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Summary

The problem of Acid Mine Drainage (AMD) poses a significant environmental danger in
British Columbia and other parts of the world involved in mining activities. Oxygena-
tion reactions responsible for the chemical generation of acidity have been, by and large,
identified. Thus far rather simplified modelling techniques have been used in the analysis
of these complex reactions that possess feedback loops characteristic of chemical chaos
systems. Our primary objective was to provide an in-depth study of the basic reactions
in the AMD problem; to model the associated chemical kinetics and draw conclusions
regarding the predictability of these nonlinear processes.

Having derived the constituent differential equations under several sets of conditions
we have applied modern analytical and numerical techniques to investigate the regimes
of behavior for both acid production and neutralization reactions. We have discussed
important factors in the determination of predictable and unpredictable ranges of behavior
which should be of much use in the prevention program. In the final two sections of the
report an outlook has been given for the next logical steps in the modelling of chemical
kinetics for the AMD problem. The report is supplemented with six Appendices that give -
the reader an overview of nonlinear phenomena.






Sommaire

Le probleme du drainage minier acide (DMA) pose un risque sérieux de dommage
environnemental en Colombie-Britannique et dans d’autres endroits au monde ol se
pratiquent des activités liées & I’exploitation mini¢re. Généralement parlant, on a
déterminé les réactions d’oxygénation qui résultent dans la production chimique d’acidité.
Jusqu’a ce jour, des techniques de modélisation plutdt simples ont été utilisées pour
analyser ces réactions complexes qui ont des boucles de rétroaction qui caractérisent les
systemes de chaos chimique. Notre premier objectif était d’effectuer une étude exhaustive
des réactions de base inhérentes au probléme du DMA; d’élaborer un modele de la
cinétique de réaction chimique qui lui est associée et de tirer des conclusions au sujet de
la prévisibilité de ces processus non linéaires.

Apres avoir élaboré dans diverses conditions les équations différentielles
appropri€es, nous avons utilisé des techniques numériques et analytiques modernes pour
étudier les modes de comportement dans le cas de la production d’acide et celui des
réactions de neutralisation. Nous avons examiné les éléments importants afin de
déterminer les modes de comportement prévisibles et imprévisibles, susceptibles d’étre
utilisés aux fins du programme de prévention. Dans les deux derniers articles du rapport,
nous donnons un apercu des nouvelles étapes logiques de la modélisation de la cinétique
de réaction chimique du DMA. Le rapport comprend également six annexes qui donnent
au lecteur un apergu des phénomenes non linéaires.






Section 1

Introduction

One of the major sources of environmental concern related to mining in general, and to
coal mining in particular, has been the so-called acid rock drainage (ARD). This term
describes contamination resulting from waste rock materials which contain such sulphide
minerals as, for example, pyrite and pyrrhotite. Natural oxygenation of sulphide minerals
occurs in rock which is exposed to air and water. Acidic drainage, if not neutralized by
such constituents as limestone and dolomite, may in general be generated [ARDPM] from
the following sources: (a) underground workings, (b) open pit mine walls, (c) waste rock
dumps, (d) ore stockpiles and (e) tailings impoundments. Once ARD formation has been
initiated, the process is very difficulty to arrest. Of course, the presence of alkaline rocks
may lead to a reduction in ARD by providing a neutralization potential. It should be
mentioned that ARD is a world-wide problem in mining operations and its impact on the
environment can be quite severe due to the toxicity of heavy metals and other products
as has been witnessed, for example, in Norway.

It is, therefore, extremely important to understand the processes involved in the ARD
formation so that protective measures can be taken early in time. The most cost-effective
method of reducing the impact of ARD is accurate prediction. However, as will be dis-
cussed later in this report, the complexity of the chemical reactions involved precludes an
easy and simple approach to the problem of prediction. The chemical processes are not
only strongly dependent on external conditions (such as the prevailing weather conditi-
ons) and the geology of the terrain but, perhaps more importantly, they involve feedback
loops making the problem inherently nonlinear. Competition between neutralization and
acid potential complicates the problem even more. To the best of our knowledge, most of
the earlier models studied in this connection did not include this aspect in their analyses.
A notable exception of modeling that included competition between acid generation and
peutralization are the studies of Scharer et al. (1993) exploring models for tailings and
Jaynes et al. (1984) in regard to coal spoils. We believe that any accurate model must
account for this aspect to be successful.

This project has been chiefly concerned with the modelling of nonlinear kinetics of the
chemical reactions present in both acid production and neutralization that are associated
with the ARD processes. Since the conceptual framework involved is based on a range
of novel scientific ideas, we have decided to include a section that deals exclusively with
a pedestrian-level explanation of these important concepts. We discuss later in the text
and in the Appendices nonlinear kinetic equations, phase-space descriptions, limit cycles,
chaos and fractality, all of which are of significance to the problem studied. They will
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play a key role in the modelling techniques employed later on to the chemistry of the
ARD processes. The following section provides an overview of the ARD chemistry to the
extent available in the literature on this topic. The main part of the report then follows
and it addresses the questions of:

(a) Deriving the equations of chemical kinetics for both acid production and acid neutra-
lization reactions. (The presence of reverse reactions and inflow-outflow conditions
will be discussed separately in this context.) .

(b) Solving the derived equations under a range of conditions that are model dependent.

(c) Setting up and solving kinetic equations that effectively include the porous nature
of the rock medium.

The final section of the report is a discussion of the obtained results and of the need for
further improvements in the modelling techniques. Of particular importance will be the
requirement to account for the inhomogeneity of the medium. This will lead us to propose
a modern approach that includes the fractal character of the porous rock structure.



Section 2

Nonlinear Chemical Kinetics

2.1 Homogeneous Media

In this subsection we develop our primary topic of interest, i.e. the modelling of nonlinear
chemical reactions. The reader is referred to the Appendices for general information on the
role of nonlinearity which may be necessary in order to properly analyze the complexity
of the problem at hand. The important factor in our discussion will be the presence of
autocatalytic reactions. As one of the simplest examples imaginable consider the reaction:

A+2B 5 3B (2.1)

where k is the reaction rate and it is assumed that the reaction takes place in a continuous-
flow stirred reactor as shown below.

_ reactoc
input —> output
stirrer

Figure 2.1: A schematic of a continuous-flow stirred reactor.

Denoting the concentrations of the chemical species A and B as a and b, respectively,
we find the relevant equations describing the time evolution of a(t) and b(t) as

‘2—‘: = —kab? (2.2)
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)

% = kab? (2.3)

If we allow reverse reactions to take place at a rate k~, so that the equilibrium constant
for the formation of A from B is E = k™ /k, i.e. we have [Gray (1988)]

k
A+2B = 3B (2.4)
k-—

the corresponding equations now take the form

%% = —kab® kB (2.5)
%Iti = kab® — kb (2.6)

We note here that the terms on the right-hand sides above are proportional to the product
of the concentrations corresponding to each type of the molecular species reacting.

An additional feature of these types of reactions may be the presence of flows through
the tank. If the net outflow rate is k; where:

k; = outflow rate/reactor volume

then the time evolution equations take the final form

‘;—‘t‘ = ky(ao — a) — kab? + k"B 2.7) -
% = ky(b, — b) + kab® — k7b° (2.8)

where a, and b, represent reactant concentrations at the input port of the two species
involved.

A very well studied example of a potentially chaotic chemical reaction 1s the Belousov-
Zhabotinskii reaction [Baker et al. (1990)]

ky
A+B=C (2.9)
k.

carried out in a container with a flow rate r for reactants A and B. The governing
equations are

‘fi_': — —kAB+kC —r(A—A,) (2.10)
iid—f- eSS —kaB + er - T(B - Bo) (2'11)
‘Z_f = +kAB—k,C —rC (2.12)

where A, and B, are the respective reactant concentrations at the input port. Ifr=0,
the reaction proceeds to equilibrium. If r is large, the materials are exhausted from the
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container before they have time to react. However, for intermediate values of r the sy-
stem exhibits both chaotic and time-periodic states. The important aspect to point out
is the open nature of the reactor and the rate of flow r as a control parameter. Experi-
mental studies confirming these predictions abound and they involve catalytic reactions,
enzyme reactions and another important example, the decomposition of SO3~. They
were observed both in homogeneous and surface catalytic reactions [Cvitanovi¢ (1984)].
The important factors are the autocatalytic character of the reactions through a feedback
mechanism [Glansdorff et al. (1971)] and the stirring process that maintains homogeneity.

Let us consider two more examples which are intended to illustrate different types of
behavior. The three coupled reactions below [Glansdorff et al. (1971)] described by the
reaction chain

k
A+X = 2X (2.13)
k_y
ka
X+Y = 2 (2.14)
k_a
and
ks
Y & E (2.15)
k-3

include two autocatalytic steps (the first and second reactions) and an uncatalyzed con-
version (the third step). The global reaction is A & E and the equilibrium concentrations

are: .
A k_yk_2k_3 k. kiksy
— T —— e ='-———; e =_'—-_A. 2.

(E),gr bk | TR YT kg (2.16)

Neglecting the inverse reactions (k; = k2 = k3 = 0) gives the kinetic equations in the
form

‘%. = hAX — kXY (2.17)
Their analysis yields a single non-vanishing steady-state with
X, = o Y, = sz (2.19)

which supports stable periodic oscillations around this focus point. They are represented
by
X(t) = X, + ze'*; Y(t) =Y, +ye* (2.20)
with the oscillation frequency: w = £vkik3A. -
However, a different picture emerges when we investigate the following system of four
reactions:

ky
A = X (2.21)
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ko
2X+Y = 3X (2.22)
k_2
ks
B+X = Y+D (2.23)
k_a
and
ks
X = FE (2.24)
k_4

where the second step is autocatalytic. The overall reaction is: A+ B= E+ D and the
equilibrium conditions give
_koky , E kiksy D koks

kA
o Y = A AT kS B Rk (2.25)

Assuming for simplicity that ky = ks =ka=ks=land k_; =k s =ka=k_4= k, we
obtain the kinetic equations as

Xeg =

id}t—{=A+X2Y-—BX—X+k(YD+E—X—X3) (2.26)
and Jv
The steady-state solution is
A+EkE kX?+ B
= T3E0 PTXIrRDT (2:28)

Normal mode analysis for these coupled equations leads to a new behavior characterized
by an instability of periodic oscillations about the steady state beyond the critical value
of B which is B, = 1 + A2. For B < B, a limit cycle replaces a focus point as a stable
solution in a process called a bifurcation.

The behavioral patterns discovered by Prigogine and his associates are characteristic
of a class of multidimensional vectorial evolution equations of the type

dx
pri (x) (2.29)

where f(x) is a nonlinear function of x and X = (X1,X2,...,Xn) represents the concen-
trations involved. The objective in their study is to find stable attractors and determine
possible bifurcations [Glass et al. (1988)]. The use of Lyapunov theory of stability is of
great help.

These models have been extended to a much larger chain of coupled reactions, for
example 7 in ref. 12. State-of-the-act computer codes can handle up to 20 coupled varia-
bles but, in most cases, the main features can be obtained by studying several (typically
three) skeleton reactions (e.g. the Oregonator). The observed behavior usually indicates
the existence of periodic regimes with their basins of attraction as well as regions of chao-
tic behavior and intermittency. Therefore, depending on the details of initial conditions
and control parameters the system may or may not be predictable [Vidal et al. (1984)].
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2.2 Reactions in Porous Media

Very recently, applications of Prigogine’s theory have been extended to heterogeneous
reactions in porous materials which is of particular importance to geochemistry [Kopelman
(1986)]. The key to the modelling of such reactions is to evaluate the size of the effectively
explored space per unit time, i.e. the efficiency of the random walker (reactant). The
actual exploration volume of the random walker, denoted S, is a fractal object whose
effective volume grows only (approximately) as V%/2 where V is the diffusion space volume.
Here, V = %m" where r = Dt and D is the diffusion constant. If the molecules execute
coherent motion or if the exploration space is isotropic, then S ~ t and, as a result, the
reaction rate k is constant since k ~ dS/dt. The latter quantity, dS/dt, is also referred
to as the efficiency of the walker. However, for locally heterogeneous media (e.g. porous
media), the exploration volume S is a function of time characterizing the medium. It was
found through computer experiments that in general

S ~ tds/? (2.30)

where d, is the spectral dimension of the fractal medium. Consequently, the reaction rate
is '
k~th (2.31)
ds

where h = 1 - &£ ifd, < 2,and h =0ifd, > 2. In particular, for a homogeneous
medium, d = d, = 3 and h = 0 giving a constant reaction rate, as expected. It was also
found [Kopelman (1986)] that in the case of a one-dimensional pore (d = d, = 1),h = 3
More importantly, perhaps, for percolating clusters in both d = 2 and d =3, d, = 4 and .
consequently h = %. The same is true for diffusion-limited aggregation and for a random
fractal. In our applications to the AMD problem we will therefore use the latter result
and assume in our simulations that k ~ ¢t~1/2 in order to account for the porosity of the

medium.






Section 3

The Chemical Processes in AMD

3.1 Introductory Comments

Acid generation is caused by the exposure of rock containing sulphide minerals, principally
pyrite (FeS,) to oxygen and water. This results in the production of acidity and elevated
concentrations of sulphate and metals as a consequence of the oxidation of sulphur in the
mineral to a higher oxidation state and the precipitation of ferric ion water hydroxide, if
possible.

The ability of a particular rock sample to generate acidity is dependent on the relative
content of acid generating minerals and acid consuming ones. The latter ones participate
in the process of neutralization. Both acid generation and acid neutralization are complex
multi-step chemical reactions with complicated behavior that depends on many external
and internal factors. The net effect in the process of ARD is determined by the balance
between (a) acid generation caused by the exposure of sulphide minerals in rock to air
and water and (b) neutralization of acid upon contact with acid-consuming minerals.

The oxygenation reactions are often accelerated by biological activity which is very
significant (see Fig. 3.1) but at this stage we will not attempt to include this aspect in
our analysis. Crystalline substances which contain sulphur combined with a metal or a
semi-metal but no oxygen are called sulphide minerals and below we list some of the most
commonly found [Glansdorff et al. (1971)]: pyrite (FeS;) and pyrrhotite (Fe1-;S) which
play the most dominant role, as well as several less important sulphides such as marcarite
(FeS,), smythite, greigite (FesSy), mackinawite (FeS), chalcocite (CuzS), etc. In the
analysis below we practically assume that only pyrite is responsible for AMD processes.
The reactions triggered yield low pH water which can mobilize heavy metals contained
in the waste rock and its surroundings. Through water transport the resultant drainage
carries elevated metal levels and sulphate into the receiving environment.

3.2 Acid Generation

The main pathway to acid generation involves pyrite (FeS;) and its chemistry is known
to occur through the following stages: [DARDTG v.1]

(1) direct oxidation of the sulphide mineral into dissolved iron, sulphate and hydrogen

FeSsy(s) + %Og(g) + H,05 Fe?t 4 2503 (aq) + 2H* (aq) (3.1)

10
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Sulphide Oxidation Rate (Normalized)

1

0.8 1

0.6 -

0.4 1

0.2

Biological

Chemical

— — — —
—e

Figure 3.1: Sulphide oxidation as a function of pH following ref. 16.

which elevates acid of the water and thus lowers its pH.

(2) Provided the supply of oxygen in the environment is sufficient, ferrous iron oxidizes
to ferric iron

ks
1 1
Fe*t + 102(8) + H*(aq) k# Fet + 'inO- (3.2)
-2

(3) Ferric iron then precipitates as Fe(OH)s at pH values above 2.3 to 3.5

ks
Fet + 3H,0 = Fe(OH);+3H* (3.3)
k-3

resulting in the lowering of pH.

(4) Any remaining amount of Fe3* can be used to oxidize additional pyrite from the
reaction (1) providing a feedback loop

FeS; + 14Fe® + 8H,0 X 15Fe** + 2503 (aq) + 16 H* (ag). (3.4)

This set of reactions (3.1), (3.2) and (3.3) can be graphically illustrated as shown in

Figure 3.2[DARDTG v.1].
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|7 Feth Sz-—l

FeSz O, ~ SO,+Fe

+ 0, Fast
Slow \ . FeS,

2+
Fe

Figure 3.2: Graphical illustration of the combined reactions (3.1), (3.2) and (3.3).

A combination of the first three reactions gives acidic leachates according to
15 7
FeSz + TOz + §H2O — FC(OH)a + 2504- + 4H+ (35)

which applies mainly to low pH pyrite oxidation, while including all the reactions other
than the third produces
’ 1 13 17 1 17
FCSz -+ —85-02 + ?F€3+ + 'ZH2O — ?SFCH- + 2502_ + TH+ (36)
which is schematically shown in the diagram above and applies to high pH pyrite oxidation. .
Fig. 3.3 shows the above reactions as occurring in three distinct stages:

- Stage I (alkaline), mainly chemical oxidation occurs producing alkaline drainage with
elevated sulphate and metals.

- Stage II (transitional).

- Stage III (acidic) results in elevated sulphate levels and acidity. Acidity here is a mea-
sure of accumulation of Fe*t, Fe(OH)**, A** and HSO;. Unless neutralization
processes take place at significant levels, there is a strong correlation between the
amount of sulphates and acidity.

We have summarized the properties of the four constituent reactions in Table 3.1
below following the report of Otwinowski [Otwinowski (1993)]. Each reaction rate k;(i =
1,2,3,4) is believed to be dependent on temperature through the Arrhenius relation

ki = A;exp [—E‘(T - T°)]

RTT, (3.7)

where T is the temperature in degrees Kelvin, E; is an activation energy, R is the gas
constant and T, is a characteristic temperature.
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REACTIONS IN STAGES | AND Il

7 +2 -2, .+
FeS, () + 0, +HO—Fe "+ 250, “+ H
s S 40, + 1y A
+2, 1 + +3 ., 1.
Fo + /4024- H —~—Fo  + /2uzo
+3 +
Fo™” 4 3H,0——Fo(OH), (1) + H
7 pH Piatecus Resulting From Minercis
Buffering ot Vorlous pH Vaiues -
454 —————— e -
|
|
. !
| REACTIONS o STAGE
i { Fo *24 1/,‘oz +H —— P 4 '/20120
Lag Time J . -
» "} Fes,(0) + 14re P34 8H,0 ——tsrt? ZSo:z + 164"
(] .

Figure 3.3: Stages in the formation of acid rock drainage following ref. 16.

3.3 Acid Neutralization

On the other hand, there exist several acid consuming minerals, such as calcite (CaCO3)
and gibbsite (Al(OHj;)) that neutralize the products of oxidation through the following
types of reactions:

CaCOs(s) + H* — Ca**(aq) + HCO3 (aq) (3.8)
or
CaCOy(s) +2HY — Ca**(aq) + H,CO5 (aq) (3.9)
and
Al(OH)3; + 3H* — Al** + 3H,0. (3.10)

The balance between the two types of processes (acid production and acid neutralization)
determines the net amount of acidity.

As was mentioned earlier, our interests lie in studying the kinetics of the chemical
reactions discussed here and in the determination of the influence of both external condi-
tions and internal composition on the overall rate of ARD. In the next section we derive
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eaction

ks = 1.66 % 10~%atm='s™?
for pH < 3.5; T, = 25°C
k32 =
4.0 x 10~ M~tatm™1s7! for
pH < 2; T, = 30°C

kaa =
1.33x 103 M ~2atm~1s~! for
pH > 4.5; T, = 25°C

E;, = T4 kJ/mol for
pH < 3.5

E4; = 85 kJ/mol for
3.5<pH<?H

E,3 = 96 kJ/mol for
pH > 5

No Rate Activation Energy pH-dependence
y = =g 1]~
(1) k: ,; 2.8 xpll) em™H%s™! E, = 57 £ 7.5kJ/mol | pH independent up to pH=T7.
at T =30° C )
(2) depends on pH

pH independent up to pH=3.5.

first order w.rt. OH~™ for

3.5 < pH <.

second order w.r.t. OH~ for
pH > 5.

(3)

strongly pH dependent

(4)

ky = 3.03 % 100 ZMcm™2s™"
at T, = 30°C.

E, = 90 kJ/mol.

complicated

Table 3.1: A summary of characteristic properties

following Otwinowski (1993).

the equations governing the
neutralization processes. Th

range of conditions.

of the four reactions in egs. (3.1)-(3.4)

nonlinear chemical kinetics for both acid generation and acid
is will be followed by numerical modelling under a diverse







Section 4

Modelling and Its Results

In this section we set up the equations for the chemical kinetics of the AMD problem and
then provide a host of numerical results obtained under different conditions. We analyze
separately the two groups of reactions, i.e.: (a) acid production and (b) neutralization
reactions. In the last subsection we deal with the issue of the modelling of chemical
reactions occurring in porous media.

4.1 Acid Production (Homogeneous Medium)

The four reactions studied here are:

k1 , .
2FeS, + 70, + 2H,0 = 2Fe** +4S02~ +2H* (4.1)
k-1

ke
AFe*t + 0, +4HY & 4F +2H,0 (4.2)
k—2

ks :
F&t +3H,0 <= Fe(OH)s+3H* (4.3)

FeSy + 14Fe® + 8H,0 =  15Fe* 42503 + 16H*. (4.4)

For the sake of convenience we introduce the following notation for the concentrations of
the chemical species present

1= [FCSQ], X2 ] [02], X3 [HzO], X = [F62+]
5 =[S0F); Xe=[HY]; Xr=[Fe’]); Xs=|[Fe(OH)y

For all practical purposes the above reactions are not reversible due to the large free
energy of reaction involved. Since our analysis did not become much more complicated
by the inclusion of reverse reactions and we set out to investigate the most extreme role
nonlinearity may play, we nonetheless performed several simulation with the presence of

15
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reverse reactions. Based on the discussion provided in the previous section we set up the
equations of chemical kinetics for these processes as follows:

X, = —kXIXIXZ - kX X1 X8 (4.5)
X, = ‘_.;.klexgxg_kzx;xzxg (4.6)
Xs = —kX2X]IX24 2k XX, XE — ks X2 X2 — 8ks X1 X7 X3 (4.7)
Xy = bX2XIX2 — 4k X3 Xo X3 + 15k X X2 X5 (4.8)
Xs = 2k X2XIX2 + 2k X1 X3 XS (4.9)
Xe = kiX2XIX2 — 4k, X1X2 X3 + ks X7 X3 + 16ks X, X34 X3 (4.10)
X, = 4k2x;x2xg-§k3x7xg_14k4x,x;4x§ (4.11)
Xs = kaXoX3 (4.12)

Note that at this stage we have not included the possibility of either reverse reactions, or
inflows into and outflows out of the system. The above equations automatically satisfy
mass balance and we checked it numerically for all our solutions. We should make here
an important qualification. The equations we derived above are only valid for elementary
reactions. in reality, the stoichiometric coefficients imposed above can not be used a
priori as the order of reactions for complex reactions. Hence, the order of reactions must
be determined empirically. This effectively means that the approach we present here
is simplified for the purpose of making the analysis easily tractable. It represents the
most extreme scenario from the point of view of nonlinearity of the equations studied.
However, at present we are unable to make the analysis more realistic for the lack of -
reliable experimental data.

Having no precise knowledge regardlng the reaction rates we have run several trial
computations with a range of test values of both initial values of concentrations and
reaction rate magnitudes. Our findings are illustrated in Figs. 4.1-4.8. In Fig. 4.1-
4.8 (and also further below) we have normalized the concentrations of all the chemical
species {Xi,...,Xa} to be within the 0 to 1 range, 0 meaning complete depletion and 1
complete saturation. This has been dictated by expediency and simplicity. We do not have
precise knowledge of the abundances and reaction rates but at this stage we were mainly
interested in qualitative behavior. The time variable is also scaled and is represented in
arbitrary units. However, in reality the time units will be those of the slowest reaction
in the chain. Comparing with Figs. 5.1-5.4 we can make an educated guess and identify
one time unit in our diagrams with approximately 10-15 days of real time. The initial
points (ie. those at ¢ = 0) were selected in several possible ways in order to examine
various feasible situations. For example, it was commonly assumed that F'eS,, O; and
H,O are initially at their saturation levels while the remaining five species are, in the
beginning, not present. As the reader may see from the figure captions, other possibilities
were also considered. The reaction rates were all set at unity except for Fig. 4.4 where
k; = ks = 0.1 (with very little change in the qualitative behavior). The numerical codes
used in these simulations are very reliable and give consistant, reproducible results. We
have a measure of confidence in our findings and intend to perform more computations
with different input data in the future. As the reader may easily appreciate, the problem
is not computational in nature, but rests with obtaining a reliable set of empirically-based
input data.
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We have studied the above equations under a number of different conditions as well.
What emerges, however, can be summarized as a rather smooth and regular tendency of
all the chemical species involved to reach their equilibrium concentrations. This is the
case whether we change the initial concentrations or vary the reaction rates for the various
reactions. Therefore, at this stage of modelling complete predictability of these processes
seems virtually guaranteed and no hallmarks of chaos or irregularity have been found.

In the next step of our investigation we attempted to find out if the behavior of the
system significantly changes when reverse reactions are allowed to take place. To this end
we assumed that k_; # 0 and k_3 # 0 leaving k_; = k_4 = 0. The relevant equations are
different and they now become

X1 = —kX2XIX? - kX XPXS (4.13)
X, = —gklex;xg — B XX XA 4k XAX2 (4.14)
Xs = —kX2XTX2+ 2k X1 X, X8 — 3ks X0 X3 — 8kr X0 X3 X3

—2k; X3 X2 + 3ks Xs X§ _ (4.15)
Xy = kX2XIX2 — 4k X1 X X3 + 15k X1 X34 XS + 4k_y X7 X2 (4.16)
Xs = 2k X2XIX2 + 2k, X, X34X5 (4.17)
Xe = kX2 XIX? — 4k X1 Xo X3 + 3ka X7 X3 + 16ks X1 X24X5

+4k_y X3 X2 — 3k_3Xs X§ (4.18)
Xe = 4k X21Xo X8 — ks X2 X3 — 14k X1 X34 X8 — 4k_p X7 X3 + k_3Xs XZ (4.19)
Xs = kaXe X2 —k_aXeX? (4.20)

A sample result of our numerical simulation of this system is shown in Fig. 4.9 where
we have exaggerated the effect somewhat by assuming that the reverse reaction rate is
half of the forward rate. Nevertheless, what we obtained indicates a by and large smooth
behavior and, again, a tendency towards equilibration . There is a short-lived period of
non-monotonic behavior close to the beginning of the process but it rapidly gives way to
the asymptotic trend towards equilibrium.

In the final stage of modelling the acid production processes we allow the presence
of inflows into or outflows from the system. This applies to the abundances of water
and oxygen. As a result, the only reactions that are affected by this change of prevailing
conditions are

X, = _gklexgxg — XXX+ kL XAXE — fo( Xz — Ka) (4.21)

X3 = —ky X2XIX2 + 2k X3 X X8 — 2k_2 X2 X2 — 3ks X X3
+3k_aXa XE — 8Ky Xy X34 X8 — fo( X5 — Xa) (4.22)

where f; and f3 are the mean flow rates for oxygen and water, respectively, while X, and
X, represent the equilibrium values of the oxygen and water concentrations, respectively.

What follows is a selection of modelling results for a variety of initial conditions,
reaction rates and flow rates. Fig. 4.10 illustrates the effect of flow rates on the che-
mical kinetics. It is assumed here that no reverse reactions are present. Note again the
smoothness and regularity of the resultant behavior.
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In Figs. 4.11-4.18 we illustrate the behavior when both reverse reactions and flow
rates are nonzero. The first group of diagrams shows the chemical kinetics for positive
flow rates (Figs. 4.11-4.13) while the second group (Figs. 4.13-4.18) allows one or both
of the flow rates to be negative.

To summarize our findings in this part we emphasize the very sensitive dependence
of the chemical kinetics on the flow rates. This is evident for both positive and negative
flow rates. In the former case, a drastic difference is clearly seen in the intermediate time
range on going from Fig. 4.11 to Fig. 4.12 resulting from a change in the magnitudes
of f, and f3. Asymptotically, however, positive flow rates result in a long-range smooth
relaxation towards equilibrium concentrations. On the other hand, when one or two flow
rates become negative, this leads to the emergence of divergent behavior in the associa
ted generation of a given species. Simultaneously, the irregular, non-monotonic region of
behavior is substantially extended in time.

4.2 Acid Production (Porous Medium)

As discussed in subsection 2.2, the net result of porosity in the medium where chemical
reactions take place is that the reaction rates become strongly time dependent. It was
argued earlier in this report that to effectively account for the porosity aspect of the
medium, the chemical reaction studied must be assumed to have reaction rates such that
[Kopelman (1986)]

ki = ket™1/3 (i =1,2,3,4). (4.23)

In order to study this effect we repeated our numerical modelling with the above conditions .
built into the coupled equations for chemical kinetics. Our results are summarized in Figs.
4.19-4.22. '

What emerges from the diagrams above is an even more sensitive dependence on the
flow rates for these reactions in a porous medium as compared to a homogeneous medium.
Regions of transient non-monotonic behavior are extended in the time domain and much
of the regularity has been removed. Strictly speaking, the long-time behavior presented
in Figs. 4.20-4.22 contradicts the assumptions built into the model since some of the
concentrations involved exceed their saturation values of one. One can deal with this
by either further rescaling or a change in the initial conditions or, finally, by restricting
the time variable. It should also be added that all these diagrams involve inflow-outflow
conditions and hence the total mass is not conserved within the system over time.

An interesting observation based on this set of simulations can be made that the
prevelence of monotonic growth or depletion characteristic of homogeneous models is
here destroyed by the assumption that the medium is porous. The fractality of the rock
(see discussion in Sec. 5.3) implies time-dependent reaction rates which lead to often
non-monotonic chemical kinetics. It appears obvious, however, in view of earlier remarks
that the scaling laws such as eq. (4.23) should have validity over a limited range of time,
or conversely should be tempered by saturation factors.
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4.3 Acid Neutralization Reactions

The main acid neutralization reactions are

CaCOs+ H* & ca* + HCOZ (4.24)
CaCOs+2H* B Ca?* + H,CO; (4.25)
Al(OH)s + 3H* % AP* 4+ 3H,0 (4.26)
(4.27)

where K;, K; and Kj are the associated reaction rates. For simplicity, we have introduced
the following symbols for the concentrations of the chemical species present:
Y, =[CaC0s); Yz =[H?); Y; = [Ca?*); Y, =[HCO3};
Y; = [HCOs); Ye =[Al(OH)s); Yo =[APY]; Y =[H0]
Using the same technique as in the preceding subsections we derive the kinetic equa-
tions for acid neutralization as

i = —-KihY, - KoYy (4.28)
Y; = —KiYY, - 2KV} — 3K:YeY; (4.29)
s = K\ + KYY; (4.30)
Y, = KW, (4.31)
s = K.Y, (4.32)
Yo = —K3YY; (4.33)
Y; = K YeY? : (4.34) -
Y. = 2K:;Y:Y? (4.35)

This system is much simpler than the one for acid production and the order of non-
linearities is also significantly reduced. In fact, due to their structure, the equations on
Y3,Y,,Ys and Y7 are effectively decoupled from the remaining three and the dynamics
is governed by the equations on Y;,Y2 and Yg; the other four concentrations are solely
determined by the results from the interplay between Y;,Y> and Ys. Not surprisingly,
our numerical modelling of the acid neutralization reactions produced a very smooth and
predictable behavior. This is illustrated on a sample result given in Fig. 4.23. We see
that all the species concentrations follow monotonic curves to their equilibrium values.
We conclude that the process of acid neutralization should be primarily determined by
the abundance of CaCO3, H* and the equilibrium reaction rates. No indications of non-
linear stochastic or chaotic behavior have been found and no challenges to the problem
of predictability seem to be offered by this set of reactions. This is, of course, in contrast
to the acid production reactions discussed above where a substantial amount of unpre-
dictability exists due primarily to the two factors: (a) porosity of the medium and (b)
flow rates of oxygen and water. Note that acid neutralization reactions do not seem to
be dynamically coupled to the reactions of acid production. It is probably safe to assume
that pH oscillations that can be observed just prior to acid generation are a result of this
setup. Thus, such oscillations could be considered a good predictor of the onset of AMD
process.
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Figure 4.1: Chemical kinetics of the acid production reactions assuming: X;(0) = X>(0) =
X3(0) = X7(0) = 1,X4(0) = X5(0) = XG(O) = Xs(O) =0 and kl = k2 = k3 = k4 =1. No

inflow-outflow conditions and no reverse reactions are present.
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Figure 4.4: Chemical kinetics of the acid production reactions assuming: X;(0) = X3(0)
X3(0) = 0,X4(0) = Xs(O) = XG(O) = X7(0) = Xs(O) =0 and kl = k‘4 = 1.0,k‘2 = k3 =

0.1. No inflow-outflow conditions and no reverse reactions are present.
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Figure 4.5: Chemical kinetics of the acid production reactions assuming: X;(0) = X3(0) =
X3(0) = 1,X4(0) = Xs(O) = ... = Xs(O) =0 and kl = kg = k3 = k4 = 1. No inflow-
outflow conditions and no reverse reactions are present,.
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Figure 4.6: Chemical kinetics of the acid production reactions assuming: X;(0) = X,(0) =
X3(0) = X4(0) = 1,X5(0) = XG(O) = X7(0) = Xs(()) =0 and kl = kz = k3 = k4 =1. No

inflow-outflow conditions and no reverse reactions are present.
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Figure 4.7: Chemical kinetics of the acid production reactions assuming: X;(0) = X;(0) =
X3(0) = X4(0) = X5(0) = l,Xe(O) = X7(0) = Xs(O) =0 and kl = k‘g = k3 = k4 =1. No

inflow-outflow conditions and no reverse reactions are present.
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Figure 4.8: Chemical kinetics of the acid production reactions assuming: X;(0) = X5(0) =
X3(0) = XG(O) = 1,X4(0) = X5(0) = X7(0) = XS(O) =0 and kl = kz = k3 = k4 = 1. No .

inflow-outflow conditions and no reverse reactions are present.
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Figure 4.9: Chemical kinetics of the acid production reactions assuming that X;(0) =

e =X8(0) = l,kl =k2 =k3 =k4=1 and k_2 =k_3 = 0.5.
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Figure 4.10: Chemical kinetics for the acid producing reactions assuming that X;(0) =

... = X3(0) = 1,k = k2 = ks = k4 = 1, no reverse reactions are present, the flow rates

are fo = f3 = 0.5 and the equilibrium concentrations are X; = X5 = 0.1.
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Figure 4.11: Chemical kinetics for the acid producing reactions assuming that X,(0) =

=X8(0)=1, k‘l =k2=k3:k4=1, ’C_g Zk_3—_—f2=f320.5 and X2=X3:O.1.
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Figure 4.12: Chemical kinetics for the acid producing reactions assuming that X;(0) =
e = :XS(O) = 1, k] = kz = k3 = k4 = 1, k_2 = k_3 = 05, fg = f3 = 1.0 and
X2 e X3 = 05
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Figure 4.13: Chemical kinetics for the acid producing reactions assuming that X;(0) =
Xz(O) = X3(0) = 1,:X4(0) = ... = XB(O) e 0, kl = kz e k3 = k4 = 1, k_2 b k_3 e f2 =

f3=05and X; = X3 = 0.1.
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Figure 4.14: Chemical kinetics for the acid producing reactions assuming that X;(0

) =
X2(0) = X3(0) = 1, X4(0) =...= XS(O) = 0, kl = kz = k‘3 = k4 = 1, k_2 = k_3 = 05,

fa=—-04, f3=0and X; = X5 =0.1.
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Figure 4.15: Chemical kinetics for the acid producing reactions assuming that X;(0) =
Xz(O) - X3(O) == 1, X4(0) = i = Xs(O) = 0, kl = k2 - k3 = k‘4 = 1, k‘_z - k_3 - 05,

f2 = 0,f3 = —0.4 and X2 b= XS =0.1.
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Figure 4.16: Chemical kinetics for the acid producing reactions assuming that X;(0) =
Xz(O) = X3(0) s 1, )_(4(0) _= NS Xg(O) e 0, kl = k2 = k3 - k4 == 1, k_.z = k'_3 = 05,
f2 s f3 = _05 a.Ild X2 = X3 = 0.1.
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Figure 4.17: Chemical kinetics for the acid producing reactions assuming that X;(0) =
X2(0) = X3(0) = 1, 2(4(0)—: O Xs(O) - 0, k‘l = k2 - k‘3 B k4 = 1, k_z = k_3 e 0,
fo=fs=-05and X; = X3 =0.1.
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Figure 4.18: Chemical kinetics for the acid producing reactions assuming that X;(0) =
Xz(O) = X3(0) = 1, X4(0) = ... = Xs(O) el 0, k‘] = k2 e k3 = k4 = 1, k_g - k_a - 0,

fa=—0.5,and f3 =0 and X; = X5 =0.1.
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Figure 4.19: Chemical kinetics for the acid producing reactions in a porous medium with
the as_sumpfion tha,t XI(O) = Xz(O) = X3(0) = 1,X4(0) =...= Xs(O) = 0,f2 = f3 =0.5
and X; = X3 = 0.5.
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Figure 4.20: Chemical kinetics for the acid producing reactions in a porous medium with
the assumption that X;(0) = ... = X3(0) = 1, f = fa = 0.5 and X; = X3 = 0.5.
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Figure 4.21: Chemical kinetics for the acid producing reactions in a porous medium with
the assumption that X;(0) =... = X3(0) =1, f; = 0.5, f3 = —0.5 and X; = X3 = 0.5.
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Figure 4.22: Chemical kinetics for the acid producing reactions in a porous medium with

the assumption that X;(0) =... = X3(0) =1, f, = —0.5, f3 = 0.5 and X, = X5 = 0.5.
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Figure 4.23: Chemical kinetics of the acid neutralization process where we have assumed
that ¥1(0) = Y2(0) = Y5(0) = 1,Y¥3(0) = Y4(0) = Y5(0) = Y7(0) = Yz(0) = 0, and that
Kl = K2 = K3 =1.



Section 5

Discussion and Future Outlook

5.1 Summary and Conclusion

The present report has outlined the activity that has been undertaken within the frame-
work of the above project.

First of all, a very extensive literature survey encompassing both geochemical analyses
regarding the acid mine drainage problem and the relevant aspects of nonlinear chemical
kinetics has been carried out. We have found detailed analyses regarding the primary
chemical reactions involved in acid production. Qualitative aspects of chemical kinetics,
such as which reactions are slow and which ones are fast can be readily found in the
literature. Detailed characteristics in terms of activation energies and reaction rates were
independently described by Dr. M. Otwinowski who submitted a parallel report.

In terms of nonlinear chemical kinetics we now have all the required information
needed to solve the problem at hand. Several factors emerged as important theoretical
considerations which were included in the numerical work described above. These are:
(i) inflow-outflow ratios for water which will be strongly correlated with the porosity of
the rock and seasonal variations such as rainfall, (ii) porosity of the medium, in contrast
to the rather crude assumption about its homogeneity has been included in our model.
Moreover, the inclusion of uncatalyzed reactions may be of importance in modelling,
_ We found that the effect of medium’s porosity and size distribution of the rock can
be accounted for by introducing time-dependent reaction rates. The time dependence
required takes the form of power laws with exponents that are functions of the fractal
dimension. The latter, in turn, is a characteristic quantity defining the structure of the
rock and must be determined experimentally first (see Sec. 5.3).

The second stage of our work consisted in analyzing in detail the chemical kinetics
in the AMD problem. We have set up the kinetic equations for the concentrations of
the compounds involved. Two groups of equations have been investigated separately.
In the acid production stage we found 8 coupled differential equations (highly non-
linear) for the concentrations of: FeS,, 05, H,0, Fe*t,S03~ H* Fe*t and Fe(OH)s
and describing their time evolution. However, the last equation for F e(OH);3 is ef-
fectively decoupled from the rest making the system consist of 7 first-order ordinary
differential equations. One of the results of this stage of chemical activity enters into
the second stage, i.e. acid neutralization which is, otherwise, independent of the pre-
vious process. The acid neutralization stage involves 7 different concentrations, i.e.:
CaCOs, H*,Ca?*, HCO] , H,C O3, Al(OH)3 and AP*. The seven kinetic equations we

32
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have set up are also nonlinear but this time the problem is substantially reduced as four
of the equations decouple from the rest. Thus, we obtained just 3 coupled equations.
This part of the project has been completed by building mass balance into the equations,
carrying out dimensional analysis to maximally simplify the mathematical problem at
hand and looking for steady states. No interesting steady-state solutions appear to exist
other than complete depletions of reactants.

The third part of the problem has been to set up the numerical machinery at our
disposal. With the newly acquired Next Work Station (including a laser printer) and
the great time involvement of the students MLAN and DS, the required numerical code
has been written and tested and many results obtained. Our results can be summarized
as follows. Although the kinetic equations derived are highly nonlinear, no hallmarks of
bifurcations or chaotic dynamics were found thus far. This would indicate the question of
predictability is perhaps not as complicated as it could at first appear. However, we have
also detected the presence of complex, non-monotonic behavior of the concentrations of
the chemical species involved under special circumstances. This irregular behavior seems
to be mainly affected by two factors:

(i) the porosity of the medium

(ii) the presence of non-zero flow rates of oxygen and water.

Thus, depending on the physical structure of the waste rock, specifically depending on
the level of its inhomogeneity, the production of acid may follow a different course, being
more regular in time for a more homogeneous medium than in a fractal-like distribu-
tion of waste rocks. Moreover, the flow rates of oxygen and water affect the reactions
very significantly and they are certainly related to both climatic changes (rainfall, hu-
midity) as well as the waste rock shape and structure, especially vis a vis the exposure .
to oxygen. Support of this conclusion can be found in the work of Doepker and Drake
[Doepker et al.(1991)] where significantly different effects of leaching have been obtained
between air-exposed and water-submerged tailings. Similarly, Steffen, Robertson and
Kirsten[RPWQM Rep. No. 195201] show a marked difference in the production of SO4
between flooded and unflooded test samples.

In numerous cases sulphate production kinetics exhibits a smooth, relaxation-type
behavior with time. Test results shown by Steffen, Robertson and Kirtsten [RPWQM
Rep. No. 195201), Denholm and Hallan [Denholm (1991)], Bradham and Caruccio
[Bradham et al.] and Fergusen and Morin [Ferguson et al.] all indicate largely regular
time dependence of SO, production and CaC0; dissolution. We have reproduced below
some of the plots presented by these authors. This is consistent with the bulk of our
results.

We should add a word of caution here regarding the predictability of AMD as based
on purely physico-chemical models. As can be seen from Fig. 3.1, the biological activity
of microorganisms present in the environment adds a whole new dimension to the analysis
and could effectively alter the end results in terms of the release time and the amount of
acid produced. What we wish to rather emphatically stress, however, is that in spite of the
highly nonlinear characteristics of the chemical kinetics involved, the observed processes
are very regular. No hallmarks of chaos, quasi-periodicity or intermittency have been
found. Thus these phenomena should be very easy to model and predict provided reliable
input data are available in terms of initial concentrations, reaction rates, flow rates and
the structural properties of the medium. Therein lies the challenge of predictability and
we believe that with steady progress in understanding the processes involved in AMD we
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Figure 5.1: Samatosium column leach test following Denholm and Hallan [18].
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Figure 5.2: Cumulation of SO4 with time following Ferguson and Morin [20].

should achieve predictability rather sooner than later. Obviously, the model itself is not
perfect and several weak points could be identified. We discuss some main areas in need
of improvement in Secs. 5.2 and 5.3.

5.2 Future Outlook

In the model developed in the studies presented in this report a major point requiring
further improvement is related to the inhomogeneity of the medium. Although we have
effectively included porosity through the use of time dependent reaction rates, the other
aspect of the problem, i.e. diffusivity of motion of the chemical species still needs to
be addressed. It is well known that when there is neither stirring nor sufficient natural
convection, molecular diffusion may govern transport and species concentrations may vary
from point to point [Gray (1988)]. This would call for the use of time and space dependent
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Figure 5.3: Plot of cumulative acidity for acidic weathering cells following Bradham and
Caruccio [19].

concentration fields X;i(t,z) and Y;(t,z) in the acid production and acid neutralization

reactions studied in this report.

We should mention that Davis and Ritchie [Davis et al. (1986)] have developed a
series of models simulating diffusion into rock piles. The initial model, called the simple
homogeneous model, simulated oxygen differences from the top of a pile downwards to
oxidation sites. The model equations were solved assuming pseudo-steady -state diffusion
within the particles. However, this and all the subsequent models[Morin et al. (1990)]

were based on a linear diffusion equation of the type:

d&’C 2dC
Where D, is the effective diffusion constant, C is the oxygen concentration and R is the
rate of O, uptake. As demonstrated by Prigogine and many other reseachers [Glansdorff

et al. (1971)], a more appropriate description for reaction-diffusion equations calls for the
use of nonlinear coupled partial differential equations of the form

%% = f(u) + DVZu (5.2)

where D is a diffusion constant [Kuramoto (1984)] and f(u) is a nonlinear function coup-
ling the species involved according to reaction kinetics. Depending on the particulars of
the system, a reaction-controlled, a diffusion-controlled or an intermediate regime may
prevail. Both oscillatory and chaotic temporal regimes may exist and spatial patterns
show amazing complexity exhibiting propagating and standing wave behavior, rotating
spiral formation[Henze et al. (1990)] as well as chemical turbulence. Bifurcations are
known to occur resulting from unequal diffusion coefficients for the individual reactions.
Importantly to our problem, observations of such behavior have been made for heteroge-
neous processes occurring at gas-solid and liquid-solid interfaces, e.g. catalytic oxidation
of CO on Pt (110) single crystal surfaces. In a recent study [Ertl (1991)] it was shown
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Figure 5.4: Variation of acid generation with leach method following Steffen, Robertson
and Kirsten [16].

through computer simulations, scaling arguments and experiments (naphthalene aggrega-
tion) that in porous media where interplay between energetic and geometric heterogeneity
exists, fractal nature of chemical reactions can be seen. We expand on this aspect in Sec.
5.3 below.

Our conclusion, therefore, is to contemplate an extended model of nonlinear chemical
kinetics which would account explicitly for diffusion of chemical species, their reactivity
as well as the porosity of the medium. Only then can we adequately address quantitative
aspects of predictability and prevention in the AMD problem as seen through nonlinear
modelling techniques.

In order to provide the reader with some basic information on the complexity of the
problem ahead, we have written a subsection dealing with the modelling of rock and flow
processes in rock. This should, at the next stage of our model development, be incorpora-
ted into the chemical kinetics analyzed here largely as a process in a homogeneous medium
which, obviously, is a gross oversimplification.

5.3 Rocks: characterization and flow properties

One of the most important findings of the present paper was the role flow rates and
porosity of the rock material may play in the chemical kinetics of the AMD problem. In
this concluding section we wish to outline some pertinent points that should be taken
into account in future modelling and prediciton of the phenomenon investigated. In what
follows we have largely drawn on the excellent recent review of the topic by Sahini (1993).

In the phenomena discussed in this report, a complex pore structure of the medium
is in existence and it significantly affects the distribution, flow, mixing and displacement
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of fluids present. Various physical mechanisms play a role, such as heat and mass trans-
fer, thermodynamic phase behavior, forces of viscosity, buoyancy, gravity and capillarity
making the analysis especially demanding. For reactive fluids, the pore structure of the
medium may even change due to the reactions of the fluid with the rock surface. A crucial
point to emphasize here is that the analysis performed depends on several length scales
over which the porous medium may or may not be regarded as homogeneous.

When there are inhomogeneities in the system that persist over various length scales,
the overall behavior is dependent on transport processes (diffusion, conduction, convec-
tion) and morphology. The general classes of porous media distinguished are: (a) micro-
scopically disordered but macroscopically homogeneous (characterized by size-independent
transport properties) and, (b) macroscopically hetrogeneous (with several types of trans-
port properties).

To model transport processes in porous media, two types of approaches have been
adopted: (a) continuum models; and (b) discrete models. However, only in the past
fifteen years have modern ideas from statistical physics been applied to flow, dispersion
and displacement processes in porous rocks. Such concepts as percolation, fractality,
self-similarity and pattern formation are only now being implemented in the procedures
used. We will discuss some of the repercussions that follow in the discussion below. For
example, the pore volume and pore surfaces of many reservoir rocks are fractal and hence
classical laws of physics have to be significantly modified. For instance, Fick’s law of
diffusion with a constant diffusity is no longer applicable to diffusion processes in fractal
systems. Instead, the diffusion coefficient becomes time- and space-dependent.

Porosity of reservoir rocks, ie. the volume fraction of their open space, has either
a primary or a secondary origin. Primary porosity is due to the original pore space of
the rock while secondary porosity is due to the chemical and physical changes through
reactions with water.

The geometry of rock describes the shapes and sizes of its pores or fractures. In a
porous medium, the space between its particles are called voids, whereas if the particles
themselves are porous, then the void spaces in the particles are called pores. Pores can be
divided into two groups: (a) pore bodies where most of the porosity originates, and (b)
pore throats which are the channels that connect pore bodies. In a network representation
of the pore space, the pore bodies are shown as sites or nodes while throats represent bonds
of the network.

The pore size distribution is defined as the probability density-function that gives the
distribution of pore volume by an effective pore size. Four main methods of measuring
pore-size distributions are: (a) mercury porosimetry; (b) adsorption-desorption experi-
ments; (c) small-angle scattering and (d) nuclear magnetic resonance.

In Fig. 5.5 we have shown a comparison between several types of porous media and
theoretical simulation results. Fig. 5.6 illustrates pore-size distibution functions of sample
rocks.

Pore-space models are required for calculating transport coeflicients, permeability &
and other dynamical properties of porous media. The simplest property of a porous
medium is its porosity ¢. Relationships between k and ¢ have been over the years proposed
and tested, but there cannot be any general relationship between k and ¢ since there exist
porous media with the same ¢ but different k.

In recent years it has been demonstrated that rock and other porous media (see Fig.
5.7) have fractal properties. There are six basic methods of measuring fractal proper-
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Figure 5.5: Comparison of mathematical models and actual porous media.

ties: (a) the box method; (b) adsorption studies; (c) chord-length measurements; (d)
correlation function measurements, (e) small angle scattering and (f) spectral methods.

In addition to fractality of the pores, fractal properties also characterize hetrogeneous
and fractured rocks. Fractures provide high permeability patterns for fluid flows and can
be parameterized by fracture aperture, ie. the volumetric flow rate through a fracture (as a
function of aperture cubed). Fractures in a network appear to have different characteristics
than isolated fractures. It was found that the frequency of inverse aperture y as a function
of inverse aperture follows a power law, indicating fractality. Fractured rock has fractal
geometry and is scale independent so that it can be represented by a singel parameter,
the fractal dimension D defined as

— log(Nz)
log(1/1)

where N; is the number of fractures of length ! (see Fig. 5.8).

A study of the literature indicates the existence of three classes of models of fractured
rocks: (a) the classical multiporosity model, (b) network models of fractured rocks (frac-
tal models) and (c) multifractal models. Many recent results definitely demonstrate the
relevance of fractal statistics to modelling hetrogeneous media and especially transport
processes in them. Simulations taking into account fractality lead to substantial improve-
ments in the predictions of process performance. Fractal properties of the medium require
the use of scale- and time-dependent dispersion coefficients as, for example, is the case
with the typically-used convective diffusion equation

acC o*C
—aT+<'U>'VC—DLax2

(5.3)

+ DrV3iC (5.4)
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Figure 5.6: Pore-size distribution of various rocks.

where < v > is the macroscopic mean velocity, C the mean concentration of fluid, T
and L stand for transverse and longitudinal direction, respectively. It is the objective
of modern techniques to determine the dependence of Dr and Dr on the nature of the
porous medium present. Monte Carlo simulations demonstrate that dispersion coefficients
are scale dependent and for fractal hetrogenities grow with the distance travelled.
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Figure 5.8: Fractal plot of surface fracture pattern.
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An Introductory Overview of
Nonlinear Phenomena

In the past two decades we have witnessed the emergence of new scientific paradigms that
are making a revolutionary impact on the developments in the natural sciences. Such
concepts as chaos, strange attractors, limit cycles and fractals are gradually taking root
in the vocabulary of leading-edge scientists. The field of chemical kinetics has been an
integral part of this new nonlinear science since its beginning. In the sections that follow
we provide a non-specialist overview of the key concepts required in the sophisticated
modelling of nonlinear chemical kinetics. We begin by introducing the idea of chaotic
behavior. This is followed by a subsection on coupled systems and limit cycles. The
question of predictability arises naturally and here we give the example of the Lorenz
system where predictability is completely impossible. Having introduced these general
concepts we proceed to discuss their relevance to chemical kinetics. In order to describe
chemical kinetics in porous media we then introduce the concept of a fractal and the
associated ‘idea of percolation. The final subsection deals with an emerging paradigm °
called pattern formation.

A: Chaotic Behavior

In the last few decades, the deterministic viewpoint of modern science has been challen-
ged by the discovery of unstable dynamic, conservative systems with totally unpredictable
behavior. The majority of dynamic systems, until a few years ago, were thought to be
ruled by deterministic laws and their behavior totally predictable. Unstable systems
were considered to be an exception to the rule. However, very simple conservative sy-
stems exist with few degrees of freedom which show sensitive dependence on the initial
conditions and exhibit regimes of chaotic behavior. Their evolution may become unpre-
dictable in spite of an arbitrarily large amount of information we may have about them.
Through it all they are indeed subject to the deterministic laws of classical dynamics!
The so-called deterministic chaos arises as a result of simple, well-defined mathematical
algorithms or equations, such as the logistic map investigated extensively by M. Feigen-
baum [Baker et al. (1990), Cvitanovié (1984)]. This is a rather simple iterative equation,
i.e. :

Tns1 = TTn(l — Zn) (A.1)
where r in the range: 0 < r < 4 is called a control parameter. For values of r < 3, the
results eventually converge to a steady state called an attractor. However, for values of
r > 3, the resultant oscillation does not settle down and remains stable, i.e. the behavior is
periodic. The two possible values of z(r) never converge and the curve z,(r) shows what

42
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we call a bifurcation. Higher values of the control parameter r produce further splitting
and doubling of the periodicities involved. Each period doubling is a bifurcation. If one
plots the increasing control parameter r horizontally and the variable z, vertically, we
obtain Fig. A.l. Abruptly, at r = 3.58, the result for z, no longer oscillates periodically
but changes in a chaotic fashion. The splittings, which started coming faster and faster
for r > 3, are now squeezed together and the growth rate seems to. take any value at
random.

Although for the values of r above r. chaos and randomness seem to prevail, a further
increase of the control parameter, which makes the system even more nonlinear, introduces
windows of regularity among chaos which is called intermittency. Computer simulations
of the logistic map readily demonstrate (see the inset of Fig. A.1) that the structure is
infinitely deep and self-similar. Parts of it, when magnified, show identical patterns, ad
infinitum. These patterns (though in this example they come from a one-dimensional
system) are a very common characteristic of the dynamic behavior of nonlinear systems
leading to chaos and complexity. Bifurcations with successive, infinite period doubling
define one of the possible routes to chaos [Baker et al. (1990)].

B: Coupled Systems and Limit Cycles

In chemical applications, in particular, the use of a single quantity (such as the variable Tn)
is inadequate as concentrations of several reacting chemical species must be described as
independent variables. Here, instead of the well-studied relaxation dynamics characterized
by an exponential time evolution towards a steady-state attractor, a completely new type
of behavior may arise. Specifically, a pattern of oscillating growth or extinction processes ’
of individual species may be observed to act as a stable attractor. Perhaps the simplest
example of such a cyclic population evolution can be found in the Lotka-Volterra model
of prey and predator competition. Consider as a simple illustration the populations of
wolves (predator) and rabbits (prey) living in an isolated geographic area (e.g. an island)
to limit the influences of other factors. Starting with a large population of wolves we
readily predict a demise of rabbits as they will soon become an easy prey for the roaming
wolves. However, as soon as the rabbit population is decimated, the wolves will face
starvation leading to a downturn in their numbers. This, in turn, will allow rabbits to
repopulate as they face a diminishing population of starved out wolves. As a consequence,
a new phase in the development appears with numerous rabbits but few wolves. That
will, of course, lead to a rapid repopulation of wolves and we have thus completed one
cycle. This pattern repeats itself periodically.

In mathematical terms, we denote the concentration of each species (for example
one type of reacting molecules) using a scalar time-dependent variable, say z;(t), with
1 < i < n denoting the number of species present. The time evolution of the entire
system is then governed by coupled first order differential equations of the general type
[Glansdorff et al. (1971), Kuramoto (1984)]

dz,

= = fal{zi1 S i< n)) (B.1)

where f, is in general a function of all the concentrations involved and it usually contains
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significant nonlinearities. Take for example the following simple system [Hale et al. (1991)]

dz

d_tl = 23 + azy(z? + 72) (B.2)
and d

_dit% =z, + azy(z? + z3) (B.3)

where a is an adjustable constant (a control parameter). In fact, depending on the nu-
merical value of this constant, three completely different types of behavior arise for the
solution set: zi(t),z2(t). In Fig. B.l we have shown phase portraits in each case, i.e.
plotted the trajectories of {z1(t), z2(t)} with time t taken as a running parameter. When
a < 0 a stable focus z; = 0, z2 = 0 is found so that all initial conditions lead to a spiralling
down on the focus point. When a = 0 all the orbits are stable circles since the system
can be represented as a harmonic oscillator. Finally, for a >0 an unstable focus appears
and all orbits diverge to infinity.

WO e

Figure B.1: The three possible behaviors in phase space for the solutions of egs. (B.2)
and (B.3).

I. Prigogine [Prigogine et al. (1968)] studied a trimolecular model for a reaction in an
open system that can be schematically described by the reaction chain

A = X (B.4)
B+X = Y+D (B.5)
2X+Y & 3X (B.6)

X = E (B.7)

where A, B, D, E, X and Y denote various molecules, ky, k2, ka, k4 stand for forward while
k_y,k_2,k_3,k_4 for reverse reaction rates. This system has been referred to as the
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Brusselator. In subsection 2.1 of the main text we demonstrate in detail how to derive
the associated kinetic equations for the concentrations of X and Y molecules, denoted
here for consistency by z; and z, respectively. They result in

d
% = .’Di.’rz - bz1 +a—1I (B.S)

and
dz;

dt

What Prigogine noticed solving these equations (see Fig. B.2) was the presence of a
(periodic) closed orbit in the phase space (z1,22) to which all the neighboring trajectories
are attracted. He called it a limit cycle and demonstrated its ubiquitous applicability as
a self-sustaining pattern of oscillatory behavior. Prigogine’s discovery was revolutionary
enough to the field of chemical kinetics that he was awarded a Nobel Prize in Chemistry.

= —:z:fxg + b:x:l. (Bg)

1 1
] 1 2 3 ° !

Figure B.2: Trajectories obtained by numerical integration for the Brusselator reactions

(B.4)-(B.7) for (1) X=Y=0; (2) X=Y=1; (3) X=10; Y=0; (4) X=1; Y=3.

More complicated nonlinear systems may possess a number of attractors (either point-
like or limit cycles) and their trajectories may tend to one or more of them depending on
the initial conditions, i.e. their location with respect to the basins of attraction present
[Glass et al. (1988)]. ’

It could at first appear that all attractors in nonlinear dynamical systems have rather
regular geometries. However, a large class of systems were discovered which display
attractors whose geometry is so complicated that it defies description. This is partly why
this new type of attractor was called a strange attractor. In the next Appendix we discuss
this novel nonlinear phenomenon.

C: Strange Attractors and Prediction Limitations

The MIT meteorologist E. Lorenz worked in the early sixties on simple models of atmos-
pheric convection which results due to the daily operation of the Sun’s rays. He managed
to simplify the problem to a system of just three coupled differential equations given below

dX
S =o(X-Y) (C.1)
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dY

—— o — — f— 2
e =—rX-Y-XZ (C.2)
% == —bZ + XY (C.3)

where o, and b are fixed model-dependent parameters and the physical variables X,Y
and Z depend on time t. Here, X denotes the intensity of the convection current, Y is
the temperature difference at the boundary layers and Z stands for the deviation from a
linear vertical temperature profile in the absence of convection. These three equations look
deceptively simple even to a non-specialist but they proved to be unsolvable analytically.
Lorenz’s meticulous numerical work led to his discovery of a very important new concept.
He noticed that his computer-generated solutions differed beyond recognition when a
seemingly negligible round-off correction was introduced to his input data. This came
to be known as the "Butterfly Effect” signifying sensitive dependence of the solutions on
the initial conditions. The illustrative hyperbola used was that of a butterfly flapping its
wings and thus disturbing the weather pattern at a distant location over a sufficiently
long time.

When Lorenz plotted his solutions in the phase space, he obtained sets of trajectories
which looked anything but regular. The curve traced by the values of X(t), Y (t) and Z(t)
had very peculiar features as can be seen in Fig. C.1. :

Figure C.1: The strange attractor of Lorenz.

We see in Fig. C.2 a multitude of loops that never repeat themselves and which circle
around two areas of phase space switching from one side to the other in an arbitrary
fashion. This diagram was called by D. Ruelle a strange attractor. On a closer inspection
of the Lorenz attractor we find that its trajectories are infinitely close together but never
intersect one another. Any part of the attractor where the spirals seem to join, contains
infinite numbers of trajectories. ~Yet, although the number of trajectories is infinite,
the attractor holds the system’s dynamics within finite boundaries, the latter being a
somewhat contradictory, incompatible term. Indeed, a chaotic attractor is in itself a
contradiction: an infinite number of trajectories of infinite length are contained in a
finite space. Another important property already mentioned here is its chaotic, random,
infinitely complex behavior. This gives rise to unpredictability symbolized by the butterfly
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effect concept mentioned earlier. The fractal nature of a strange attractor introduces
with it a non-integer dimension. Point attractors are zero-dimensional, limit cycles are of
dimension one (curves) and quasi-periodic attractors (tori) are two-dimensional (surfaces).
Curiously, the dimensionality of a strange attractor, as in general is the case for a fractal
object, is a real, non-integer number, say 1.74. A number like this can be obtained
through a rigorous algorithmic limit finding procedure which will be discussed in the
next section which deals specifically with fractals. Instead of the traditional time series
analysis, phase space trajectories revea | the implicate order present in chaotic dynamics.
Fig. C.2 schematically juxtaposes both ways of presenting data for a variety of modes of
behavior.

steady state limit cycle period three strange attractor
X Il X '
' time
series
£ 4 |4
X 1 . phase
pqrtralts

X A

Figure C.2: Time-series versus phase-space characteristics for several nonlinear modes of
behavior.

D: Fractals

Many pattern forming systems, especially when they are far from thermodynamic equi-
librium, exhibit a growth of forms which are of fractal nature [Feder (1988)]. Specific
examples include:

(a) Dendritic solidification in an undercooled medium;

(b) Viscous fingering phenomena which occur when two fluids of different viscosities
penetrate each other;

(c) Aggregation phenomena such as diffusion-limited aggregation; and
(d) Electrodeposition patterns of ions onto an electrode.

Some of these examples are graphically illustrated in Fig. D.1.

The basic property of all fractal objects is their self-similarity, i.e. when we cut a part
of the object and then magnify it, the resulting objects appear the same as (or at least very
similar to) the original object. Another property of fractals, which actually earned them
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(a) snowflake (b) viscous fingering

Figure D.1: Examples of fractals in nature.

their name, is that their dimensionality is not an integer but in general a real number. In -
the simplest form, the so-called fractal dimension D is given by the relationship

V(R) ~ RP (D.1)

where V(R) is the volume of the region bounded by the interface whose radius is R.
The notion of fractual especially as it pertains to geometrical objects was principally
introduced into science by B. Man delbrot. It was subsequently studied by many physicists
and generalizations of the definition were proposed, including multi-fractality. In the
physical context it is useful to distinguish two general classes of fractals:

(a) deterministic where a simple iterative rule is present, e.g. involving a procedure to

cut a part of the object at each stage and replace it with a fixed element, and

(b) random where a stochastic approach is used so that a given operation, e.g. aggre-

—

gation event, is predicted, with a preselected probability level.

Fractal objects can also be constructed algorithmically in two- or three-dimensional spaces.
Two famous examples of fractal objects existing on a plane are the so-called Sierpinski
gasket and the Sierpinski carpet (see Fig. D.2).

In a more rigorous sense, a fractal is a set of points in space for which the so-called
Hausdorfi-Besicovitch dimension D strictly exceeds the topological dimension Dr. While
the topological dime nsion is always an integer (1,2 or 3), the fractal dimension D is never
an integer but a real number. The latter quantity expresses the property of size scaling
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(a) Sierpinski gasket (b) Sierpinski carpet
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Figure D.2: Two examples of mathematical fractals.

with the distance from the centre of a fractal object. The fractal dimension presents a
way of quantifying properties that otherwise would have no clear definition. It expresses
the degree of roughness or irregularity of a fractal object. In Figs. D.1 and D.2 we have
given the fractal dimensions of the objects illustrated there.

E: Percolation Process

The concept of percolation was originally introduced to deal with the process of spreading
of a fluid through a random medium, for example oil or water in the pore space of a rock.
In general, the underlying mechanism of randomness in the process can be of 2 different
types: (a) the classical diffusion process introduces randomness to the fluid, and (b) the
percolation process introduces randomness to the medium’s structure.

A site percolation problem is based on a network of lattice sites which are either
occupied (probability p) or vacant (probability 1 — p). Two nearest-neighbor sites are
called connected if they are both occupied. One similarly defines a connected cluster.
There is a site percolation threshold p., above which an infinite cluster of connected sites
spans the network. In addition, one also defines the following important characteristics:

(i) the percolation probability P(p) which characterizes the probability that, when the
fraction of occupied bonds is p, a given site belongs to the infinite cluster of occupied
bonds.

(ii) the accesible fraction XA(p) is the fraction of coducting bonds belonging to the
infinite cluster.

(iii) the backbone fraction XB(p) is the fraction of conducting bonds in the infinite clu-
ster which participate in conduction (flow). '

(iv) the correlation length &(p) is the radius of the connected clusters for p < p. and
the length scale over which the percolating network is homogeneous for p > pe.

(v) the average number of clusters of size s, n,(p)
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(vi) the effective conductivity of the network, g.

It has been demonstrated that the above quantities satisfy simple scaling laws

P(p) ~ (p—pc)™ (E.1)
X4(p) ~ (p—p)* (E.2)
XB(p) ~ (p—pe) (E.3)

&) ~ (p—p)™" (E.4)

g.(p) ~ (p—pc)* (E.5)

(E.6)

Since, according to Einstein’s relation, the effective diffusivity D, is related to g. via
ge ~ neD. (where n, is the density of particles), we also have

D.(p) ~ (p — pc)*~**. (E.7)

We conclude that the behavior of percolating networks close to the percolation threshold
is insensitive to the lattic structure and to whether the percoloation process is a site or a

bond percolation problem.
Fig. E.1 below illustrates some of the scaling relations discussed above.
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Figure E.1: Typical behavior of some percolation quantities as a function of p, the fraction
of occupied sites in a simple cubic lattice.

F: Pattern Formation

A newly emerging paradigm of nonlinear science can be identified as pattern formation
and it involves effects in inhomogeneous systems out of thermodynamic equilibrium which
are subjected to external forces. Examples of pattern-forming systems are legion and
they range from convection in low-dimensional fluids (eg. the Rayleigh-Bénard effect,
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the Taylor-Couette flow) to solidification patterns (dendridic growth of the solid helium
phase in solution), to chemically-active media (spiral patterns in Belousov-Zhabotinskii
reactions), to biological systems (eg. growth patterns in morphogenisis).

Recent progress in the mathematical analysis of nonlinear differential equations, the
development of high-speed reliable numerical codes and the associated hardware, as well
as the advances made in statistical physics, all made it possible to investigate this broad
range of scientific problems within a single unified framework of nonlinearity at work.

The basic assumption is that nonequilibrium spatial patterns may be classified accor-
ding to the linear instabilities of an infinite, initially spatially uniform system when it is
brought away from thermal equilibrium by increasing a given control parameter (eg. the
temperature gradient or the flow rate). Generally, the observed instabilities fall into three
classes: (a) periodic in space and stationary in time, (b) uniform in space and oscillatory
in time. and (c) periodic in space and oscillatory in time.

Traditionally, it has been thought that we should select the state (a solution of the
underlying equation of state) that grows fastest with time. However, while commonly
true, various other mechanisms are known to exist in pattern selection which restrict the
available states. Examples of such effects include: boundaries, parameter inhomogenai-
ties, distortions, noise, etc.. A primary mechanism for pattern selection is through the
motion and interaction of defects since they provide a way for a region of space with an
“ynfavorable” pattern to give way to a more favorable one. It should be stressed that a
common feature of pattern-forming systems is the persistence of irregular bahavior (chaos)
over long periods of time under fixed external constraints.

Briefly speaking, the methods of analysis applied to these problems include linear
stability anaylsis, amplitude equations, perturbation methods, multiple scale expansions,
phase equations and a wealth of numerical methods. For more detailed information on
these technical aspects the reader is referred to an excellent up-to-date review by Cross
and Hohenberg (1993).

We close this brief overview of pattern formation with an example which is pertinent
to the subject-matter of this report, ie. a chemically active medium. In the simplest
version of the Oregonator model (see Sec. 2), one retains only the concentration X, of
the autocatalytic species HBrO, and the concentration X, of the transition catalyst in
the oxidized state (eg. Fe®*). The chemical dynamics is described using two coupled
nonlinear partial differential equations below

X

ﬁl = vf(X1,X2) + D\ V23X, (F.1)
and

axX.

—a—tz- = (Xl,Xg) + D2V2X2 (F2)

where D, and D, are the corresponding diffusion constants of the species and the functions

f, g are defined through
Xl —-a

Xy +a
g= Xl - Xg. (F4)
Depending on the values of the model parameters chosen (a, b and v), a very rich dyna-~

mical picture emerges with: oscillatory relaxation bahavior, front and pulse propagation,
periodic wave trains, target patterns and even spirals present. In Fig. F.1 we have shown

F=X(1- X)) —bXa (F.3)
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the formation of spiral patterns as obtained in a computer simulation. Fig. F.2 shows a
comparable experimentally-observed pattern.

(a) |,

Figure F.1: Schematic illustration of spiral pattern dynamics. (a) and (b) Formation of
a spiral by breaking a propagating pulse.

Figure F.2: Spiral patterns in excitable media. (a) Belousov-Zhabotinskii reaction pho-
tographed in blue light. '
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