Fe on all three variables was the presence of several observations
well below fitted lines, especially at the upper end of the pH range.

Table 4-2 indicates that the three independent variables, and especially acidity and sulphate, were highly
correlated.  Fe was more strongly correlated with acidity and sulphate than with pH.  Forward and
backward stepping indicated that the "best" model included both sulphate and acidity.  However, R2 for
the model with both sulphate and acidity was 0.760, not markedly greater than R2 for the bivariate
models with either sulphate (0.741) or acidity (0.751).  If P=0.05, instead of P=0.15, had been used as
the criterion for entry and removal, the bivariate regression of Fe on acidity would be the "best" model.
 Thus, multiple regression offered little improvement in predictive power.  Furthermore, when
independent variables are as highly correlated as they were in this study, estimates of slopes for each
variable are suspect and have broad confidence limits.  This problem is called variance inflation
(Hocking 1983).

The relationship between observed versus predicted values for the multiple regression of Fe on acidity
and sulphate (Figure 4-9) was virtually identical to plots of Fe versus either independent variable
(Figure 4-4).  There were still many outliers (far-outside values) and outside values, as the residual
diagnostics in Figure 4-10 indicate.  Bivariate and multiple regression models fit 90% of the data well,
but cannot account for the remaining 10% of the data below fitted lines.  There is no obvious
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explanation for the occurrence of these anomalous values, nor any obvious solution to deal with them. 
Multiple regression was obviously not effective at removing them.

Similar results were obtained when the Mine Doyon seepage data were analyzed.  Conductivity was
added to pH, acidity and sulphate as independent variables; Fe was used as the dependent variable. 
The best model included acidity and conductivity; conductivity and sulphate were highly correlated so
only one was necessary in the model; pH was a poor predictor because the pH range was narrow. 
Interestingly, plots of observed versus predicted values for any multivariate model looked like Figure
4-9.  The models were good fits to most of the data, but there were several negative outliers and
outside values, especially at the upper end of the Fe range.  Thus, the negative outliers and outside
values for both the seepage and historical data appear to reflect some systematic cause.  In the seepage
data, both Fe2+ and Fe3+, as well as total Fe, values were provided.  The negative outliers for
regressions using total Fe were also negative outliers for regressions using Fe3+, but not Fe2+.  Thus, the
outliers suggest some analytical problems or natural events associated with Fe3+.

In summary, multiple regressions did not substantially improve bivariate regressions because potential
predictor variables such as pH, conductivity and sulphate were highly correlated.  Multiple regressions
did not remove any problems with non-linearity, outliers, and non-normality of residuals identified in
bivariate regressions.

4.2.2 Principal Components Analysis (PCA)

Factor analyses and other multivariate data reduction and pattern recognition techniques summarize
relationships among variables (metal concentrations) and among samples (Gauch 1982).  Principal
Components Analysis (PCA) is the simplest and most commonly used form of factor analysis (FA), and
is usually adequate for most chemometric analyses.  Tabachnick and Fidell (1989) provide a good
general review of PCA and FA; Zitko (1994) reviews the application of PCA to observational field
data, providing examples.  PCA combines original variables into derived variables, or Principal
Components (PC; also referred to as factors), which reflect the major axes or patterns of variance
among the original variables.  The PC are weighted linear combinations of the original variables.  The
first PC (PC1) identifies the major axis or pattern of variance or factor; PC2 identifies the minor axis
(the largest axis of variance perpendicular to the major axis); subsequent PC identify axes of variance
perpendicular to preceding axes.  Because PC are perpendicular, they are independent and
uncorrelated.  In most chemical data sets, there are few independent axes or patterns of variance
among many variables.  PCA is an effective way to summarize those patterns, and reduce a large
number of variables (e.g. concentrations of individual metals) to one or a few variables (PC) for further
analyses.

Figure 4-11 illustrates PCA for the two-variable case.  The first PC, or major axis, is a regression line
which minimizes distances of points from the line in both the Y (vertical) and X (horizontal) directions. 
PC2, or the minor axis, lies perpendicular to the major axis.  PCA effectively rotates the original axis,
producing two new axes or variables (PC1, PC2) which are uncorrelated.  The position of any point
along any PC axis is referred to as a PC score; these scores are usually scaled to mean=0.  For
example, the point furthest right on the graph in Figure 4-11 would have the highest PC1 score, but an
intermediate, slightly negative PC2 score.  Plots of samples on PC axes can be used to examine
differences among groups of samples.



44

In the two-variable case, PCA has little advantage over bivariate plots and regression.  However, when
many variables are present, PCA can reduce multi-dimensional plots which cannot even be imagined, to
two- or three-dimensional plots.  PCA have no predictive power, at least in the context of this project,
although PC scores can be used in place of dependent or independent variables.  However, PCA is
useful for screening the data, as illustrated in this section.

PCA has some disadvantages and restrictions, because it is a form of multivariate parametric analysis
(Tabachnick and Fidell 1989).  Specifically, relationships among variables should be linear, and
residuals should conform to a multivariate normal distribution.  Obviously, based on previous sections,
data in this project will rarely meet the requirements of linearity and multivariate normality.  However,
the requirements for PCA can be relaxed considerably when it is used as an exploratory tool.

For biological and sociological analyses, PCA is also not robust when the number of samples or
observations is less than 5-10 times the number of variables, and therefore can only be conducted on
large data sets (usually n>50) (Green 1979; Tabachnick and Fidell 1989).  For chemometric analyses,
that sample size requirement can be relaxed further, provided that emphasis is only on the first one or
two PC (Brown et al. 1992).  In fact, chemometricians will often analyze data sets with more variables
than observations by transposing the data matrix, and looking at patterns of correlation among the
observations, rather than among the variables, and plots of the variables, rather than observations.

Two data sets from Cinola, and one from Sullivan Mine, were used for PCA.  The first (=large) Cinola
data set consisted of Fe, Ca, pH, conductivity and sulphate, and contained 209 observations.  The
second (=small) Cinola data set consisted of Ca and six metals (Al, As, Cu, Fe, Mn, Pb, Zn).  All seven
variables were measured in 104 samples, although some values less than detection limits were recorded
as detection limits.  The Sullivan data set consisted of 8 metal (Ba, Cd, Cu, Fe, Ni, Pb, Sr, Zn)
concentrations for 63 samples.  There were 9-15 values below detection limits for all metals except Ba,
Sr and Zn, and these were set at one-half detection limits.  Sr and Ba were used in the analyses because
there was one (Ba) or no (Sr) values less than detection limits.  No values for Zn were recorded as
below detection limits, but 9 values were at detection limits (0.005 mg/L).

Large Cinola Data Set

Table 4-3 provides the correlation matrix for the five variables in the large Cinola data set.  All
correlations were high.  Table 4-4 provides loadings of the five variables on the first two PC.  Loadings
are correlations between the original variables and PC scores.  The first PC accounted for 82% of total
variance; the second accounted for 15%.  Thus, two PC were adequate to account for 97% of the total
variance and reduced the original five variables to two factors.  PC1 was negatively correlated with pH,
and positively correlated with the other four variables.  This is clearly an acid drainage axis, reflecting
leaching of metals and ions at low pH.  The second PC (PC2) was positively correlated with Ca and
pH, reflecting the tendency for pH to be higher in natural hard waters.

Figure 4-12a plots PC2 versus PC1 scores.  Pad 1 was clearly distinct from the other pads, with most
points located in the two left quadrants of the plot (high pH, low values of other variables).  Samples
from the remaining pads were largely located below the diagonal, although there were a few points
above the diagonal.  The separation between Pad 1 and most Pads 2-4 samples, plus the presence of a
few Pads 2-4 samples in the clump of Pad 1 samples, suggested that the pattern of PC scores was
related to the time course of weathering.  Specifically, we suspected that the time course of weathering
began at the lower left of the plot, below the diagonal, and moved counter-clockwise.  Pad 1 had
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already undergone some weathering prior to the initiation of sampling.  If so, the few Pad 2-4 samples
above the diagonal should represent later samples.

Figures 4-12b plots PC1 scores versus time.  Seasonal cycles are obvious, especially in 1987-89.  PC1
scores have not decreased substantially in Pads 2-4 from 1987 to 1993, and have not converged on Pad
1 scores.  However, scores from Pads 2-4 did diverge over time, as the three pads were not separated
in 1987-89 but were in 1991-93.  The Pad 2-4 samples above the diagonal in Figure 4-12a were
obviously not later samples.  Instead, they were earlier samples (i.e., the samples in early 1987 in Figure
4-12b with low PC1 scores).

PC2 scores showed no obvious seasonal cycles, did not differ much among pads, and decreased over
time as samples became softer and more acidic (Figure 4-12c).  There are a few Pad 2-4 samples at the
upper left of the plot, indicating natural conditions of relatively high pH and Ca.

If all Pad 2-4 samples prior to June, 1987, are deleted (n=18) from the data set, the diagonal in Figure
4-12a effectively separates Pad 1 from Pads 2-4.  Thus, the PCA revealed differences among pads
which were obvious from bivariate analyses, but also revealed some time trends and other patterns
which were less obvious.  As illustrated in Section 4.1.2, deletion of the early Pad 2-4 observations
substantially improved the fit of regressions of Fe on conductivity.

Small Cinola Data Set

Table 4-5 provides the correlation matrix for the seven metals.  All correlations were positive, and
ranging from 0.541 (Fe-Mn) to 0.955 (Fe-Cu).  The first PC accounted for 82% of total variance and
was positively correlated with the six metals and Ca (Table 4-6).  PC2 accounted for 12% of total
variance, and was positively correlated with Ca and Mn and weakly negatively correlated with all other
metals except Zn.  Thus, the first two PC accounted for 94% of the variance for the seven original
variables.  PC1 was an acid drainage axis, reflecting leaching of metals and ions at low pH (see
discussion of correlations with pH and other predictor variables below).  PC2 was similar to PC2 from
the analyses of the large Cinola data set, reflecting the tendency for pH to be higher in natural hard
waters.  However, there is no obvious reason why Mn concentrations should have been correlated with
hardness (i.e., Ca).

Figure 4-13a plots PC2 versus PC1, and was similar to the same plot for the larger Cinola data set
(Figure 4-12a).  Pad 1 samples, plus a few samples from other pads, lay above the diagonal; most
samples from Pads 2-4 lay below the diagonal.  Figure 4-13b indicates that the few Pads 2-4 samples
above the diagonal were collected in early 1987, prior to weathering or leaching.  The seasonal cycles
evident in the larger data set (Figure 4-12b) were also evident in the smaller data set (Figure 4-13b). 
Figure 4-13c indicates that PC2 scores decreased over time, and seasonal trends were obvious only for
Pad 1 samples from 1987-89.  As in the larger data set, the decrease in PC2 scores over time suggests
that natural harder water was becoming softer as leaching proceeded.

Table 4-7 provides correlations between the two PC and the predictor variables pH, conductivity and
sulphate; Figure 4-14 provides the SPLOM.  PC1 was highly correlated with the predictor variables,
reflecting the increased metal concentrations in acid mine drainage.  The relationship between PC1 and
pH was non-linear, with a steep slope at low pH (most Pads 2-4 samples), and a shallower slope at
higher pH (Pad 1 samples plus a few early Pads 2-4 samples).  Relationships between PC1 and
conductivity or sulphate, and between PC2 and pH, appeared more linear, but there were still
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statistically significant differences in relationships among pads.

In summary, PCA for the small Cinola data set indicated that concentrations of the six most frequently
measured and detected metals and Ca were strongly positively correlated.  A few selected metals which
can be reliably measured and detected in most samples could be analyzed in the future, with little loss
of information.  PC1 could be used as a single surrogate metals for post hoc comparisons of trends and
spatial differences for all or most metals.  PC2 could also be used as an indicator of trends in hardness,
but that would be no more efficient than simply analyzing Ca or hardness.  Both the large and small
data sets revealed the same trends despite the differences in sample sizes and variables analyzed,
indicating that the PC analyses were robust.  The few variables in the large data set were representative
of a larger suite of variables, or conversely, the subset of samples in the smaller data set were
representative of the larger set of samples from which they were obtained.

Sullivan Data Set

Table 4-8 provides the correlation matrix for the 8 metals in the Sullivan data set.  Correlations among
all metals except Ba were positive; Ba was negatively correlated with all other metals except Sr. 
Correlations were generally weaker than for the small Cinola data set because of the large number of
values below detection limits.  The first PC accounted for 63% of the total variance and was positively
correlated with all metals except Ba (Table 4-9).  Correlations of PC1 with Cd, Cu, Ni and Zn were
stronger than correlations with Pb, Sr and Fe.  PC2 accounted for 16% of the variance, ad was
positively correlated with Ba and Sr.  Thus, two PC accounted for 79% of the variance among the 8
metals.

Figure 4-15 plots PC2 against PC1, with surface and groundwater samples indicated by different
symbols.  The two sample types overlapped along PC1, but were separated along PC2.  Specifically,
PC2 scores were generally higher in the groundwater samples, indicating some enrichment of Ba and
Sr relative to other metals (i.e., PC1).  The variance or scatter among along the PC2 axis decreased as
PC1 scores increased (ignoring the apparent outlier at the lower right), but that may be an artifact of
the large number of values less than detection limits.  There was a lower limit to PC1 scores (.-1)
which represents samples in which all or most metals except Ba and Sr were not detected; the
distribution of PC1 scores was truncated at the left tail.  In contrast, PC2 scores did not have a
truncated distribution because they depend on Ba and Sr concentrations, which, with one exception,
were all above detection limits.  Thus, there may be some hidden relationships between the two PC,
and two groups of metals, on the left of the graph.

As expected, PC1 was negatively correlated with pH, and positively correlated with conductivity and
sulphate (Table 4-10).  The relationships between PC1 and these predictor variables were reasonably
linear, with some flattening at high pH and low conductivity and sulphate (Figure 4-16).  The flattening
was due to the truncated distribution of PC1 scores, especially for the surface samples.  Thus, we
would conclude that values less than detection limits might create problems for analyses of surface
samples.  Relationships between PC2 and the predictor variables, especially pH, departed from linear. 
These relationships were not examined in detail, but the difference in PC2 scores for the two sample
types (Figure 4-16) suggests that the relationships should be examined separately for surface and
groundwater.
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The PCA for the Sullivan data set was not as robust as that for the small Cinola data set, because of the
smaller sample size and the large number of values less than detection limits (-20% for most variables).
 The two sample types, groundwater and surface, were each represented by several different sites
sampled at three different times.  There may have been some differences among sites or times which
could not be examined.  Nevertheless, the PCA was adequate to:

! indicate that Ba and Sr behave differently than other metals, especially in groundwater samples.
 Barium concentrations are limited by saturation by barium sulphate (barium and sulphate
concentrations are roughly negatively correlated).  Strontium originates from leaching of
calcium silicates which are not leached at the same rate as heavy metal sulphides.

! suggest that values less than detection limits would pose problems for analyses of surface
samples.

! identify one or two outliers among the groundwater samples.

4.2.3 Cluster Analyses

Cluster analyses are reviewed by Gauch (1982), and are usually used to classify samples rather than
variables.  For example, cluster analyses could be used on the Cinola data to determine if samples were
grouped on the basis of site (i.e., pad) and/or time.  When there are a large number of samples, cluster
diagrams for samples can be unwieldy and difficult to interpret.  Therefore, we prefer PCA and plots of
factor scores for examining relationships among samples.  Readers interested in using cluster analyses
for screening samples, especially when groupings are not known a priori, should use k-means clustering
rather than the standard hierarchical methods (Hendrickson and Horwitz 1984; Wilkinson and Hill
1994b).  However, standard hierarchical cluster analyses can be suitable for examining the relationships
among variables (see below).

There are many different cluster methods, most of which have been developed for classification of
biological data (community or taxonomic data) (Rohlf 1993).  There are two key elements to most
methods:  the distance measure and the linkage method.  For most chemical data sets, Pearson R2 is
adequate as a distance measure.  Since R2 measures similarity, not distance, 1-R2 is used as a distance
measure.  1-R2 is used rather than 1-R unless the signs of the correlations, as well as their magnitude,
are of interest.  Other distance measures are scale-dependent, and should not be used unless the data
are standardized (subtract mean; divide by SD).

Cluster analysis proceeds hierarchically by grouping the two most similar cases (samples or variables),
treating that group as a single case, recalculating the distance between that group and other cases, then
grouping the next most similar cases or groups.  The distance between groups can be calculated in
several ways; the method used is referred to as the linkage method.  We used the average linkage
method, which defines the distance between groups as the average of the distances between all pairs of
cases in different groups.

Figure 4-17 provides the cluster diagram for the six metals, Ca, pH, conductivity and sulphate in the
small Cinola data set used for PCA in Section 4.2.2.  Cluster diagrams usually reveal similar
associations of variables to those evident from loadings of the same variables in PCA, because both
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analyses are based on correlation matrices.  For example, Figure 4-17 identifies the association between
Ca and Mn identified on PC2 from the PCA.  However, the cluster analyses also identified two
different groups of metals (Cu, Fe, As versus Zn, Al) which were not evident from the PCA. 
Conductivity and sulphate were more closely associated with five of the metals (Cu, Fe, As, Zn, Al)
than was pH, indicating that the former were better predictors of most metal concentrations.

Cluster analysis is often redundant when PCA are conducted, although the cluster analyses revealed
two groups of metals not identified in the PCA.  However, cluster analyses of variables, conducted in
the absence of PCA, can be used to identify relationships among the variables and reduce the number
analyzed.  For example, the cluster diagram in Figure 4-17 could be used to justify:

! analyzing a subset of metals (e.g., one of Cu, Fe, As; either Al or Zn; either Mn or Ca).

! using either conductivity or sulphate, rather than both or pH, as predictor variables.

4.2.4 Conclusions and Recommendations

Multiple regression, PCA and cluster analyses are probably adequate multivariate techniques for most
chemical data sets.  Only multiple regressions offer predictive power, and their predictive power was
not substantially greater than that of bivariate regressions.  In this study, the primary predictor
variables, pH, conductivity and sulphate, were highly correlated and therefore redundant.  Other less
correlated predictor variables might increase predictive power, but only if they are less expensive to
measure than the predicted variables (metal concentrations).  Temperature, time (date) and oxidative
reductive potential (ORP) are the most obvious predictor variables which could be added at little cost.

PCA and cluster analysis have no predictive power, but are valuable exploratory tools.  Subsets of
variables can be selected for further analyses; differences among sites and times can be efficiently
examined; other patterns in the data can be identified; the PC can be used as surrogate variables for
post hoc analyses.  In this project, a more efficient and effective approach would have been to screen
the dependent and independent variables in each data set first, using PCA.  Then a subset of metals and
predictors could have been chosen for further analyses, based on the PCA.  Data sets could be
subdivided into subpopulations in some systematic way, based on the separation of samples by
ordination.  In hindsight, we could have restricted bivariate analyses to Fe and a few other commonly
detected metals and/or metals of concern such as Al, As, Cu and Zn.



49

5.0  CONCLUSIONS AND RECOMMENDATIONS

5.1 GENERAL CONCLUSIONS

The two datasets used by Morin and Hutt (1993, 1995) and Morin et al. (1995) had the following
characteristics which favoured the approach proposed:

! a large number of samples (in the order of 1000);

! frequent and uniform sampling schedule; and

! represented several years of monitoring.

These characteristics resulted in datasets for which random variability was controlled (due to the large
numbers of samples), large data gaps were not present, and metal concentrations were significantly
elevated above detection levels.  A further consequence of the latter point is that leachate chemistry
was likely to be controlled by dissolution of identifiable secondary minerals.  Saturation with respect to
copper hydroxides and sulphate was apparent for one site.

In contrast, the datasets evaluated for this project were small (less than 100 samples) and frequently
had large data gaps and variable detection limits.  In all cases, the waste piles were much smaller than
the large dumps typical of large open pit porphyry copper deposits.

It is concluded based on this study that the approach proposed by Morin and others is valuable for
large datasets but less reliable predictive relationships are likely to be obtained for small datasets. 
However, as noted below, comparison of sulphate with metal concentrations can lead to an
understanding of minerals involved in oxidation and leaching.

5.2 STATISTICAL CONCLUSIONS

(1) Concentrations of many metals can be predicted from conductivity and sulphate using simple
bivariate regressions.  pH is a poorer predictor than conductivity or sulphate.  Other predictors
such as temperature and ORP may also be useful, and inexpensive to measure.

(2) Regression relationships for pH and conductivity are likely to differ among sites and times, and
most will be site-specific.  Therefore, they cannot be applied uncritically to new or unmonitored
sites.  However, they can be used to reduce monitoring costs and/or increase sampling
frequency.  For example, metal concentrations could be predicted from continuous or frequent
conductivity records, although the predictions should be verified periodically by metal analyses.

(3) Multivariate techniques such as PCA can be used to screen the data and identify relationships
among the variables.  Information from the screening can be used to select variables for further
analyses, using LSR or alternatives.  Residual diagnostics and other tools should be used to
identify any problems with regressions.  Problems with regressions should be solved logically
(i.e., through good "detective" work) rather than by arbitrarily trimming data sets.  However,
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investigators should not hesitate to use robust alternatives to LSR or trimming as a final step in
refining relationships.  The desired result should be a subset of useable, robust and accurate
predictive empirical models, rather than the "all possible regressions" provided in Section 3.0.

5.3 GEOCHEMICAL CONCLUSIONS

(1) Geochemical evaluation of the data indicates that the strong correlation of many variables in
the datasets is due to the link between sulphur oxidation, release of acid and leaching along
drainage pathways.

(2) Modelling using MINTEQA2 indicates that the water chemistry is largely controlled by
limonite-type minerals.  Other significant relationships were not identified.  Evaluation of other
metal-pH relationships indicated that most waters are undersaturated with respect to metal
hydroxides and carbonates.  Adjustment of the partial pressure of CO2 indicated zinc carbonate
control for one site.  Modelling was severely limited by the lack of data for partial pressures of
gases (particularly CO2 and O2) and speciation of oxidation states of metals (particularly
Fe2+/Fe3+).

(3) Comparison of sulphate with element concentrations on log-log plots indicate extremely strong
correlations even with small datasets.  The relationships can be related to predicted mineral
leaching and show strong similarities between sites in some cases.

5.4 RECOMMENDATIONS

5.4.1 Monitoring

Based on this study, it is recommended that the approach proposed by Morin and others be applied to
datasets having characteristics similar to those described in Section 5.1.  The utility of the approach is
enhanced if sampling is conducted following a routine schedule by trained personnel using well-defined
protocols.  Detection limits should not fluctuate widely and the same laboratory should be used
throughout the monitoring program.  Routine quality control (QC) is often missing and should include
as a minimum field duplicates and blanks.  Ion balances should be checked routinely to ensure analyses
are complete and to monitor laboratory performance.  QC is probably less important for large datasets
since infrequent laboratory errors are less significant.  However, thorough QC is essential for small
datasets and assists with understanding data variability.

Flow data should also be collected particularly to evaluate outlying data points.

Most datasets currently available are probably not adequate for the approach proposed by Morin and
Hutt (1993).

5.4.2 Chemical Modelling

The next step in this type of modelling should be to develop a better understanding of the mineralogical
controls on dump leachate chemistry as has been started for this project.  The current datasets do not
contain sufficient chemical data to allow modelling of results without making several assumptions. 
Monitoring of at least the following parameters is recommended:
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! concentrations of all major cations and anions (including SO4
2-, F-, Cl-, PO4

3-, SiO2) in waters;

! concentrations of oxidation states of common forms of metals (particularly, Fe and Mn);

! total dissolved inorganic carbon, rather than total alkalinity to reduce assumptions on forms of
alkalinity;

! partial pressure of gases in pore spaces; and

! types of secondary minerals present.

NORECOL, DAMES & MOORE, INC.

per:

Stephen J. Day, P.Geo.
Senior Geochemist
Project Manager

p:\ndm\24872\010\guidemdp.r1&2 July 31, 1996
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TABLE 1-1

SUMMARY OF BACKGROUND INFORMATION

Site Size of Pile(s) Lithology Relative Constructed Duration of General Climatic Internal

(m3) Sulphur Degree of Started (year) Dumping Seepage Factors Factors
% Oxidation (years) Characteristics Controlling Controlling

Water Chemistry Water Chemistry
Vangorda Phyllite and 0.5 to 13% Slight 1990 1.5-2 Neutral pH, Long cold winters, Localized acid

Massive elevated sulfate spring melt, thunder generation
Pyrite and zinc showers in short neutralized

summer internally by
carbonates

Cinola 4 piles each 18 Silicified Moderate 1987(one pile 1 day Strongly acidic Mild wet winters, Sulphide
and 1982) with elevated drier summer, oxidation,

brecciated sulfate, iron, flushing by negligible
clastic sediments zinc, copper heavy rain in fall buffering by

and arsenic reaction with silicates
Sullivan 2,500,000 in 2 Mineralized High 1903 ~ 30 Strongly acidic Cool winters, spring Sulphide

piles clastic with elevated melt, thunder oxidation,
sediments, sulfate, iron, showers in summer, leaching of acid salts

massive sulphides zinc, copper rain in fall Negilible buffering 
and arsenic

Mine Doyon 28,0000,000 in Schists, diorite, Moderate 1978 11 Strongly acidic Cool winters, spring Sulphide
2 piles volcanis with elevated melt, thunder oxidation,

sediments, sulfate, iron, showers in summer, leaching of acid salts
alaskite rain in fall Negilible buffering 

Eskay Creek 40,000 Massive and 0.2 to 6% High 1991 4 pH less 3, high Long moderate Formation of
brecciated copper and zinc winters, high snow jarosite caused

rhyolite, argillite accumulation, high lateral and vertical
and basalt run-off, rain in fall movement of water

inflow. Waste
deposited in valley

bottom



TABLE 2-1
DESCRIPTION OF VANGORDA SEEPAGE SAMPLES

Period of Number of Sampling
Station   Description Sampling Samples Frequency    Parameters Analyzed 
V-21 Vangorda Jan7/91 - May9/95 28 Monthly Compliance monitoring started in 1991 with monitoring of pH,

waste dump temp., cond., suspended solids, alkalinity, sulphate and total
collector ditch metals As, Cu, Pb and Zn.

Monthly to Monitoring continued in 1992 with the addition of ICP metal
Aug/92 scans for total metals for some of the samples

Monthly Monitoring re-started in Jan. 1995 with complete analyses
including some ICP metal scans for total metals

Drain 2 Drain through till May4/94 - May9/95 3 Random Complete set of physical parameters, anions and ICP total
berm from zone during Site metals

containing phyllite Visits
waste

Drain 3 Drain through till May4/94 - Jun10/95 5 Random Complete set of physical parameters, anions and ICP total
berm from zone during Site metals, included extractable metals on two samples in 1994

containing phyllite Visits
waste - main

source of seepage
to Station V-21

Drain 5 Drain through till Aug9/94 - Jun9/95 2 Random Complete set of physical parameters, anions and ICP total
berm from zone during Site metals, included extractable metals on on sample in 1994

containing Visits
sulphide waste 

Random Complete set of physical parameters, anions and ICP total
Drain 6 Drain through the Aug9/94 - Jun25/95 4 during Site metals, included extractable metals on two samples in 1994

waste dump till Visits and dissolved metals on one sample in 1995
berm from zone

containing
sulphides 



TABLE 2-2
DESCRIPTION OF CINOLA TEST PAD LEACHATE SAMPLES

Period of Number of Sampling 
Station   Description Sampling Samples Frequency    Parameters Analyzed 
Pad 1  20 tonnes of five-year Feb/87 - Dec/87 24 Weekly to   pH, cond., Alk., sulphate, acidity,

weathered silicified Biweekly SiO2, P and ICP Total Metals
skonum sediments Jan/88 - Sept/88 20 Weekly to

Biweekly
Sept/90 1 Random

Mar/91 -  Dec/91 8 Monthly

Jan/92 - May/92 4 Monthly

Pad 2  30 tonnes of silicified Feb/87 - Dec/87 24 Weekly to
Skonum sediments Biweekly

Jan/88 - Sept/88 20 Weekly to
Biweekly

Sept/90 1 Random

Mar/91 -  Dec/91 8 Monthly

Jan/92 - May/92 4 Monthly
Pad 3 30 tonnes of Feb/87 - Dec/87 24 Weekly to

argillically-altered Biweekly
Skonum sediments Jan/88 - Sept/88 20 Weekly to

Biweekly
Sept/90 1 Random

Mar/91 -  Dec/91 8 Monthly

Jan/92 - May/92 4 Monthly
Pad 4 30 tonnes of brecciated Feb/87 - Dec/87 24 Weekly to

Skonum sediments Biweekly
Jan/88 - Sept/88 20 Weekly to

Biweekly
Sept/90 1 Random

Mar/91 -  Dec/91 8 Monthly

Jan/92 - May/92 4 Monthly



TABLE 2-3

DESCRIPTION OF SULLIVAN GROUNDWATER AND SEEPAGE SAMPLES

Period of Number of Sampling QA/QC
Stations Sampling Samples Frequency Samples    Parameters Analyzed 
Groundwater

92AA2 Aug1/92-Jun1/93 2 See Note   pH, cond., Alk., sulphate, acidity,
92BB Aug1/92-Jun1/93 3 1 phosphate, SiO2, and ICP dissolved
92CC2 Aug1/92-Jun1/93 3 metals
92DD Aug1/92-Jun1/93 3
HE0047 Aug1/92 1
92EE2 Mar1/93-Jun1/93 2
92Q Aug1/92-Jun1/93 3
92S Aug1/92-Jun1/93 3
92T2 Aug1/92-Jun1/93 3
92V Aug1/92-Jun1/93 3
92W Aug1/92-Jun1/93 3 1
92X1 Aug1/92-Jun1/93 3
92Y Aug1/92-Jun1/93 3

Total Groundwater 35
Seepage

MY11 Aug1/92-Jun1/93 3 See Note   pH, cond., Alk., sulphate, acidity,
MY12 Aug1/92-Jun1/93 3 phosphate, SiO2, and ICP dissolved
MY13A Aug1/92-Jun1/93 3 metals
MY13B Aug1/92-Jun1/93 3
MY14 Aug1/92-Jun1/93 2 1
MY14N Mar1/93 1
MY15 Aug1/92-Jun1/93 3
MY16 Aug1/92-Jun1/93 3
MY17 Aug1/92-Jun1/93 3
MY18 Aug1/92-Jun1/93 3

Total Seepage 27

Note: Sampling was conducted on a schedule that involved collection during three site visits 



TABLE 2-4
DESCRIPTION OF MINE DOYON SAMPLES

Period of Number of Sampling
Station   Description Sampling Samples Frequency    Parameters Analyzed 

Ditch Monitoring Stations
Station 510 Collection Ditch Apr13/92-Nov1/92 142 Daily to Weekly  Measured - pH, Eh, conductivity and total dissolved solids 

Flow Dependent  Calculated - acidity, Al, Fe, Fe2+/Fe3+, Mg, SO4
Jan22/91-Dec30/92 93 Weekly  Measured - physical parameters and metals until Jul10/91

 Measured pH, TDS and Cond Jul16/91 to May27/92 
 Measured pH, Fe and TDS to Dec 30/92 plus calculated physical
 parameters, no pH data after Jun3/92

Station 511 Collection Ditch Apr15/92-Nov11/92 116 Daily to Weekly  Measured - pH, Eh, conductivity and total dissolved solids 
Flow Dependent  Calculated - acidity, Al, Fe, Fe2+/Fe3+, Mg, SO4

Jan22/91-Dec30/92 92 Weekly  Measured - physical parameters and metals until Jul10/91
 Measured pH, TDS and Cond Jul16/91 to May27/92 
 Measured pH, Fe and TDS to Dec 30/92 plus calculated physical
 parameters, no pH data after Jun3/92

Station 512 Collection Ditch Apr13/92-Nov13/92 92 Daily to Weekly  Measured - pH, Eh, conductivity and total dissolved solids 
Flow Dependent  Calculated - acidity, Al, Fe, Fe2+/Fe3+, Mg, SO4

Apr 9/91-Dec22/92 72 Weekly  Measured - physical parameters and metals until Jul10/91
when Flowing  Measured pH, TDS and Cond Jul16/91 to May27/92 

 Measured pH, Fe and TDS to Dec 30/92 plus calculated physical
 parameters, no pH data after Jun3/92

Groundwater Monitoring Stations
BH-91-01 Rock Apr8/91-Aug15/92 7 Quarterly  pH, Eh, Cond, SG, TDS acidity, sulphate and metals with some
BH-91-01 Soil Apr8/91-Aug15/92 7 Quarterly  calculated values
BH-91-02 Rock Mar26/91-Jun17/92 6 Quarterly
BH-91-02 Soil Mar26/91-Jun17/92 6 Quarterly
BH-91-03 Rock Mar27/91-Jun17/92 6 Quarterly
BH-91-03 Soil Mar27/91-Aug15/92 7 Quarterly
BH-91-04 Rock Mar26/91-Aug15/92 7 Quarterly
BH-91-04 Soil Mar26/91-Aug15/92 7 Quarterly
BH-91-06 Rock Mar26/91-Aug15/92 7 Quarterly
BH-91-06 Soil Oct30/91 1 Selected
BH-91-101 Rock Mar27/91 - Oct30/91 3 Quarterly
BH-91-102 Rock Apr24/91-Aug15/92 6 Quarterly
BH-91-103 Rock Apr24/91-Oct10/91 4 Quarterly
BH-91-104 Rock Mar26/91-Aug15/92 7 Quarterly
BH-91-105 Rock Mar28/91-Aug15/92 7 Quarterly
BH-91-105 Soil Apr25/91 1 Selected

Historical Monitoring Data
D-301 East  Apr30/86-Nov11/89 31 Monthly  pH, Acidity, Fe and SO4
D-302  Apr30/86-Nov11/90 48
D-309 South  Jun17/86-Nov22/89 30



TABLE 2-5
DESCRIPTION OF ESKAY CREEK WASTE DUMP SEEPAGE SAMPLES

Period of Number of Sampling 

Station   Description Sampling Samples Frequency   Parameters Analyzed 
D-2 Exploration Waste Dump Jan/91 - Dec/91 25 Biweekly   pH, cond., Alk., sulphate, acidity,

Seepage TSS, turbidity, TDS, hard, Cl, Fl, SO4
Jan/92 - Dec/92 27 Biweekly total PO4, ortho-PO4, dissolved PO4, NH3, NO3, NO2 

Total & Dissolved Metals via ICP
Jan/93 - Feb/93 2 Random

Jan/94 - Dec/94 11 Monthly

Feb/95 - Jun/95 4 Monthly



TABLE 3-1
VANGORDA PLATEAU MINE REGRESSION LIST

Y-
Variable

X-Variable Mean Intercept Slope n r² P

As Conductivity -1.382 0.042 19 0.009 0.702
Cu Conductivity -5.118 1.030 22 0.382 0.002 *
Fe Conductivity -6.013 2.042 23 0.807 0.000 *
Pb Conductivity -2.690 0.496 22 0.086 0.185

SO4 Conductivity -0.887 1.182 26 0.863 0.000 *
Zn Conductivity -5.369 2.078 27 0.624 0.000 *
As pH -1.619 0.048 16 0.024 0.568
Cu pH 2.191 -0.593 19 0.193 0.060
Fe pH 10.050 -1.380 20 0.765 0.000 *
Pb pH 0.754 -0.281 20 0.055 0.318

SO4 pH 7.218 -0.624 23 0.513 0.000 *
Zn pH 9.853 -1.247 23 0.37 0.002 *
As SO4 -2.137 0.365 20 0.39 0.003 *
Cu SO4 -2.936 0.422 29 0.031 0.358
Fe SO4 -3.116 1.205 29 0.414 0.000 *
Pb SO4 -1.318 0.063 27 0.002 0.841
Zn SO4 -4.436 2.010 33 0.796 0.000 *

Notes
1.  * in last column indicates that the r² is significant (p<0.05)



TABLE 3-2
CINOLA REGRESSION LIST

Pad Y- X- Mean Intercept Slope n r² P
Variable Variable <0.05 *

1 Al All x 0.586 33
1 Cu All x -2.654 33
1 P All x -1.949 11 *
1 Zn All x -0.992 33
1 Al Conductivity 0.124 0.251 28 0.029 0.388

2-4 Al Conductivity -4.947 1.957 84 0.819 0.000 *
2-4 As Conductivity -10.554 3.086 83 0.872 0.000 *
1 Ca Conductivity -3.183 1.870 52 0.843 0.000 *

2-4 Ca Conductivity -3.409 1.538 154 0.789 0.000 *
2-4 Co Conductivity -5.453 1.513 79 0.775 0.000 *
2-4 Cu Conductivity -6.772 1.868 84 0.84 0.000 *
2-4 Fe Conductivity -4.320 2.010 148 0.819 0.000 *
2-4 Hg Conductivity -4.179 0.864 44 0.418 0.000 *
1 K Conductivity -1.050 0.373 9 0.845 0.000 *
1 Mg Conductivity -2.973 1.475 12 0.921 0.000 *

2-3 Mg Conductivity -3.235 1.331 24 0.928 0.000 *
4 Mg Conductivity -4.874 1.654 11 0.977 0.000 *
1 Mn Conductivity -3.755 1.526 27 0.737 0.000 *

2-3 Mn Conductivity -6.289 2.001 53 0.931 0.000 *
4 Mn Conductivity -8.868 2.604 25 0.9 0.000 *

2-4 Ni Conductivity -6.338 1.670 77 0.79 0.000 *
1 P Conductivity -6.541 1.911 11 0.369 0.047 *

2-4 P Conductivity -10.657 3.310 31 0.916 0.000 *
1 SO4 Conductivity -0.935 1.242 53 0.951 0.000 *

2-4 SO4 Conductivity -2.832 1.778 153 0.97 0.000 *
2-4 Zn Conductivity -7.161 2.161 85 0.892 0.000 *
2-4 Al pH 4.067 -0.922 86 0.438 0.000 *
2-4 As pH 2.964 -0.481 86 0.342 0.000 *
2-4 Co pH 0.631 -0.359 80 0.131 0.001 *
1 Cu pH -1.040 -0.365 30 0.426 0.000 *

2-4 Cu pH 1.679 -0.820 86 0.392 0.000 *
2-4 Fe pH 5.947 -1.309 156 0.684 0.000 *
1 Mg pH 2.332 -0.535 12 0.06 0.442

2-3 Mg pH 5.232 -1.674 24 0.889 0.000 *
4 Mg pH 4.695 -1.756 11 0.928 0.000 *

2-4 Na pH 1.563 -0.393 33 0.204 0.008 *
2-4 Ni pH 0.364 -0.391 77 0.131 0.001 *
2-4 P pH 2.208 -0.414 30 0.094 0.100 *
2-4 Zn pH 1.822 -0.629 86 0.208 0.000 *
1 Al SO4 0.303 0.207 31 0.031 0.346

2-4 Al SO4 -1.927 1.134 91 0.908 0.000 *
2-4 As SO4 -5.630 1.742 92 0.87 0.000 *
1 Ca SO4 -1.610 1.425 53 0.788 0.000 *

2-4 Ca SO4 -0.856 0.837 154 0.782 0.000 *
2-4 Co SO4 -2.953 0.817 88 0.726 0.000 *
2-4 Cu SO4 -3.804 1.062 92 0.897 0.000 *
2-4 Fe SO4 -1.417 1.213 159 0.803 0.000 *
2-4 Hg SO4 -2.578 0.421 53 0.395 0.000 *
1 K SO4 -0.732 0.275 9 0.8 0.001 *
1 Mg SO4 -1.662 1.057 12 0.929 0.000 *

2-3 Mg SO4 -1.517 0.890 24 0.935 0.000 *
4 Mg SO4 -2.730 1.154 11 0.954 0.000 *
1 Mn SO4 -2.847 1.330 30 0.85 0.000 *

2-3 Mn SO4 -3.385 1.196 58 0.953 0.000 *
4 Mn SO4 -4.177 1.328 28 0.868 0.000 *

2-4 Ni SO4 -3.747 0.962 86 0.839 0.000 *
1 P SO4 -4.212 1.086 11 0.343 0.058

2-4 P SO4 -4.226 1.520 31 0.887 0.000 *
2-4 Zn SO4 -3.771 1.237 94 0.93 0.000 *

Notes
1.  * in last column indicates that the r² is significant (p<0.05)



TABLE 3-3
SULLIVAN MINE REGRESSION LIST

Y-Variable X-Variable Mean Intercept Slope n r² P
<0.05 *

Al Conductivity -5.067 1.997 40 0.783 0.000 *
Ba Conductivity -2.525 0.317 64 0.237 0.000 *
Cd Conductivity -6.338 1.612 56 0.697 0.000 *
Co Conductivity -5.586 1.443 18 0.963 0.000 *
Cu Conductivity -5.563 1.459 51 0.607 0.000 *
Fe Conductivity -2.516 0.820 51 0.254 0.000 *
K Conductivity -1.122 0.508 63 0.583 0.000 *

Mg Conductivity -1.907 1.195 62 0.985 0.000 *
Mn Conductivity -4.620 1.656 56 0.62 0.000 *
Na Conductivity -0.374 0.423 63 0.353 0.000 *
Ni Conductivity -4.239 1.052 50 0.827 0.000 *
Pb Conductivity -3.546 0.563 49 0.218 0.001 *

SIO2 Conductivity 0.029 0.489 65 0.715 0.000 *
Sr Conductivity -2.707 0.629 64 0.772 0.000 *
Zn Conductivity -4.793 1.859 65 0.616 0.000 *
Al pH 4.121 -0.699 41 0.75 0.000 *
B pH <= 3 8.616 -3.474 8 0.823 0.002
B pH > 3 -1.74 28

Cd pH 1.104 -0.536 56 0.68 0.000 *
Co pH 1.204 -0.533 19 0.369 0.006 *
Cu pH 1.267 -0.519 50 0.745 0.000 *
Cu pH <= 6 3.213 -1.002 30 0.676 <0.001
Cu pH > 6 -2.45 22
Fe pH 1.886 -0.398 51 0.403 0.000 *
Fe pH <= 4 8.293 -2.356 16 0.862 <0.001
Fe pH > 4 -0.81 36
Mg pH 2.669 -0.237 64 0.268 0.000 *
Mn pH 2.914 -0.539 56 0.499 0.000 *
Ni pH 0.832 -0.378 50 0.684 0.000 *
Ni pH <= 6 1.111 -0.471 29 0.344 0.001
Ni pH > 6 -1.94 22

PO4 pH <= 4 3.504 -1.038 10 0.607 0.008
PO4 pH > 4 -0.23 5
Pb pH -0.468 -0.297 48 0.464 0.000 *

SIO2 pH 2.220 -0.153 65 0.533 0.000 *
SO4 pH 4.199 -0.360 65 0.397 0.000 *
Zn pH 4.325 -0.720 65 0.702 0.000 *
Al SO4 -2.313 1.226 40 0.75 0.000 *
Ba SO4 -1.996 0.151 64 0.134 0.000 *
Cd SO4 -4.411 1.115 56 0.773 0.000 *
Co SO4 -3.080 0.762 18 0.885 0.000 *
Cu SO4 -3.599 0.922 51 0.618 0.000 *
K SO4 -0.281 0.236 64 0.356 0.000 *

Mg SO4 -0.267 0.724 62 0.883 0.000 *
Mn SO4 -2.248 0.987 56 0.564 0.000 *
Na SO4 0.280 0.226 63 0.251 0.000 *
Ni SO4 -2.747 0.637 50 0.668 0.000 *
Pb SO4 -2.933 0.418 49 0.291 0.000 *

SIO2 SO4 0.712 0.297 65 0.655 0.000 *
Sr SO4 -1.824 0.374 63 0.713 0.000 *



TABLE 3-4
DOYON MINE REGRESSION LIST

Y-Variable X-Variable Mean Intercept Slope n r² P Location
<0.05 * Mine-site

Al Conductivity -4.525 1.789 46 0.751 0.000 * Doyon Borehole
Al Conductivity -3.023 1.479 56 0.914 0.000 * Doyon SP
Cu Conductivity -9.287 2.435 14 0.896 0.000 * Doyon Borehole
Cu Conductivity -4.361 1.361 27 0.958 0.000 * Doyon SP
Fe Conductivity -4.935 2.002 50 0.829 0.000 * Doyon Borehole
Fe Conductivity -0.381 1.008 72 0.748 0.000 * Doyon SP
Mg Conductivity -2.249 1.305 51 0.958 0.000 * Doyon Borehole
Mg Conductivity -2.599 1.361 70 0.786 0.000 * Doyon SP
Mn Conductivity -3.022 1.239 50 0.912 0.000 * Doyon Borehole
Mn Conductivity -4.421 1.510 70 0.894 0.000 * Doyon SP
Ni Conductivity -4.407 1.253 20 0.585 0.000 * Doyon Borehole
Ni Conductivity -4.471 1.233 35 0.88 0.000 * Doyon SP
Pb Conductivity -2.334 0.544 24 0.824 0.000 * Doyon Borehole
Pb Conductivity -3.368 0.760 34 0.273 0.002 * Doyon SP

SO4 Conductivity -1.841 1.475 49 0.984 0.000 * Doyon Borehole
SO4 Conductivity -1.594 1.425 72 0.864 0.000 * Doyon SP
Zn Conductivity -5.711 1.604 23 0.968 0.000 * Doyon Borehole
Zn Conductivity -4.925 1.411 35 0.951 0.000 * Doyon SP
Al pH 5.698 -0.820 47 0.797 0.000 * Doyon Borehole
Al pH 5.903 -1.111 57 0.257 0.000 * Doyon SP
Cu pH 3.788 -0.862 14 0.889 0.000 * Doyon Borehole
Cu pH 6.021 -1.973 27 0.623 0.000 * Doyon SP
Fe pH 6.503 -0.923 52 0.805 0.000 * Doyon Borehole
Fe pH 5.912 -0.839 73 0.229 0.000 * Doyon SP
Mg pH 4.844 -0.492 51 0.738 0.000 * Doyon Borehole
Mg pH 4.806 -0.653 71 0.085 0.013 * Doyon SP
Mn pH 3.479 -0.404 51 0.516 0.000 * Doyon Borehole
Mn pH 4.409 -0.999 71 0.182 0.000 * Doyon SP
Ni pH 1.908 -0.315 21 0.248 0.022 * Doyon Borehole
Ni pH 4.184 -1.481 36 0.56 0.000 * Doyon SP
Pb pH 0.594 -0.191 25 0.73 0.000 * Doyon Borehole
Pb pH 2.755 -1.270 34 0.345 0.000 * Doyon SP

SO4 pH 6.120 -0.534 50 0.785 0.000 * Doyon Borehole
SO4 pH 7.192 -1.138 73 0.256 0.000 * Doyon SP
Zn pH 2.879 -0.555 25 0.776 0.000 * Doyon Borehole
Zn pH 4.582 -1.515 36 0.479 0.000 * Doyon SP
Al SO4 -3.720 1.528 45 0.866 0.000 * Doyon Borehole
Al SO4 -1.101 0.977 56 0.933 0.000 * Doyon SP
Cu SO4 -5.931 1.579 14 0.918 0.000 * Doyon Borehole
Cu SO4 -2.008 0.768 28 0.972 0.000 * Doyon SP
Fe SO4 -3.281 1.545 48 0.854 0.000 * Doyon Borehole
Fe SO4 0.774 0.700 71 0.819 0.000 * Doyon SP
Mg SO4 -0.463 0.852 49 0.953 0.000 * Doyon Borehole
Mg SO4 -0.935 0.922 69 0.807 0.000 * Doyon SP
Mn SO4 -0.487 0.620 48 0.832 0.000 * Doyon Borehole
Mn SO4 -2.494 1.006 70 0.936 0.000 * Doyon SP
Ni SO4 -2.074 0.666 21 0.409 0.002 * Doyon Borehole
Ni SO4 -2.377 0.703 36 0.916 0.000 * Doyon SP
Pb SO4 -1.414 0.315 25 0.831 0.000 * Doyon Borehole
Pb SO4 -1.999 0.416 34 0.264 0.002 * Doyon SP
Zn SO4 -3.315 0.998 23 0.953 0.000 * Doyon Borehole
Zn SO4 -2.469 0.792 36 0.951 0.000 * Doyon SP
Fe pH 9.451 -2.368 105 0.64 0.000 * Historical



TABLE 3-5
ESKAY CREEK REGRESSION LIST

Y-variable X-variable Mean Intercept Slope n r² P
<0.05 *

Al Conductivity -7.680 2.424 38 0.681 0.000 *
As Conductivity -9.330 2.405 38 0.522 0.000 *
Ba Conductivity -3.646 0.968 17 0.554 0.000 *
Ca Conductivity -0.556 0.820 37 0.934 0.000 *
Cd Conductivity -9.239 2.253 36 0.685 0.000 *
Co Conductivity -7.767 1.924 35 0.741 0.000 *
Cu Conductivity -10.251 2.910 38 0.690 0.000 *
Fe Conductivity -9.858 3.267 37 0.810 0.000 *
Mg Conductivity -1.465 1.044 37 0.925 0.000 *
Mn Conductivity -3.189 1.136 22 0.375 0.002 *
Ni Conductivity -8.354 2.277 36 0.704 0.000 *
Pb Conductivity -4.299 0.713 36 0.226 0.003 *
Sr Conductivity -2.989 0.991 16 0.908 0.000 *
U Conductivity -9.958 2.504 16 0.484 0.003 *
Zn Conductivity -9.200 2.825 36 0.643 0.000 *
Al pH 3.423 -0.687 48 0.903 0.000 *
As pH 1.734 -0.675 49 0.674 0.000 *
As pH<=6 3.742 -1.246 26 0.800 0.000 *
As pH>6 -3.206 20
Ba pH -1.646 0.097 17 0.159 0.113
Ca pH 2.540 -0.116 48 0.427 0.000 *
Cd pH 0.767 -0.586 43 0.858 0.000 *
Co pH 0.751 -0.504 40 0.876 0.000 *
Cu pH 2.968 -0.811 47 0.912 0.000 *
Fe pH 4.469 -0.812 47 0.933 0.000 *
Mg pH 2.684 -0.176 46 0.586 0.000 *
Mg pH<=6 3.394 -0.389 24 0.658 0.000 *
Mg pH>6 1.438 23
Mn pH 1.400 -0.221 32 0.519 0.000 *
Ni pH 1.917 -0.612 44 0.886 0.000 *
Pb pH -0.841 -0.243 46 0.491 0.000 *
Sr pH -2.610 0.340 16 0.680 0.000 *
U pH -8.763 0.816 16 0.455 0.004 *
Zn pH 3.028 -0.704 44 0.760 0.000 *
Al SO4 -5.574 2.063 49 0.781 0.000 *
As SO4 -7.488 2.153 49 0.578 0.000 *
Ba SO4 -2.799 0.869 16 0.627 0.000 *
Ca SO4 0.419 0.569 48 0.864 0.000 *
Cd SO4 -7.464 1.934 42 0.878 0.000 *
Co SO4 -6.408 1.698 39 0.935 0.000 *
Cu SO4 -7.755 2.460 48 0.803 0.000 *
Fe SO4 -6.637 2.592 47 0.877 0.000 *
Mg SO4 -0.430 0.813 46 0.940 0.000 *
Mn SO4 -2.474 1.071 33 0.621 0.000 *
Ni SO4 -6.300 1.902 45 0.822 0.000 *
Pb SO4 -3.836 0.654 46 0.302 0.000 *
Sr SO4 -1.994 0.810 16 0.768 0.000 *
U SO4 -5.981 1.294 16 0.237 0.056
Zn SO4 -6.925 2.364 44 0.794 0.000 *



TABLE 3-6
LIST OF OUTLIERS - ESKAY CREEK

Date Cond pH SO4 Al As Ba Cd Ca Co Cu Fe Pb Mg Mn Ni Sr U Zn
S C p S C pS pB S C p S C p S C p S C p S C p S C p S C p S C pS pB S C p S C p S C p S C p S C p

09/25/91 431 6.21 67
10/05/91 681 7.26 116
01/01/92 630 7.97 79
02/28/92 613 6.77 276
03/16/92 1280 10.30 213
04/12/92 832 7.29 236
05/14/92 312 6.23 80
05/22/92 295 6.48 81
11/24/92 #N/A 6.55 499
06/26/94 5650 2.86 3580
08/30/94 481 4.78 231
09/20/94 10600 1.89 4980
09/30/94 152 5.47 58
02/28/95 77000 13.90 945 Omitted from all regressions
05/31/95 1600 5.31 1050

Primary outlier Secondary outlier
X-variables (columns): S=SO4; C=conductivity; p=pH; pS=pH(shaft); pB=pH(blade)
Date format is mm/dd/yy. 



TABLE 3-7
VANGORDA MINE

SATURATION INDICES

Mineral Log(SI) Chemical Formula
HIGH TDS LOW TDS

Anhydrite -0.138 NA CaSO4
Bixbyite <-1 38.899 Mn2O3
Brochantite <-1 -0.198 AlO(OH)
Cu(OH)2 NA -0.779 Cu(OH)2
Calcite -0.903 NA CaCO3
Chalcedony 0.038 NA SiO2
Cerrusite <-1 0.184 PbCO3
Cupricferite NA 19.440 CuFe2O4
FeOH)2.7Cl.3 <-1 8.653 FeOH)2.7Cl.3
Ferrihydrite 3.487 4.293 Fe(OH)3
Goethite 7.317 8.122 FeO(OH)
Gypsum 0.228 NA CaSO4.2H2O
Jarosite (H) 5.370 0.172 HFe3(SO4)2(OH)6
Jarosite (K) 11.764 7.996 KFe3(SO4)2(OH)6
Jarosite (Na) 8.323 4.400 NaFe3(SO4)2(OH)6
Hydcerrusite <-1 -0.271 Pb(CO3)2(OH)2
Ni(OH)2 <-1 -0.369 Ni(OH)2
Lepidocrocite 7.008 7.813 FeOOH
Malachite NA -0.195 Cu(CO3)OH
Mag-Ferrite <-1 11.087 MgFe2O4
Maghemite 10.372 11.983 Fe2O3
Magnesite 0.046 NA MgCO3
Manganite <-1 19.678 MnO(OH)
Otavite -0.127 NA CdCO3
Quartz 0.583 NA SiO2
Silica -0.474 NA SiO2 - A, Gl
Silica -0.803 NA SiO2 - A,PT
Smithsonite 0.046 1.297 ZnCo3
Tenorite NA 0.241 CuO
ZnCO3, 1H2O <-1 1.726 ZnCO3, 1H2O
Zn(OH)2 (a) <-1 0.691 Zn(OH)2 (a)
Zn(OH)2 (c) <-1 0.941 Zn(OH)2 (c)
Zn(OH)2(b) <-1 1.391 Zn(OH)2(b)
Zn(OH)2(g) <-1 1.431 Zn(OH)2(g)
Zn(OH)2(e) <-1 1.641 Zn(OH)2(e)
Zn2(OH)3Cl NA -0.824 Zn2(OH)3Cl
Zn5(OH)8Cl2 NA 3.394 Zn5(OH)8Cl2
Zn2(OH)2SO4 <-1 0.112 Zn2(OH)2SO4
Zn4(OH)6SO4 <-1 5.494 Zn4(OH)6SO4
ZnO (Active) <-1 1.831 ZnO (Active)
Zincite <-1 1.152 ZnO
Pb(OH)2 (c) <-1 -0.154 Pb(OH)2 (c)
ZnCO3, 1H2O 0.474 <-1 ZnCO3, 1H2O
ZnSiO3 2.453 NA ZnSiO3
pH 6.400 7.500  
Note:   
1.  Only minerals with at least one log(SI)>-1 are shown.  Value ommitted if log(SI)<-1



TABLE 3-8
CINOLA PROJECT

SATURATION INDICES

Mineral Log SI Chemical Formula
Pad 1 Pad 2 Pad 3 Pad 4

High TDS Mid TDS Low TDS Mid TDS Low TDS High TDS High TDS
 

AlOHSO4 0.512 0.637 -0.139 -0.594 <-1 -0.358 <-1 AlOHSO4
Alunite 3.146 3.353 1.901 <-1 NA <-1 <-1 KAl3(SO4)2(OH)6
Anhydrite <-1 <-1 <-1 <-1 <-1 -0.837 <-1 CaSO4
Barite 1.113 0.752 0.266 0.927 0.578 1.256 0.443 BaSO4
Bixbyite 13.084 11.733 12.653 5.110 5.841 3.127 2.303 Mn2O3
Chalcedony 0.402 -0.267 -0.268 0.801 0.158 <-1 0.883 SiO2
Cristobalite 0.500 -0.169 -0.170 0.899 0.257 1.268 0.981 SiO2
Cupricferite 1.552 0.955 0.741 -0.583 0.354 <-1 <-1 CuFe2O4
Diaspore -0.056 0.248 0.228 <-1 <-1 <-1 <-1 AlO(OH)
FeAsO4.2W <-1 <-1 <-1 <-1 <-1 <-1 <-1 FeAsO4.2W
Ferrihydrite -0.688 <-1 <-1 <-1 -0.767 <-1 <-1 Fe(OH)3
Goethite 3.140 2.762 2.621 2.667 3.062 1.974 2.438 FeO(OH)
Gypsum <-1 <-1 <-1 <-1 <-1 -0.471 <-1 CaSO4.2H2O
Hematite 11.216 10.459 10.176 10.269 11.059 8.884 9.812 Fe2O3
Jarosite (H) 1.583 0.091 <-1 5.464 4.573 6.006 5.602 KFe3(SO4)2(OH)6
Jarosite (K) 4.522 2.682 0.864 6.740 6.147 6.872 6.457 KFe3(SO4)2(OH)6
Jarosite (Na) 1.373 -0.298 <-1 4.073 3.146 4.613 3.931 KFe3(SO4)2(OH)6
Kaolinite 1.842 1.120 1.079 <-1 <-1 <-1 <-1 Al2Si2O5(OH)4
Lepidocrocite 2.832 2.453 2.312 2.358 2.753 1.666 2.130 FeO-OH
Maghemite 2.019 1.263 0.980 1.073 1.862 -0.312 0.616 Fe2O3
Manganite 6.777 6.095 6.555 2.783 3.149 1.797 1.380 MnO(OH)
Montmorillonite 0.772 <-1 <-1 <-1 <-1 <-1 <-1 NaAlMgSi4O10(OH)2.nH2O
Na - Nontronite 13.347 10.176 9.924 12.236 10.831 11.847 11.656 NaFe2+3(AlSi)O10(OH2).nH2O
K - Nontronite 14.180 10.953 10.701 12.910 11.624 12.372 12.284 NaFe2+3(AlSi)O10(OH2).nH2O
Ca - Nontronite 20.383 17.355 16.987 19.269 17.924 18.831 18.681 NaFe2+3(AlSi)O10(OH2).nH2O
Mg - Nontronite 20.058 16.853 16.613 18.982 17.596 18.497 18.343 NaFe2+3(AlSi)O10(OH2).nH2O
Pyrophyllite 3.935 1.875 1.833 <-1 <-1 <-1 <-1 AlSi2O5(OH)
Quartz 0.947 0.278 0.277 1.346 0.704 1.715 1.428 SiO2
Silica -0.110 -0.779 -0.780 0.289 -0.353 0.658 0.371 SiO2 - A, Gl
Silica -0.439 -1.108 <-1 -0.039 -0.682 0.329 0.043 SiO2 - A,PT
pH 3.800 3.900 4.000 2.600 2.900 2.200 2.200
Note:
1.  Only minerals with at least one log(SI)>-1 are shown.  Value ommitted if log(SI)<-1



TABLE 3-9
SULLIVAN MINE

SATURATION INDICES

Mineral Log SI Chemical Formula
High TDS Mid TDS Low TDS

Aragonite <-1 <-1 -0.153 CaCO3
AlOHSO4 0.887 -0.022 <-1 AlOHSO4
Alunite <-1 0.320 <-1 KAl3(SO4)2(OH)6
Anhydrite 0.428 <-1 <-1 CaSO4
Barite 0.774 0.504 <-1 BaSO4
Bixbyite 8.194 11.106 <-1 Mn2O3
Calcite <-1 <-1 0.043 CaCO3
Celestite 0.502 <-1 <-1 SrSO4
Chalcedony 1.631 0.901 0.186 SiO2
Cristobalite 1.730 1.000 0.284 SiO2
Cupricferite <-1 -0.040 <-1 CuFe2O4
Dolomite <-1 <-1 -0.232 CaMg(CO3)2
Epsomite -0.733 <-1 <-1 MgSO4
Goethite 0.797 2.209 <-1 FeO(OH)
Gypsum 0.758 -0.742 <-1 CaSO4.2H2O
Hematite 6.548 9.354 <-1 Fe2O3
Jarosite (H) 4.683 1.048 <-1 HFe(SO4)2(OH)6
Jarosite (K) 5.553 3.892 <-1 KFe(SO4)2(OH)6
Jarosite (Na) 2.649 <-1 <-1 NaFe(SO4)2(OH)6
Kaolinite <-1 -0.477 <-1 Al2Si2O5(OH)4
Lepidocrocite 0.489 1.901 <-1 FeOOH
Maghemite <-1 0.158 <-1 Fe2O3
Magnesite <-1 <-1 -0.757 MgCO3
Manganite 4.316 5.781 <-1 MnO(OH)
Montmorillonite <-1 -0.363 <-1 NaAlMgSi4O10(OH)2.nH2O
Na - Nontronite 11.008 12.922 <-1 NaFe2+3(AlSi)O10(OH2).nH2O
K - Nontronite 11.760 13.572 <-1 KFe2+3(AlSi)O10(OH2).nH2O
Ca - Nontronite 18.233 19.785 <-1 CaFe2+3(AlSi)O10(OH2).nH2O
Mg - Nontronite 18.135 19.485 <-1 MgFe2+3(AlSi)O10(OH2).nH2O
Otavite <-1 <-1 0.096 CdCO3
Pyrophyllite -0.573 2.615 <-1 AlSi2O5(OH)
Quartz 2.176 1.447 0.731 SiO2
Silica 1.119 0.390 -0.326 SiO2 - A, Gl
Silica 0.791 0.061 -0.655 SiO2 - A,PT
Strengite 2.311 0.671 12.247 Fe PO4.2H2O
pH 2.130 3.420 6.810
Note:
1.  Only minerals with at least one log(SI)>-1 are shown.  Value ommitted if log(SI)<-1



TABLE 3-10
MINE DOYON

SATURATION INDICES

Mineral Log SI Chemical Formula
High TDS Mid TDS Low TDS

 
AlOHSO4 NA 0.809 0.278 AlOHSO4
Anglesite <-1 -0.498 -0.925 PbSO4
Anhydrite 0.361 -0.106 -0.678 CaSO4
Bixbyite 6.121 5.847 5.456 Mn2O3
Chalcedony NA 1.059 0.777 SiO2
Cristobalite NA 1.157 0.875 SiO2
Cupricferite <-1 0.535 1.229 CuFe2O3
Epsomite -0.839 <-1 <-1 MgSO4.7H2O
Ferrihydrite <-1 <-1 -0.750 Fe(OH)3
Goethite 1.086 2.657 3.081 FeO(OH)
Gypsum 0.710 0.250 -0.313 CaSO4.2H2O
Hematite 7.116 10.255 11.098 Fe2O3
Jarosite (H) 5.537 8.335 8.154 KFe3(SO4)2(OH)6
Jarosite (K) 8.071 8.586 8.608 KFe3(SO4)2(OH)6
Jarosite (Na) 3.881 8.730 6.573 KFe3(SO4)2(OH)6
Lepidocrocite 0.777 2.349 2.772 FeO-OH
Maghemite <-1 1.059 1.902 Fe2O3
Magnetite 1.025 4.220 4.165 Fe3O4
Melanterite -0.488 <-1 <-1 FeSO4.7H2O
Manganite 3.284 3.149 2.955 MnO(OH)
Na - Nontronite NA 13.731 12.959 NaFe2+3(AlSi)O10(OH2).nH2O
K - Nontronite NA 13.478 13.425 NaFe2+3(AlSi)O10(OH2).nH2O
Ca - Nontronite NA 20.224 20.128 NaFe2+3(AlSi)O10(OH2).nH2O
Mg - Nontronite NA 20.080 19.939 NaFe2+3(AlSi)O10(OH2).nH2O
Quartz NA 1.604 1.322 SiO2
Silica NA 0.547 0.265 SiO2 - A, Gl
Silica NA 0.218 -0.063 SiO2 - A,PT
pH 2.210 2.290 2.390
Note:
1.  Only minerals with at least one log(SI)>-1 are shown.  Value ommitted if log(SI)<-1



TABLE 3-11
ESKAY CREEK MINE

SATURATION INDICES

Mineral Log SI Chemical Formula
High TDS Mid TDS Low TDS

 
Al4(OH)10SO4 <-1 <-1 0.854 Al4(OH)10SO4
AlOHSO4 0.323 -0.760 <-1 AlOHSO4
Alunite <-1 1.658 0.842 KAl3(SO4)2(OH)6
Anhydrite -0.118 <-1 <-1 CaSO4
Ba (ASO4)2 NA NA 5.625 Ba (ASO4)2
Barite NA NA 0.607 BaSO4
Bixbyite NA NA 31.331 Mn2O3
Boehmite NA NA 0.519 AlO(OH)
Chalcedony NA NA -0.575 SiO2
Cristobalite NA NA -0.476 SiO2
Cupricferite 1.666 7.314 10.887 CuFe2O4
Diaspore <-1 -0.026 2.360 AlO(OH)
FeOH)2.7Cl.3 4.851 6.749 6.187 FeOH)2.7Cl.3
FeAsO4.2W -0.697 <-1 <-1 FeAsO4.2W
Ferrihydrite <-1 1.364 1.486 Fe(OH)3
Gibbsite <-1 <-1 0.534 Al(OH)3
Goethite 2.808 <-1 5.314 FeO(OH)
Gypsum 0.246 -0.737 <-1 CaSO4.2H2O
Halloysite NA NA 1.288 Al2Si2O3(OH)4
Hematite 10.553 <-1 15.564 Fe2O3
Jarosite (H) 7.565 5.135 <-1 KFe3(SO4)2(OH)6
Jarosite (K) 10.251 9.098 <-1 KFe3(SO4)2(OH)6
Jarosite (Na) 6.871 5.761 <-1 KFe3(SO4)2(OH)6
Kaolinite NA NA 4.728 Al2Si2O5(OH)4
Leonhardite NA NA 8.124 Ca2Al4Si8(OH)
Lepidocrocite 2.500 4.884 5.006 FeO-OH
Mag-Ferrite <-1 -0.999 4.091 MgFe2O4
Maghemite 1.357 6.124 6.367 Fe2O3
Manganite NA NA 15.894 MnO(OH)
Microcline NA NA -0.555 KAlSi2O3
Muscovite NA NA 5.623 KAlSi3O10(OH)2
Montmorillonite NA NA 5.029 NaAlMgSi4O10(OH)2.nH2O
Na - Nontronite NA NA 16.178 NaFe2+3(AlSi)O10(OH2).nH2O
K - Nontronite NA NA 17.018 NaFe2+3(AlSi)O10(OH2).nH2O
Ca - Nontronite NA NA 23.066 NaFe2+3(AlSi)O10(OH2).nH2O
Mg - Nontronite NA NA 22.766 NaFe2+3(AlSi)O10(OH2).nH2O
Pyrophyllite NA NA 4.869 AlSi2O5(OH)
Quartz NA NA -0.029 SiO2
V2O3 NA NA -0.882 V2O3
ZnSIO3 NA NA -0.420 ZnSIO3
pH 2.200 4.500 8.000
Note:  
1.  Only minerals with at least one log(SI)>-1 are shown.  Value ommitted if log(SI)<-1
NA - Relevant parameters not analyzed.



TABLE 3-12
SUMMARY OF REGRESSIONS FOR SULPHATE (X) VS ELEMENTS (Y)

Sites
Element Vangorda Cinola Sullivan Doyon Eskay

Slope SO4=100 Slope SO4=100 Slope SO4=100 Slope SO4=100 Slope SO4=100
Ag DL DL DL DL DL DL NA NA NC NC
Al NC NC 1 3 1 4 1 5 1 2
As DL DL >>1 0.009 DL DL NA NA 1 PC
B ID ID DL DL NC NC NA NA DL DL
Ba -1 0.5 DL DL <-1 PC NA NA ID ID
Be ID ID DL DL DL Dl NA NA DL DL
Ca 0 400 1 3 <1 20 0 500 <1 30
Cd NC NC 1 0.0007 1 0.01 ID ID >1 0.001
Co 1 0.06 1 0.02 1 0.01 NA NA 1 0.006
Cr DL DL 1 0.003 DL DL NA NA DL DL
Cu NC NC 1 0.03 ~1 0.02 1 0.1 >1 0.02
Fe NC NC 1 20 NC NC 1 30 1 20
Hg ID ID DL DL NA NA NA NA NA NA
K 0 10 DL DL <1 PC NC NC 0 10
Mg 1 10 1 1 1 7 1 6 ~<1 20
Mn 1 2 >1 0.04 1 1 1 0.3 1 0.5
Mo ID ID DL DL NA NA NA NA DL DL
Na 0 10 0 3 <1 PC NC NC <1 3
Ni >1 0 1 0.01 1 0.03 1 0.02 1 0.1
P DL DL >1 0.05 1 0.01 NA NA NC NC
Pb NC NC 1 0.00008 NC NC <1 PC PC PC
Sb DL DL 1 0.0002 DL DL NA NA NC NC
Se DL DL 1 0.001 NA NA NA NA DL DL
SiO2 0 36 <1 6 <1 PC <1 4 ID ID
Sn NA NA DL DL DL DL NA NA NA NA
Sr 0 1 <1 0.02 <1 0.07 NA NA 1 0.4
Ti DL DL DL DL DL DL NA NA NA NA
U ID ID NA NA NA NA NA NA ID ID
V DL DL DL DL DL DL NA NA ID ID
Zn >>1 PC <1 PC 1 5 1 0.04 >>1 PC
Notes.
1.  NC - No correlation, PC - Very poor correlation, not quantified, NA - Not analyzed, ID - Insufficient data, DL - Detection limit data





TABLE 4-2
MINE DOYON HISTORICAL DATA - CORRELATION (PEARSON R) MATRIX

FOR VARIABLES USED IN MULTIPLE REGRESSION

.Fe (Fe++ + Fe-)

PH
-0.747

Acidity Sulphate

0 . 8 6 7 0.861

PH 1.000

Acidity -0.837 1.000

Sulphate -0.811 0.966 1.000



TABLE 4-3
LARGE CINOLA DATA SET - CORRELATION (PEARSON R) MATRIX

PH

Conductivity

Sulphate

Ca

Fe

PH

1.000

-0.766

-0.747

-0.347

-0.893

Conductivity

1.000

0.958

0.787

0.916

Sulphate

1.000

0.820

0.896

Ca

1.000

0.572



TABLE 4-4
LARGE CINOLA DATA SET - LOADINGS OF ORIGINAL VARIABLES ON

FIRST TWO PRINCIPAL COMPONENTS (PC)

Variable

Conductivity

Sulphate

Fe

PH

Ca

Loadings (R)

PC1 PC2

0.981 0.071

0.978 0.121

0.951 -0.248

-0.834 0.517

0.773 0.619

NOTE: IR120.500 shown in bold.





TABLE 4-6
SMALL CINOLA DATA SET - LOADINGS OF ORIGINAL VARIABLES ON

FIRST TWO PRINCIPAL COMPONENTS (PC)

Variable Loadings (R)

PC1 PC2

Zn 0.975 0.079

As 0.945 -0.22 1

c u 0.943 -0.288

Al 0.914 -0.100

Fe 0.891 -0.399

Mn 0.847 0 . 5 1 4

Ca 0.825 0.504

NOTE: (R 120.500 shown in bold.



TABLE 4-7
SMALL CINOLA DATA SET - CORRELATION (PEARSON R) MATRIX

FOR PC1 AND PREDICTOR VARIABLES

PC1

PC2

PH

Conductivity

Sulphate

PH

-0.73 1

0.585

1.000

-0.727

-0.679

Conductivity

0.936

-0.064

1.000

0.956

Sulphate

0.979

0.050

1.000



TABLE 4-8
SULLIVAN DATA SET - CORRELATION (PEARSON R) MATRIX

B a

Ba

1.000

Cd cu Fe Ni Pb Sr

Cd

Cu

-0.241 1.000

-0.350 0.889 1 .ooo

Fe -0.174 0.467 0.650 1.000

Ni -0.358 0.872 0.873 0.511 1.000

Pb -0.219 0.697 0.713 0.467 0.648 1 .OOo

Sr 0.257 0.631 0.495 0.220 0.624 0.318 1.000
Zfl -0.226 0.939 0.847 0.440 0.809 0.647 0.542



TABLE 4-9
SULLIVAN DATA SET - LOADINGS OF ORIGINAL VARIABLES ON

FIRST TWO PRINCIPAL COMPONENTS (PC)

Ba -0.304 0.857

NOTE: IR110.500 shown in bold.



TABLE 4-10
SULLIVAN DATA SET - CORRELATION (PEARSON R) MATRIX

FOR PC1 AND PREDICTOR VARIABLES

PH Conductivity Sulphate

PC1 -0.863 0.791 0.816

PH 1.000

Conductivity -0.543 1.000

Sulphate -0.586 0.923 1.000
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Figure 3-19
Comparison of pH vs Fe and Al Relationships
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Figure 3-20
Comparison of pH vs Cu, Zn and Pb Relationships



Note: r is the correlation coefficient

(a) SO4 vs Ca with primarily calcite dissolution
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Figure 3-21
Predicted Relationships
Sulphate vs Ca and Al.
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Figure 3-22
Sulphate vs. Aluminum
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Figure 3-23
Sulphate vs Calcium
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Figure 3-24
Sulphate vs. Copper
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Figure 3-25
Sulphate vs. Iron
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Figure 3-26
Sulphate vs. Magnesium
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Figure 4-1
Eskay Creek Mine

SPLOM: pH, sulphate, Mg
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Figure 4-4
Cinola Gold Project

Small data set
SPLOM: pH, conductivity, sulphate, PCl, PC2
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a) Fe vs pH
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Figure 4-6
Cinola Gold Project (Pads 24)

Fe vs pH, conductivity
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Cinola Gold Project (Pads 2-4)
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Fe vs conductivity: residual plots
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Cinola Gold Project
PC plots for large data set
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Figure 4-14
Cinola Gold Project

Small data set
SPLOM: pH, conductivity, sulphate, PCl, PC2
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Figure 4-16
Sullivan Mine

SPLOM: pH, conductivity, sulphate, PCl, PC2
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APPENDIX A

RAW DATA - VANGORDA



Max 8.02 17.00 3900.00 15.00 370.00 7700.00 5270.00 18.QO 277.00
Min 8.20 0.00 122.00 5.00 4.00 5.00 2400.00 0.05 61.60

Mean 7.30 4.71 1404.41 8.83 129.67 266.85 3618.57 3.66 161.28
Count 23 15 27 6 6 33 7 5 26



NH3 HARD AI As AU B Ba Be Bi

05/07/91 I v21 0.59 I I I 0.050 I

I I
I I

I

0 . 3 6  <O.WO~ <0.02
0.09 <O.OOO~ <o.o

0.040 4.11 <O.Wj <o.oI

02mP5 v21 1.83 0.07 I
w25/95 v21 0.590 250 0.39 0.0274 <O.d 0.033 <O.W( co.02
04/25/95 v21 0.59 250 0.0274 I
05/o<m5 I v21 8.36 ( 2150 1 0.32 1 0.0019 1 I <O.d o.oqO I <O.OO~ <o.o

Max 29.80 2720.00 96.40 1.00 0.00 0.04 4.11 0.00 0.00
Min 0.59 250.00 0.05 0.00 0.00 0.00 0.01 0.00 0.00

Mean 8.24 1378.00 8.86 0.07 0.00 0.01 0.33 0.00 0.00
Count 33 13 15 36 1 3 15 15 15



Max 511.00 0.20 4.40 0.59 3.81 1.33 0.00 258.00 4.00
Min 88.30 0.00 0.00 0.00 0.11 0.00 0.00 0.02 0.00

Mean 354.09 0.08 0.55 0.04 1.68 0.07 0.00 18.71 2.00
COUnt 15 15 8 15 15 37 7 33 2



so4 La Li M n M O Ni P Pb

097
fj cO.0'

I 0.0711 3071 82.5 1 co.004 6.46 1 <O.Ofj ~0.0

09/25/91 v21 255.0 0.022
10/11/91 v21 201.0 0.005
11/14/91 v21 431.0 0.039
12/18/91 I v21 I 371.01
01/20/921 1621 I I

I 0.153
v21 I 0.236

1 01/20/921 v21 1671
1751 I 0.2361

_ I1 0.6701
6 v21 289 20.6 2.45 c0.w 0.22 <0.04 co.0

04/25/95 v21 289 co.0
05/09/95 v21 243 56.4 <0.004 3.82 0.40 <o.o

Max 3120.00 0.00 0.08 339.90 82.50 0.05 6.46 3.03 14.60

1 07/20/921 v21 3021 1131 8.41 1 0.C

1 02/01/951 v21 472 l I
04/25/s ’

Min 109.00 0.00 0.00 20.60 2.45 0.00 0.14 0.00 0.00
Mean 731.67 0.00 0.05 179.04 33.73 0.00 2.79 0.36 0.52
Count 33 1 11 16 18 16 16 16 37



K S Sb Se Si Sn Sr AQ Na
mg/L mg/L mg/L

1.39 <O.OO~ 12.5
1.31 <O.OO~ 11.0
1.29 <O.OO~ 10.9
1.24 <O.OO~ 7.60
1.53 0.001~ 15.7
1.55 15.8
1.36 IIK8

14.5
05/09/951 Drain3 1~ 121 780 1 <O.Od

1.421
<O.Od 8.371

0.003 1
<O.O( 1.37 I <0.001( 12.2

06i/10/95 1 Drain3 I I <0.021 5.861 I 1.9361 <O.oo~.-_ .-01/07/91  I _ _- .v21 I I
I

I I I 151

--I02/26/91  1 V2l
03/20/91 I

I I 77
v21 I I

04/16/91 1 v21 ! ! !

06/11/91 I V2l
07/03/91  I

I
v21 I I

05/07/91  I V2l I

08/15/9l 1 v21
09/03/91  I

I ~~ I
v21 I

09/25/91 v21
IO/II/91 v21
11/14/91 v21
12/18/91 v21 1 I
01/20/92 v21 I
01/20/92 V2l
02/18/921 v21
03/18/92 1 v21 I

0.62 cO.0' 7.1
I T

ww92 I
06/15/92!

1 <o.ozj <o.ozjiZF[_

1 www v21 1.51 62.5
oa5/95 I v21 I
05/09/95  I v21 I 13.oI 790

Max. 19.70 950.0(

<o.o3<O.OOO

2 . 0

7.5
I 0.07 0.00 16.30 0.06 1.94 0.02 15.80

Mill 1.50 62.50 0.00 0.00 2.00 0.00 0.22 0.00 1.20
Mean 11.97 584.38 0.01 0.00 6.71 0.01 1.25 0.00 11.15
Count 15 12 14 16 15 12 18 16 16



01/07/91 v21 0.276
02/26/91 v21 0.231
03/20/91 v21 0.203

12/18/91 1 v21
01/20/921 v21

1 01/31/951 v21 I I 15.5 I
02/01/95 v21 15.5
04l25b35 v21 <o.oz 0.012 <0.03 <0.003 7.71 <0.003
04/25/95 v21 7.71
05/09/95 v21 0.06 0.015 CO.03 <0.003 179 0.008

Max 0.06 0.36 0.00 0.00 0.00 0.23 0.00 342.00 0.11
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00
Mean 0.02 0.04 0.00 0.00 0.00 0.02 0.00 64.75 0.01
Count 3 16 11 3 11 16 1 37 14



NO3 NO2 Hydroxide Carbons Bicarbonate 1
CaC03I CaC03cg CaCO& /

i Drain 2 <2j <2(j
05/04/94 Drain 3 5

1:
<SC/ <5 77

08/09/94 Drain 3 <x
08/09/94 Drain 3
10/l l/94 Drain 3 8 <2fJ <Ej <5( 185
10/l l/94 Drain 3

<r 05/09/95 Drain 3 <4
/lOi95 I Drain 3 I I06,

01/07/91 I v21 I
02/25/91’ \ t-4 I I I I I

1
I VCI I I I ! ! I~-~~,

03/20/91 v21
04/18/91 v21

05/07/91 v21
05/l 1 I91 v21

107/03/91
08/15/91

09/03/91
09/25/91
10/l l/91

I I
v21
v21
\Ir)d

I V&I I I I I ! I

1 01/20/92 I v21 I I I

11/14/91 I v21 I
12/18/91 1

I
v21 I

01/20/92 ’ I I I - I I

02/l 8/92 v21
03/18/92 v21_
04/30/92 v21
08/l 5/92 v21
07/20/92

Max 10.00 0.78 0.00 0.00 258.00
Mill 0.00 0.00 0.00 0.00 77.W

Mean 3.33 0.09 0.00 0.00 173.00
Count 8 8 1 3 3



APPENDIX B

RAW DATA - CINOLA



ALLPAD.XLS

0 0 . 0 5 0 0 4 0 . 0 0 1
I 0 0 . 0 5 0 0 0 0

8 8 . 1 0 9 3 1 4.71 1431 01 01 291 0 0 0 0 0 0
0 0 . 0 5 0 0 4.1 0 . 0 0 1

IPOl I 88.40161 01 01 01 1041 01 01 01 0 . 0 5 1 01 01 61 0.0011

1291 381 791 01 01 0.011 01 01 01

PO1 91.41641 4.11 1561 701 71 561 51 0.11 7.91 0.c

IPOl I 91.95341 4.11 1131 II 381 51 341 31 . 01 01 0.11 5.21 0.001l
PO1

I

92.04931 4.11 891 11 341 41 281 41 01 01 0.11 31 0.001 1
PO1 9 2 . 1 4 7 5 3 . 7 8 8 1 3 3 1 2 2 8 3 0 0 0.1 3 0 . 0 0 1
PO1 92.224 3.9 107 1 31 5 28 5 0 0 0.1 3.1 0.001
PO1 92.3279 3.9 114 1 54 8 36 1 0 0 0.1 4.4 0.001
PO2 87.1616 5.6 810
PO3 8 7 . 2 1 3 7 5 . 6 7 5 0 31 1001 01 01 01 01 Ol nl nnnl n.nn1

31 271 01 01 01 01 01 01 01 Ol

Page 1



ALLPAD.XLS

PO3 8 7 . 3 0 4 1 2 . 4 6 1 8 0 0 15851 4 0 5 0 5 5 0 0 0 0 . 0 6 0 0 0 0
PO3 8 7 . 3 4 2 5 2 . 5 4 9 5 0 0 6 4 6 2 3 5 6 0 6 0 6 0 0 0 0 0 0 0
PO3 8 7 . 3 6 4 4 3 4 3 0 0 0 8 3 3 3 5 4 2 0 7 3 2 0 0 0 . 0 6 0 0 3 1 2 1 0 . 9

Page 2



ALLPAD.XLS

Page 3



ALLPAD.XLS

PO4 8 7 . 9 5 9 1 2.61 25301 O/ 15331 9621 15121 01 0.051 2 . 7
PO4 8 7 . 9 9 4 5 1 2.41 26801 O/ 16971 13201 17001

391
o/ 01 01 O/ 01 0

PO4 8 8 . 3 0 3 3 2 . 5 2 3 5 0 0 1 0 5 0 8 3 5 1 0 5 0 0 0 . 0 5 2 . 9 4 0 1 4 . 8 1 9
PO4 8 8 . 3 3 8 8 2 . 6 2 4 6 0 0 1 1 1 0 8 6 0 1 1 2 0 0 0 3 . 7 0 0 0
PO4 8 8 . 4 0 1 6 0 0 0 4 4 0 0 0 0 0 0 . 1 5 0 0 8 5 1 9

12001 20001 01 0.051 01 351 4
1251 15751 01 01 01 01 01 0

PO4 8 8 . 4 1 5 3 2 . 4 4 6 2 0 0 5 1 9 8 4 1 0 0 5 2 4 0 0 0 4 4 0 0 0
PO4 8 8 . 4 7 4 2 . 7 3 6 8 0 0 2 8 0 0 2 9 5 0 3 6 8 0 0 0 . 1 1 2 0 . 5 0 6 3 8 . 3
PO4 8 8 . 5 1 5 1 1 . 6 4 4 3 0 0 3 9 0 0 3 4 2 0 4 5 2 0 0 0 2 4 0 0 0
PO4 8 8 . 5 5 3 4 1 01 01 0 3 5 5 0 0 0 0 0 . 1 4 0 0 9 4 1 2

241 01 01 01
01 0.181 301 01 1281 121

PO4 8 8 . 5 8 9 2 . 2 4 2 7 0 0 3 8 4 0 3 3 0 0 4 3 0 0 O/ 01
PO4 8 8 . 8 3 0 1 2 . 2 4 3 3 0 0 4 4 5 0 3 9 5 0 5 0 3 0
PO4 8 8 . 6 7 4 2 . 5 4 7 8 0 0 4 6 0 0 4 0 8 0 5 4 5 0 01 01
PO4 8 8 . 7 2 0 5 2 . 5 5 0 3 0 0 7 4 9 0 5 7 5 0 7 6 0 0 01 0.491
POA Si-.6R77 7 0 A16A 3395 A

PO4 9 2 . 1 4 7 5 2 . 9 9 3 0 1 2 5 2 2 3 8 2 8 4 11 0 0 0 . 1 4 . 4 0 . 0 4 2
PO4 9 2 . 2 2 4 2 . 6 9 5 6 1 2 5 3 1 4 8 2 8 6 11 0 0 0.1 4 . 3 0 . 0 5 1
PO4 9 2 . 3 2 7 9 2 . 5 1 7 2 3 1 3 6 6 7 4 0 9 4 4 1 4 0 0 0.1 7 . 3 0 . 1 1
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PAD
PO1
PO1

0 0 0 4 5 0 . 0 0 1 0 . 0 0 2 0 . 0 0 1 0 . 0 0 1
0 0 0 5 3 0 . 0 0 1 0 . 0 0 6 0 . 0 0 1 0 . 0 0 1
0 0 0 5 0 0 0 0 0

.O 0 0 4 0 0 0 0 0

136 0 . 0 0 1 0 . 0 0 1 01 0 . 1 9 1 2 . 5

051 0.001~ 0.001 1 O/ O] 0 . 1 2 1 3.81

IW.L”“, I I I ._ I I I I _. .
8 8 . 3 0 3 3 / 01 01 01 101 0 . 0 0 4 1 0 . 0 1 1 1 O.OOlI 0 . 0 0 2 1 o/ 01 0.081 0 . 4

. _.
PO1
PO1
PO1 8 8 . 3 3 8 8 0 0 0 1 0 0 0 0 0 0 0 0.1 0
PO1 8 8 . 4 0 1 6 0 0 0 0 2E-04 0 . 0 5 0 . 0 0 1 0 . 0 0 2 0 0 0 . 0 5 0 . 7 3
PO1 8 8 . 4 1 5 3 0 0 0 21 0 0 0 0 0 0 0.1 0

291 5E-041 01 01 0.031 1.21

0 . 0 2 5 )  0 . 0 0 4 1 01 0 . 0 8 1 1.581

.78631 01 01 1631 O( 0) 01. 0.11 01
0) 0 . 0 0 8 1 01 01 0.141 0

6.31 0.051 0.051 0 . 0 4 1  0 . 0 0 7 1 0.641 2 . 7 1  0 . 1 4 1  0 . 6 1 1

IPO2 8 7 . 2 1 3 7  1 01 01 01 861 0 . 0 0 5 1 0 . 141 0.001 I 0 .001 I 01 0.1 1 0.811
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IPAD IYEAR IB /BA IBE ICA ICD /CO /CR /CU IK /MT;  IFE IMN I

,001 1 2.241 01 3 8 . 6
01 01 01

2501
01 76Ol n

01 1801 O( o/ O/ 01 29501 0
1.31 0.221 2.71 01 01 18001 1 5

01 01 01 O( 1801 01
.0281 0.31 01 O/ 1751 0 . 9 2

01 01 01 01 2001 01
.037) 0.471 0) 0) 3551 1.31

0.131 0.931 01 01 9501 3.71
851 01 01 01 O/ 8751 0

01 0) 01 01 01 7501 0
.0131 0 . 5 9 1 0.121 0.761 01 01 5301 3 . 3

01 01 01 8501 01

01 01 01 38751 0
01 0) O( 0.721 01 01 5521 0

3.041  0 . 1 3 1 0.51 5.1 I 521 0 . 4 3 1

0.191  4.6Y) 01 40501 !

0 . 2 6 1  2.531 o( 10371 311
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PAD YEAR B BA BE CA CD CO CR CU K MG FE M N
PO3 8 7 . 4 0 0 0 4 3 8 0 0 0 0 0 0 2 0 0 0 0
PO3 8 7 . 4 4 2 6 0 0 0 4 5 0 0 0 0 0 0 0 3 0 0 0 0
PO3 8 7 . 4 7 5 4 0 0 0 4 5 0 0 . 1 7 3 . 5 0 . 4 3 . 5 0 0 3 0 0 0 3 7

8 7 . 5 1 3 7 1 01 01 o/ 4501 01 01 O/ O/
87.5515

~PI O/ 38001  01
0 0 0 460 0.18 4.4 0.4 4.4 0 0 3920 4 3

8 7 . 5 9 5 6 0 0 0 450 0 0 0 0 0 0 5200 0
8 7 . 6 2 8 4 0 0 0 504 0.37 4.5 0.34 4.7 0 0 5280I -44

PO3
PO3
PO3
PO3
PO3
PO3
PO3HiPO3
PO3
PO3
PO3
PO3
PO3EEPO3
PO3
PO3

87.6531 01 01 01 4401 01 01
8 7 . 6 8 8 5 0 0 0 3 9 5 0 0
8 7 . 7 0 4 9 0 0 0 3 8 0 0.21 4.5
8 7 . 7 2 6 8 0 0 0 3 5 0 0 0
8 7 . 7 8 4 2 0 0 0 3 2 5 0.06 2.5
87.8197 0 0 0 290 0 0
8 7 . 8 6 0 7 0 0 0 2 0 3  0 . 0 1 2 1 . 0 5
8 7 . 8 9 8 9 0 0 0 2 1 5 0 0
8 7 . 9 3 7 2 0 0 0 1 2 5 0 0

87.959 I 01 01 01 1201 0.0061 0.71
87.99451 01 01 01 991 01 01
B8.0464/ 01 01 01 1141 0 . 0 0 8 1 0.091

0 0 1250 12
0 0 1350 0
0 0 3 5 0 0
0 0 620 7.7
0 0 4 4 0 0
0 0 502 6.6--

PO3If=PO3
PO3

I 8 8 . 3 0 3 3 ) 0) O/ 155) 0.005j 0.781 0.091 0.631 O/ 0) 6251 9
8 8 . 3 3 8 8  1 0 ] 01 O/ 1601 01 01 01 O/ O/ 01 7501 0
8 8 . 4 0 1 6 0 0 0 0 0 . 0 2 0 . 9 5 0 . 2 3 1 . 1 8 0 0 1 6 1 0 1 0 . 9 ’
8 8 . 4 1 5 3 0 0 0 2 1 8 0 0 0 0 0 0 1 6 0 0 0

8 8 . 4 7 4 0 0 0 1 6 8 0 . 0 2 6 0 . 7 7 0 . 1 9 1 .Ol 0 0 1 3 2 5 8 . 2

PO3
PO3
PO3
PO3

PO3 8 8 . 7 2 0 5 0 0 170) 0 . 0 3 1 1 1.091 0.161 1.31 1 01 01 13501 1 3
PO3 8 8 . 7 4 2 5 0 0 01 3251 01 01 01 O/ 01 01 44751 0
PO3 8 8 . 7 8 6 3 0 0 01 5001 01 01 01 01 01 _I1 05or 0

9 0 . 6 8 2 2 ) 01 0) 01 1321 01 01 01 0.691 01 01 9591 0
91.92741 01 01 01 1141 01 01 01 0.071 01 731 5.501 0_ ..--.  .

i - - .. - 1 . 3 9
1

9 1 . 4 1 6 4 0 . 0 5 0 . 0 4 1 1 3 0 . 0 5 0.05j
---. I

-0 . 3 8 ) 0 . 5 ;i ;i; 2 . 4
9 1 . 4 8 4 9 1 0 . 0 5 0 . 0 4 1 1 2 0 . 0 5 1 . 9 0.041 0.41 I 0 . 5 2 9 8 9 6 3.1

PO3
PO3
PO3
PO3

I 91.65471 1 I 0.051 0.041 961 0 . 0 5 1 2.41 0.111 0.511 0.5 I 351 11501 3.91

PO4 87.41 01 01 2271 01 01 0) 01 01 6.41 0
PO4 8 7 . 4 4 2 6 ) 01 01 01 6001 01 01 01 01 O( 01 651 0

IPO4 8 7 . 4 7 5 4 1 01 01 01 4 5 0 1  0 . 2 1 I 41 0.11 2.41 01 01 2501 261
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PO4
PO4
PO4
PO4
PO4kPO4
PO4

88.071 j O/ O/ 01 461 01
8 8 . 1 0 9 3 1

i 88.1311 88.1885 1 I O/  01 01 01 O/  01 781 601 0 . 0 ;

I 0 0 0 0
0 01 0 -01 0 . 0 0 3 0 . 1 8 0 . 0 2 8 0 . 5 2
0 01 0 481 0 0 0 0 _

I PO4 I 8 8 . 3 0 3 3 1 O/ 01 01 451 0.004j 0.121 0 . 0 1 8 1 0.51 O/ 2361 0 . 5 1
8 8 . 3 3 8 8 1 01 01 01 451 01 01 o/ O/ o/ 01 2751PO4

PO4
PO4
PO4
PO4

-
C

8 8 . 4 0 1 6 0 0 0 0 0 . 0 3 2 0 . 4 5 0 . 1 0 . 9 2 0 0 1 4 5 0 2 . 2
8 8 . 4 1 5 3 0 0 0 1 1 0 0 0 0. 0 0 0 1 4 5 0 C

8 8 . 4 7 4 0 0 0 6 3 0 . 0 1 9 0 . 3 5 0 . 0 9 0 . 7 4 0 0 1 0 5 0 1 . 8 7
8 8 . 5 1 5 1 0 0 0 7 8 0 0 0 0 0 0 1 1 5 0 C

0 0 . 0 1 7 0 . 6 7 0.1 0 . 8 6 0 0 590 2.2PO4 8 8 . 5 5 3 4 0 0 0 - _._.. , _._.  , ___, ____, _/ _, ___, -.-
PO4 8 8 . 5 8 9 0 0 0 8 2 01 01 01 01 01 01 11251 C

8 8 . 6 3 0 1 0 0 0 1 0 0 0.01PO4
PO4
PO4
PO4

0

*
0
0

16 0 . 3 6 0 . 0 7 0 . 8 6 0 0 1 3 5 0 3.1
9 8 0 0 0 0 0 0 1 5 5 0 C

1 2 5 0 . 0 1 5 0 . 7 9 0 . 1 2 1 . 7 4 0 0 2 5 0 0 4 . 7
5 3 0 0 0 0 . 8 1 0 0 9 4 6 C

I PO4 I 91.22741 01 01 01 9.71 01 01 01 0.091 01 21 841  C

PO4
PO4

9 2 . 2 2 4 1 1
9 2 . 3 2 7 9  I 1

0 . 0 5
0 . 0 5
0 . 0 5
0 . 0 5
0 . 0 5!0 . 0 5
0 . 0 5
0 . 0 5
0 . 0 5
0 . 0 5
0 . 0 5

0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5
0 . 5z0 . 5
0 . 5
0 . 5

0 . 7
0 . 5
1.1fl1.1

1
1 . 5
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PAD
PO1
PO1

YEAR MO NA NI PB SB /SE ISN ISI
8 7 . 1 4 2 5 0 0 0 . 0 0 3 0 . 0 0 2
8 7 . 1 5 0 7 0 0 0 0

IPOl I 8 7 . 1 6 1 6 1 O/ 01 01 01 01

-.
PO1
PO1EEPO1
PO1
PO1

/_
PO1
PO1

0
+0

0 . 1 2
030 . 1 4
0

0 0  0 . 0 4 1  0 . 0 0 1  0 . 0 0 2 0
0 0 0 0 0 0
0 0  0 . 0 3 7  0 . 0 0 1  0 . 0 0 2 0
0 0 0 0 0 0

i ~~ 87.9591 01 O/ 0 . 0 1 6 1  O.OOli  0 . 0 0 2 1 01 01 01 0 . 1 8 1

PO1
PO1
PO1
PO1
PO1
PO1
PO1
PO1
PO1
PO1
PO1
PO1
PO1

0 0 0 . 0 4  0 . 0 0 1  0 . 0 0 2 0 0 0 0 0 0 . 2 7
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0
0

g

0
0
0
0

0
0
0
0z0
0
0
0

0z0
0

0 . 1 3
0
030 . 0 2
0

0 . 1 5
0

. _. 8 8 . 3 0 3 3 1 0.021 0.001~ 0 . 0 0 2 1 01 O/ 01 01 01 0.1
PO1 8 8 . 3 3 8 8 1 01 01 01 01 01 01 01 01 O/ 01 0

8 8 . 6 7 4 1 01 01 O/ O/
8 8 . 7 2 0 5 1 01 01 0 . 0 2 9 1 0.001 1 0 . 0 0 2 1 01 01 01 01 01 0.161

PO1
PO1

IPOl I 8 8 . 7 4 2 5  1 _cJ] 01 01 01 01 01 01 01 01 01 01
PO1 8 8 . 7 8 6 3 0 0 0 0 0 0 0 0 0 0 0
PO1 9 0 . 6 8 2 2 0 0 0 0 0. 0 0 0 0 0 0 . 3 1
PO1 9 1 . 2 2 7 4 0 0 0 0 0 0 . 0 0 1 0 0 0 0 0 . 0 9~~

91.4164l 0 . 0 4 1 2 . 7 1  0 . 0 5 1 0.1 I 0.1 I 0.001 I 0 . 5 1  0 . 0 4 1 0 . 2 1  0 . 0 5 1 0 . 1 1 1

9i.8961  0 . 0 4 1 1 . 9 1  0.041 0 . 1  I 0.1 I 0.001 I 0 . 5 1  0 . 0 4 1 0.21 0 . 0 5 1  0 . 0 7 3 1I -..---

PO1 9 1 . 9 5 3 4 1 0.041 4.31 0.041 0.11 0.1 I 0 . 0 0 1 I 0.51 0.041 0.21 0.051 0 . 0 7
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EAR 1~0 (NA [NI IPB
8 7 . 2 8 2 2 1 O/ O[ 0.1 1 0.0061 0

Pn7 I 87 5519i 01 01 I.911 0

Pn7 I R7 R7RA/ nl 01 Xl I 0.031

8 7 . 6 8 8 5  1 o/ 01 01 01 01

8 7 . 7 2 6 8 1 o/ 01 01 O/ 01 01 01 0
8 7 . 7 8 4 2 1 01 O/ 0.751 0 . 0 0 4 1 0 . 1 1 1 01 01 01 01 01 8 . 5

PO2 8 8 . 3 3 8 8 1 O[ 01 0 0 0 0 0 0 0
PO2 .012 0 0 0 0 0 1.91
m7 0 0 0 0 0 0 0

.009 0 0 0 0 0 1 . 5 5

8 7 . 8 6 0 7  j O/ 0.161  0

87.9372 I 01 01 01 01 0) 01

8 8 . 1 0 9 3 1 01 01 01 o/ 01 01 O/ 0
I EM.1311  I 01 01 0.051 0.001 I 0 . 0 0 2 1 01 01 01 01 01 0 . 7 2

88.589 I 01 01 01 01 01

8 8 . 6 7 4 1 01 o/ O/ O/ 01 01

IPO2
IPO2

8 8 . 7 8 6 3  1 01 01 01 01 01 01 O]
9 0 . 6 8 2 2  1 .Ol 01 01 01 01 O/ 01 01 1.61

‘07 9 1 . 4 1 6 4 1  0 . 0 4 1 3 . 6 1  0 . 0 5 1 0.1 I 0.11 0.006 1 0 . 5 1  0 . 0 4 1 0 . 2 1  0 . 0 5 1

lPO2 I 92.3279 I 0.041 3 . 5 1  0 . 0 4 1 0.1 I 0.1 I 0.005 I 0.51
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IPAD IYEAR 1~0 JNA  ~NI IPB ISB ISE /SN ISR ITI Iv IZN I
PO3 8 7 . 4 0 0 0 0 0 0 0 0 0 0 0
PO3 8 7 . 4 4 2 6 0 0 0 0 0 0 0 0 0 0 0
PO3 8 7 . 4 7 5 4 0 0 3 . 0 9 0 . 1 4 0 . 0 6 2 0 0 0 0 0 2 6

8 7 . 5 1 3 7 0 0 0 0 0 0 0 0 0 0 0PO3
PO3
PO3
PO3

8 7 . 5 5 1 9 0 0 3 . 5 5 0 . 0 1 1 0 . 0 3 0 0 0 0 0 31
8 7 . 5 9 5 6 0 0 0 0 0 0 0 0 0 0 0
8 7 . 6 2 8 4 0 0 3 . 8 0 . 0 2 1 0 . 0 5 0 0 0 0 0 3 2

8 7 . 6 5 3 1 O/ o/ 01 01 01

PO3
PO3

_ cPO3
PO3

0 0 0 0 0 0 0 0
0 0 0 . 5  0 . 0 0 2  0 . 0 0 5 0 0 0
0 0 0 0 0 0 0 0
0 0 0 . 4 4  0 . 0 0 2  0 . 0 0 6 0 0 0PO3 8 8 . 2 2 4 1

PO3 88.265 1
PO3kPO3
PO3
PO3

t==
PO3
PO3

I 8 8 . 4 1 5 3  1

--
PO3
PO3
PO3
PO3

8 8 . 5 5 3 4
8 8 . 5 8 9

8 8 . 6 3 0 1
8 8 . 6 7 4

0.351 0 . 0 1 4 1  0 . 0 0 6 1 01

_-
PO3
PO3EEPO3
PO3

9 0 . 6 8 2 2  1 01 01 01 01 01 0 0 0 0 1 . 6
0 0 0 0 1

0 . 5 0.15 0.2 0.05 1.2
0 . 5 0 . 1 7 0 . 2 0 . 0 5 1 . 6
0 . 5 0 . 1 9 0 . 2 0 . 2 1 . 8
0 . 5 0 . 1 5 0 . 2 0 . 1 5 ’ 1 . 2
0 . 5 0 . 1 1 0 . 2 0 . 0 5 0 . 8 90.046 1

0.041 3 . 8 1  0 . 0 8 1 0.11 0 . 1 1  0.0091 0

I 01 01 01

87.44261 01 O/ 01 01 01 01 01 01 01 01 0
PO4 8 7 . 4 7 5 4 1 01 01 2.881 0 . 0 0 9 1 0.008/ 01 01 01 01 01 2 3
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W A I 87.8607 I 01 O/ 0 . 3 8 1  0 . 0 0 2 1  0 . 0 3 2 1 01 01 01 01 5.71
030

0 . 0 0 1 1  0.013j 01 O/ 01 01 2.71
0 0430 0
0 0

0 0E&t0 0
0 0

0I2.49
0

IPO4 I 88.1093/  01 01 01 01 01 01 01 01
IPO4 8 8 . 1 3 1 1  j 01 o/ 0.131  0 . 0 0 1 ~  0 . 0 1 7 1 01
PO4 8 8 . 1 8 8 5 0 0 0 0 0 0
PO4 8 8 . 2 2 4 0 0 0 . 1 3 0 . 0 0 1 0 . 0 2 2 0
PO4 8 8 . 2 8 5 , 0 0 0 0 0 0

0
030
0

0
0
0
0

0
0E00 0 1.9

0 0$30 1 . 7
0 0

71 0.001 I 0.01 / O/ O/ 01 01 01 0 . 8 2 1PO4 8 8 . 3 0 3 3  / 01 01 O.Oi
PO4 8 8 . 3 3 8 8 1 01 01 O/ 01 O/ O/ o/A ol

IPOA I 88.40161 01 01 0.22$1 0 . 0 0 4 1  0.031 O/ 01 01 01 01 3.51
&ii 8 8 . 4 1 5 3 0 0 0 0 0 0
PO4 8 8 . 4 7 4 0 0 0 . 2 0 . 0 0 2 0 . 0 2 2 0
PO4 8 8 . 5 1 5 1 0 0 0 0 0 0
PO4 8 8 . 5 5 3 4 0 0 0 . 6 2 0 . 0 4 9 0 . 0 3 1 0

0
030
0

010
050
0

0d=0
0

I 88.5891 01 01 01 01 01 01 01 01 01 01 01t PO4
PO4
PO4
PO4

8 8 . 6 3 0 1 0 0 0 . 3 4 0.004[ 0 . 0 2 8 0 0 0 0 0 3 . 8
8 8 . 6 7 4 0 0 0 01 0 0 0 0 0 0 0

88:7205 0 0 0 . 6 2 0.0071 0 . 0 4 3 0 0 0 0 0 6 . 9
go.__--,  _, _,.6877 I 01 01 01 01 01 O/ 01 01 01 01 2 . 7

01 0.009/ 01 01 01 o] 0 . 3

1.81 0 . 0 4 1 0.1 I 0.1 I 0 . 0 0 9 1 0 . 5 1  0 . 0 4 1 0 . 2 1  0 . 0 5 1  0 . 1 5 1
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TABLE 3
YTIC-ULTS FORWIZLLS COlLARED WITMN LOWER MINE YARD WASTE ROCK DUMPS

Site Date As Cd Ca c u Fe Pb Mg Ag Zn PH
Total Total

Acidity Alkalinity
Sulphate

92AA2 Aug-92 0.002 0.006 22.1 0.005 0.16 0.005 6.8 0.02 0.36
92AA2 Jun-93 <O.OOl 0.005 16.7 0.002 <0.03 0.002 4.9 co.03 0.18
92s Aug-92 ~0.001 21.2 40.7 378. 29000. 0.02 4210. 5840.
92s Mar-93 1. 15.6 350. 348. 35500. 0.01 3320. <0.03 4350.

’92s Jun-93 0.011 22.3 404. 362. 3160. 0.011 3550. 3. 5690.
92T2 Aug-92 ~0.001 0.023 204. 0.002 0.09 0.003 76.4 0.02 7.69
92T-2 Mar-93 <O.OOl 0.013 139. <O.OOl 0.036 <O.OOl 50.2 <0.03 3.32
p2l-2 Jun-93 <O.OOl 0.019 134. <O.OOl <0.03 <O.OOl 47.7 co.03 4.53
Notes:
1. All metal concentrations in mg/L.  Metals determined on 0.45 um filtered water. Other parameters on unfiltered water.
2. “-”  indicates no analysis.

I

7.43 4.4 42.1 51.1
7.19 14.7 44.4 30.
1.85 99400. 0. 4450.
2.13 102000. 117000.
2.36 89700. 2.5 140000.
7.47 27. 303. 1020.
8.1 266. 400.
6.95 103. 260. 390.



TABLE4
S DOWNGRADIENT OF LOWER MINE YARD WASW ROCK DUMPS

Site Date As Cd Ca CU Fe Pb Mg Ag Zn PH
Total Total

Acidity Alkalinity Sulphate

92CC2 Aug-92 <O.OOl 0.01 27.8 0.007 0.05 <O.OOl 10.9 0.02 4.33 5.69 16. 6. 123.
92CC2 Mar-93 <O.OOl 0.005 13.9 0.009 0.03 0.003 6.22 <0.03 2.52 4.69 2. 59.
92CC2 Jun-93 <O.OOl 0.016 20.5 0.018 <0.03 0.002 10.7 <0.03 4.7 5.21 27.6 5.9 104.
92DD Aug-92 ~0.001 0.002 10.1 0.003 0.05 <O.OOl 3.73 0.02 0.69 5.99 32. 10.9 40.9
92DD Mar-93 <O.OOl 0.002 7.77 0.004 0.079 0.003 2.92 <0.03 0.94 6.75 32. 28.
92DD Jun-93 0.001 0.0007 2.04 0.007 0.033 0.001 0.8 <0.03 0.2 6.81 5.5 13.8 9.
92EE2 Aug-92 0.001 0.041 83.9 0.065 0.04 0.003 42.3 0.02 29.6 4.59 68. 0.1 420.
92EE2 Mar-93 ~0.001 0.045 76. 0.053 0.036 0.006 34.7 <0.03 20.6 4.72 2. 388.
92EE2 Jun-93 <O.OOl 0.025 49.4 0.051 co.03 0.002 24.6 <0.03 18.7 4.39 73. 2.5 280.
92V Aug-92 <O.OOl 1.96 573. 0.8 0.28 2.23 315. 0.02 338. 4.98 46. 0. 3580.
92V Mar-93 0.022 1.42 459. 0.58 0.13 1.31 264. <0.03 242. 3.94 1170. 3200.
92V Jun-93 0.005 1 1.27 408. 0.5 0.24 1.22 229. <0.03 238. 3.87 947. 2.5 2870.
92W Aug-92 <O.OOl 0.019 167. 0.013 11.6 0.004 69.3 0.02 8.89 5. 66. 0.1 71.6
92W Mar-93 <O.OOl 0.0001 79.1 <O.OOl 2.04 0.002 23.3 co.03 4.78 6.28 35. 400.
92w Jun-93 <O.OOl 0.037 99.3 0.015 1.76 0.028 40.5 <0.03 24.7 4.5 170. 2.5 640.
92w Jun-93 ~0.001 0.036 99.4 0.017 1.76 0.032 40.6 <0.03 24.6 4.5 194. 2.5 520.
92X1 Aug-92 0.02 0.67 144. 2.65 88.7 0.014 356. 0.02 296. 2.77 2570. 0. 5202.
92X1 Mar-93 0.01 0.43 149. 1.71 37.1 0.015 277. 0.038 160. 2.73 2920. 3600.
92x1 Jun-93 0.011 0.48 166. 2.3 47.1 0.14 324. <0.03 186. 2.74 2380. 2.5 4200.
92Y Aug-92 <O.OOl 0.077 124. 0.26 1.29 0.13 107. 0.02 39.2 3.09 338. 0. 1060.
92Y Mar-93 ~0.001 0.043 97.4 0.13 0.29 0.001 74.5 <0.03 21.4 3.6 213. 28.
92Y Jun-93 <O.OOl 0.063 75. 0.13 0.31 0.077 44.2 co.03 21.8 3.42 184. 2.5. 620.
93HH Jun-93 0.044 0.44 452. 1.99 176. 0.16 368. 0.3 222. 2.47 2050. 2.5 4800.
93H Jun-93 0.01 0.7 152. 1.5 0.34 0.036 277. 0.049 410. 3.55 2470. 2.5 3800.
93JJ Jun-93 0.0005 0.06 68.1 0.11 0.015 0.005 37.5 0.05 32.2 4.3 138. 2.5 420.
93KK Jun-93 0.01 0.32 174. 0.9 0.41 0.045 174. 0.015 144. 3.49 959. 2.5 2260.
93KK Jun-93 0.01 0.33 175. 0.93 0.41 0.04 175. 0.015 145. 3.59 1090. 2.5 2390.
Notes:
1. All metal concentrations in mg/L.  Metals determined on 0.45 um filtered water. Other parameters on unfiltered water.
2. “-” indicates no analysis.



TABLE 5
RESULTS FOR WATER FROM EPS AND SUMPS(DIS I SOLVED&lETALS)

Site Date As Cd Ca CU Fe Pb Mg Ag Zn PH
Total Total

Acidity Alkalinity Sulphate

MY13A Aug-92 0.001 0.02 25.8 0.15 9.22 0.17 14.1 0.02 7.89 2.84 164. 0. 251.
MYl3A Mar-93 <O.OOl 0.014 16.4 0.1 2.55 0.091 8.66 co.03 4.22 3.78 59. 140.
MY13A Jun-93 <O.OOl 0.022 15.8 0.087 6.48 0.099 8.86 co.03 6.96 3.46 75.6 2.5 156.
MY13B Aug-92 0.002 0.35 76.8 1.31 103. 0.2 178. 0.02 157. 2.53 240. 0. 2900.
MY13B Mar-93 <O.OOl 0.067 21. 0.28 11.8 0.13 45.4 <0.03 32.5 3.07 317. 700.
MY13B Jun-93 eO.001 0.036 10.2 0.16 7.69 0.12 20.6 <0.03 15.5 3.12 229. 2.5 340.

MY14 Aug-92 <O.OOl 0.0005 86.9 0.002 0.02 <O.OOl 43.4 0.02 0.31 8.29 0. 242. 140.
MY14K Mar-93 <O.OOl 0.0003 20.9 <O.OOl <0.03 <O.OOl 6.94 <0.03 0.075 7.79 68. 19.
MY14 Jun-93 ~0.001 0.0007 100. 0.002 <0.03 0.001 51.4 <0.03 0.17 8.3 2.5 269. 160.
MY14 Jun-93 <O.OOl 0.0007 101. 0.002 <0.03 0.001 51.5 <0.03 0.17 8.08 8.5 270. 170.
MY18 Aug-92 0.006 0.0005 10.9 0.008 6.85 0.001 2.72 0.02 0.038 6.66 6. 46.2 1.
MY18 Mar-93 0.001 0.0001 9.65 <O.OOl 1.39 <O.OOl 3.1 <0.03 0.005 7.86 44. 1.

MY18 Jun-93 0.001 0.0001 9.32 0.002 2.13 0.001 2.46 <0.03 0.005 7.14 11.1 44.4 0.5
Notes:
1. All metal concentrations in mg/L.  Metals determined on 0.45 um filtered water. Other parameters on unfiltered water,
2. “-‘I indicates no analysis.



TABLE 6
ANA-L RESULTS FOR MARK CREEK WATER (DISSOLVED METALS4

Site Date As Cd Ca CU Fe Pb Mg Ag Zn PJ-J
Total

Acidity
Total

Alkalinity Sulphate

MY11 Aug-92 <O.OOl 0.0005 6.14 0.002 0.09 40.001 1.54 0.02 0.032 6.87 4. 25.2 4.8
MY11 Mar-93 <O.OOl 0.0001 6.74 <O.OOl 0.083 <O.OOl 2.26 <0.03 0.005 7.46 27. 7.
MY11 Jun-93 ~0.001 0.0001 2.31 <O.OOl 0.039 <O.OOl 0.59 co.03 0.048 6.61 2.5 9.9 5.
MY12 Aug-92 0.001 0.0005 6.7 0.005 0.29 0.005 1.66 0.02 0.071 6.94 4. 24.2 6.4
MY12 Mar-93 <O.OOl 0.0005 8.45 <O.OOl 0.22 0.005 2.52 <0.03 0.01 7.44 32. 13.
MY12 Jun-93 <O.OOl 0.0001 2.44 <O.OOl 0.1 0.002 0.68 <0.03 0.005 6.82 2.5 9.9 3.
MY15 Aug-92 co.061 0.0005 7.1 0.002 0.13 0.005 1.95 0.02 0.083 6.61 8. 22.1 7.3
MY15 Mar-93 <O.OOl 0.0003 8.32 <O.Odl 0.15 0.004 2.7 <0.03 0.005 6.98 30. 12.
MY15 Jun-93 <O.OOl 0.0001 2.19 <O.OOl 0.052 0.002 0.62 <0.03 0.005 6.86 2.5 10.9 4.
MY16 Aug-92 <O.OOl 0.008 11.7 0.013 0.03 0.004 6.22 0.02 4.77 7.04 14. 73.6 62.3
MY16 Mar-93 ~0.001 0.002 11.2 0.001 co.03 <O.OOl 4.68 <0.03 1.23 7.13 27. 33.
MY16 Jun-93 <O.OOl 0.0004 2.96 0.006 0.19 0.004 0.85 <0.03 0.18 6.19 10. 10. 9.
Notes:
1. All metal concentrations in mg/L. Metals determined on 0.45 um filtered water. Other parameters on unfiltered water.
2. “-”  indicates no analysis.



APPENDIX D

RAW DATA - DOYON



STATION D-391 (EAST)
STATION D-391 (EAST)
STATION D-391 (EAST)
STATION D-301 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-301 (EAST)
STAllON D-361 (EAST)
STATION D-301 (EAST)
STATION D-301 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-301 (EASq
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-301 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-301 (EAST)
STATION D-301 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-301 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-361 (EAST)
STATION D-362
STATION D-362
STATION D-362
STATION D-362
STATION D-362
STATION D-362
STATION D-362
STATION D-a2
STATION D-362
STATION D-302
STATION D-362
STATION D-302
STATION D-302
STATION D-362
STATION D-362
STATION D-362
STATION D-362

HBTORICAL DATA FROM 1986 TO 1990
Date Acidity Fe SO4 PH

(m/d/y) (mg/l) (mgh) (mg/l)

cw29l~ 2.34
w26/66 33759 10050 2.29
06/16m 10600 2.36
07/26/= 42756 11300 57ooo 2.27
w25/66 2.36
09/29m 43759 12290 2.26
1 l/16/86 41700 100 2.35
04/Q/67 1026 2.16
05/04/67 974 2.44
wo1/67 15625 16000 2.51
07/20/67 46166 14669 41630 2.37
06/17/67 13200 75ooo 2.36
09/I S/67 2.36
lO/20/67 11900 7oooo 2.36
11/19/67 2.35
01/l l/66 525 60 1500 3.16
04/25/66 2.47
05/06/66 62500 2.43
ww66 46750 16700 2.56
05/i o/66 46900 14700 41000 2.51
05/l l/66 61250 16000 2.52
ww66 27500 2.61
06/21/66 46256 21500 2.54
07/l 9166 53756 19000 2.56
06/21/66 61250 1717 76000 2.55
10/26/66 sooo 2.79
ww69 25750 7400 2.49
06/05/%9 12670 3570 19000 2.64
07m69 14Ooo 2.31
10/30/69 11500 2.36
1 l/21/69 22050 5770 2.76
cw29/66 32 2 4.16
w26m 155 6 3.19
06/M/= 66 1200 2.69
07/26/= 1300 145 2400 2.66
w25/66 63 74 1900 2.94
w29m 96 1500 2.61
1 l/16/66 60 1100 3.12
$z 1650 101 163 14 3.20 3.66
~~ 217 251 25 30 3.15 2.67
07/29/67 952 124 1200 2.73
06/17/67 1070 103 1650 2.96
W/16/67 2622 776 1500 2.74
10/20/67 1403 3 1750 2.67
1 l/19/67 1065 1 1700 2.66
12/97/67 1464 2100 2.93

STATION D-362 01/l l/66 525 60 1500 3.16



HISTORICAL DATA FROM 1986 TO 1990
Date Acidity

(m/d/y) (mg/l)
Fe SO4 PH

(mg/l) (ma)

STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-302
STATION D-392
STATION D-302
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-392
STATION D-302
STATION D-392
STATION D-392
STATION D-302
STATION D-302
STATION D-302
STATION D-302
STATION D-302
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-309 (SOUTH)
STATION D-3l9 (SOUTH)
STATION D-309 (SOUTH)
STATION D-SO9 (SOUTH)

05/09/88
05/l o/88
05/l l/88
@WY88
mw88
07/19188
08/21/88
09/05/88
10/26/88
1 l/22/88
12/12/88
OlllSh39
07Kw89
03/13/89
04/24/89
05/15/39
06/05/89
07/09/69
10/30/89
1 l/21/89
04/09/90
05/07m
06/11/90
07/08/90
08/26/90
09/16/90
10/08/90
11/18/90
OS/IS/as
07l28m
08/25/86
w29/86
1 l/16/86
@W&7
ww87
06/01/87
07/20/87
08/l 7/87
WW87
10/20/87

zz
ww88
05/10/88
05/11/88
05/12/88
w21m

312

6700

39
52
42
44
43

1820
2430

2480
162

1130
10750
1442
9475
1633
822

3570
1850
1030
1600
1093

15500
12000
18250
16000
10000
10000
12000

2.63
3.94
3.03
3.25
3.25
3.29
2.68
2.58
3.10
2.51
2.81
3.07
2.66
2.82
2.74
2.72
2.71
2.79
2.85
2.31
2.41
2.74
2.79
2.69
2.36
2.61
2.37
2.63
2.58
2.43
2.62
2.86
2.62
2.72
2.99
2.65
2.83
2.75
2.87
2.81
2.57
2.66
2.63
2.63
2.66
2.75
2.71
2.66
2.66



HISTORICAL DATA FROM 1986 TO 1990
Date Acidity

(m/d/y) (mg/l)
Fe SO4 PH

(mg/l) (mg/l)

STATION D-309 (SOUTH)
STATION D-399 (SOUTH)
STATION D-399 (SOUTH)
STATION D-399 (SOUTH)
STATION D-399 (SOUTH)
STATION D-399 (SOUTH)
STATION D-399 (SOUM)
STATION D-399 (SOUTH)
STATION D-399 (SOUTH)
STATION D-399 (SOW)
STATION D-399 (SOUTH)

2.81
2.59
2.43
2.52
2.59
2.31
2.81
2.41
2.21
2.27
2.29



m pH M cond. TD8 FOlC4Pg mwl I&Z m$ 2 f$i rn$ mg/l m@l mgfl I$ mi $i m$ 4 mz mf$ *Z I$
Fo++ Fo+++

mV

BH-01-04soa asz&a7 4.11 280 7218 - 10318 2448 27 812 0.12 - 7 8 7 4 3 4 323 10.38 222 2ll 42.6 7.1 0.3 - 6022 8.1
BH-01-04~  04/2w7 4 . 0 6  170 4125 - 48o7 682 8 402 - 0.3 176 1tH 7 8.13 408 81 a7 1 0.33 26 2234 1
BH-Ol+#Bd  OM257 8.88 nd 3325 - 3710 327 1343 - - 181 ice 73
Bl+2l-O4~  O&22/87 5.4 - 46OO -

8.18 280 a4 ao - - - 1751 -
1SD 9138o wo - - 720 a76 34528tEo0237---aaJo-

BH-m*son lMw7 4 . 8 8  190 4232lm43 4 6 8 8 l l _ - - _ -
WI-2l-04SOll owlrm2 6.1 182 4872lm8o  4 8 0 0 - - - l ., - - __ -
m+2l-o4&n  oewm8 4 . 8 8 217 4624 lm6 8010 . ., _, , _
BH-ol-olsd  mm7 3M 2e2

- -
8812 4877aaB8 63 310 1.4 1483 1438 <O,l 18.8 833 88 80 1 0.33 12 3282 2

BH-2l-olsoll  o4f2a57 468 20. 3363 - loo8o 1432 12 288 0.3 Klo446 36 20.8357 23 22 1 027 12 2812 1
Et+Ol-OlSOI o8lllm7 33Loae8n - 52oe 1= 83308 2m 141 126 16.88 280 21 p_ - - 2341 -
~~-sn-o180ii  w2wu7 a= loooo - 8ooo8oo430 3100 1173 1925 21 820 s 17 - - - 8ooo -
Bti-el-olsod  lwsu7 en ss 2421 lm43 14278
BH-Ol-OlSCA

- - _ -
owl7102 a.42 321 lfTpl.o2m  27700

BH-01-01Bd  owl4m8 3.44 2 7 3
- - _ - _

18lQl l.o4oo 48KMo
BH-01-02sdl  osz6m7 22 4o2 aww -

_ _ _ -
108015 86lW 482? 847 1.23 - lwol 32.82 8012 0.41 4217 272 108.1 125 1.3 - 03611 286

WI-el-cegd  OrlpmT 2.18 417 3lo71 - 112535  88428 4413 638 - 56 17878 7w3 227o 0.41 4335 254 18 13 1.35 26 88746 23
Eli-01-028d owllm7 2.02 417 all22 - 1m w844 a274 al2 - - 18802 8100 772O 0.80 4012 241 8---85387-
BH-el-02sd  ow2w7 248 - a2wo - - 48000 4200
Rtl-2ld2soa  lcylrym

810 - - 13800 HO0 KOO 21 9800 m 10 - - - 77KJO -
2.31 322 31411 lma4 B - - - -

&I-el-c2sdl  08n8m8 2 . 3 7  401 aae7a 1.14oo 117410 - _ -
BH-Ql-08SOi

- _ _ - -
lQ3olm 272 264 44612 1.187 lWs46

El+-m-msd  uww87 2.3 382 a8230 - -
- _ -

lo6180 8828 346 lb0 - 21027 11887 lOOB0 0.3 7827 406 CWS 8.1 2 - lo8228 52.6
BH-el-c3soi  w 2.t8 417 37nl - 173180 lMo(ld 7287 872 - 78 26104 11271 la223 0.15 8727 319 6 24 1.73 08 lo4004 33
BH-Wl-ossd tmrl1m 2 a22 a8800 - lw835 lo2780 728l 814 - - 20942 2228 lo348 <O,l 8732 320 1 - - -1o8o43 -
al+m-aasom  oww7 2.22 - 4ocm - 8Kloo 78m 870 - -lMoo 11300 8100 10 8800 340 1 - - -1omoo -
eH-Ol-msd  lcyrrym 2 . 0 0  4o4 s788 1.117 134256
BH-wl-oasd  o8nw88 2 . 3 7  4 0 1

- _ _
36424 1.1400 18ou2o _ _ _ ^ _

BH-Ql-05sd  wl4tm 2.2! 393 = 1.143 12o8l5o _ - - _ - - -
WI-Ol-1mSdl 04B4i87 8 . 8 3  3 3 7 319 - = 14 <l 78 - <O,l 0.3 <O,l 0.3 8.6 18 02 6 <O,l 024 <O,l m
Mm as  230.822(#88.72

<a,!
OM m.32 30148.12 m48.36 276.48 0.14 4.88 2323.72 4o82.10  384307 83O2644.76  101.83 CW.22 1.88 027 724 42422.62 4.04

Mpdmum 863 417ma2m 1.10 191646m 1o8oo8m 01a8o.00  847.00 i.w 78.oo26194m  i1887m lae2am 28.008727m  408~) 846m 24130 2 m  28m1o8e28m e2.m
2 m om 31em om 0m 14m om om om 0.m o.ao om 0.00 om om om om om om om mm om

sbll%fdDuwbfl 1.34 199.ao16o6o21 0.63 70720.24 422o2232lcm.17 28o.ao 0.41 17.10 2375.53 4676.00  4032.28 8.81 2W8.38 132.53 117.33 8.O3 0.56 2o.20 43212.75 1 2 2 7
NUl!lbUd&!lp~ 22 28 22 28 28 17 17 22 22 22 17 20 20 27 20 22 23 22 22 22 17 23



lab Acidity Al Ca Cd Cl Cond Cu Fetot Fe++Fe+++ K TDS Mg Mntot Na



lab Acidity Al Ca Cd Cl Cond Cu Fetot Fe++Fe+++ K TDS Mg Mntot Na



lab Acidity Al Ca Cd Cl Cond Cu Fetot Fe++Fe++i K TDS Mg Mntot Na





lab Acidii Al Ca Cd Cl Cond Cu Fetot Fe++Fe+++ K TDS Mg Mn tot Na

i61 4 1 2 1 I 11E

- ~312001
, I 01 I I I I 1 c)A-I I I I I I  QC,_a,. I I I I

.“,_.G 5 LVVVV cw500
200 6200 45000 790 61

1512 10/28/87 2 27000
1512 11/06/87 2 19000 6900 160 6740 38800 760 60
1512 illl2m7 2 17000 48900-

.- ..,__--,, 2 iiooo 41200
1 2 13000 29700
’ non-d sponible
, 2 15000 48100

Mean 43193.5 2435 437.1 0.289 55 26531 31.22 11443 2459 8587 12.06 80080 2417 162.7 46.41
Maximum 65236 5700 650 1.31 55 52000 632oooo 720016000 62 3E+O5 4200 282 599
Minimum 9500 0 186 0 55 5800 0 3 5 0 0 21 1400 0 7050 135 34 0.95
Standard Deviation 17535.6 1547 107.8 0.477 0 9903 23.43 4178 2359 3637 19.58 35478 1184 81.04 128.2
Number of Readings 68 59 71 36 6 152 36 132 71 71 57 212 71 71 57



Ni Pb Si SO4= Zn pH Eh



i..:,.,i.ItIi



i3if .’ 7;;iI:Iii

,,,I

;.5. 
I

. 
4

: 1 IJ,!



Ei
;

iIifL

i;...:..II(.1II



Mean 8.834 1.014 24.1 47434 18.87 2.234 507.9
Maximum 12.8 4.3 83 92500 27.1 2.7 675
Minimum 2 0.05 07564 4 0 417
Standard Deviation 3.394 0.917 21.89 23380 7.784 0.228 84.25
Number of Readings 38 38 20 73 36 153 41



APPENDIX E

RAW DATA - ESKAY



Max 77000 61200 5970 13.9 49000 1070 6 6 6 0 5 6 4 0 0 67 0.9 9520
Min 152 99 61.9 1.69 3 1.7 0 0 0 0.03 30.6
Avg 4015.7 3373.9 1073.1 5.3 1054.6 60.5 607.9 1472.4 5.5 0.1 1212.3
Count 40 36 32 52 51 37 36 40 37 33 52



Eskay
Ammonia Nitrate Nitrite 1 0-Phos 1 T. Diss. P 1 T. Phos. Total Metals

MElX 3.27 36.4 1.56 0.051 1.46 6.79 0.14 366 3.69 36.6 0.01
Min 0 0 0 0.001 0 0 0 0 0.0001 0.0004 0
Avg 1.4 6.9 0.3 0.0 0.1 0.5 0.0 29.4 0.1 3.4 0.0
Count 37 37 22 22 34 36 20 52 52 50 37



05/31/95 1 0.245 1 267 1 0.214 1 10.1 I 6451 42.5 1 321 1
06/30/95 I 1 o.cQ651 99.1 I 0.027 1 0.036 ( 9.07 I 0.029 I 25.9 I

Max 0.42 0.1 1.42 502 0.025 2.04 66.5 2070 42.5 1150 16.7
Min 0 0 0 17.7 0 0 0 0 0.001 0 0.332
Avg 0.1 0.1 0.1 127.4 0.0 0.1 4.5 164.9 0.9 113.6 3.1
Count 37 23 52 52 35 52 52 52 50 51 37



Max 0.0155 0.03 16 0.2 11.1 0.216 1.1 0.0131 0.03 333 386
Min o.oooo1 0 0.002 o.ooo5 2.i 0 0.288 O.OOO2 0.03 o.oo5 0
Avg 0.0 0.0 1.1 0.0 4.1 0.0 0.7 0.0 0.0 20.8 22.9
Count 33 35 50 ia la 52 la la la 50 51



Eskav

Max 0.33 19.2 0.215 0.005 0.42 0.1 1.42 502 0.069 2.04 65.9
Min 0.057 0.005 0 0 0 17.2 0 0 00.0001 0
Avg 0.0 2.0 0.1 0.0 0.1 0.1 0.1 120.0 0.0 0.1 4.0
Count 51 51 17 17 36 22 52 49 36 49 49



Max 1630 3.55 1150 9.51 0.03 16 50 0.2 3.89 0.015 101
Min 0 0 0 0.061 0 0 2 0.0005 1.35 0 0
Avg 132.1 0.1 109.5 2.1 0.0 1.0 6.1 0.0 2.4 0.0 17.6
Count 49 49 46 33 34 46 30 16 16 31 47



Eskay
Date

Dissolved Metals
Sr U V Zn

03/03/92 0.79 0.0013 0.03 0.005
03116192 0.897 o.cOoo9 0.03 0.104
Q3l22m 0.8 Q.aOa9 0.03 0.005
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