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Surnmary

The problem of Acid Mine Drainage (AMD) poses a significant environmental danger in
British Columbia and other parts of the world involved in mining activities. Oxygena-
tion reactions responsible for the chemical generation of acidity have been, by and large,

identified. Thus far rather simplified modelling techniques have been used in the analysis

of these complex reactions that possess feedback loops characteristic of chemical chaos

systems. Our prima,ry objective was to provide an in-depth study of the basic reactions

in the AMD problem; to model the associated chemical kinetics and draw conclusions

regarding the predictability of these nonlinear processes.

Having derived the constituent difierential equations under several sets of conditions

we have applied modern analytical and numerical techniques to investigate the regimes

of behavior for both acid production and neutralization reactions. 'We have discussed

important factors in the determination of predictable and unpredictable ranges of behavior
which should be of much use in the prevention program. In the final two sections of the

report an outlook has been given for the next logical steps in the modelling of chemical

kinetics for the AMD problem. The report is supplemented with six Appendices that give

the reader an overview of nonlinear phenomena.
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Sommaire

Le problème du drainage minier acide (DMA) pose un risque sérieux de dommage
environnemental en Colombie-Britannique et dans d'autres endroits au monde où se
pratiquent des activités liées à I'exploitation minière. Généralement parlant, on a
déterminé les réactions d'oxygénation qui résultent dans la production chimique d'acidité.
Jusqu'à ce jour, des techniques de modélisation plutôt simples ont été utilisées pour
analyser ces réactions complexes qui ont des boucles de rétroaction qui caractérisent les
systèmes de chaos chimique. Notre premier objectif était d'effectuer une étude exhaustive
des réactions de base inhérentes au problème du DMA; d'élaborer un modèle de la
cinétique de réaction chimique qui lui est associée et de tirer des conclusions au sujet de
la prévisibilité de ces processus non linéaires.

Après avoir élaboré dans diverses conditions les équations différentielles
appropriées, nous avons utilisé des techniques numériques et analytiques modernes pour
étudier les modes de comportement dans le cas de la production d'acide et celui des
réactions de neutralisation. Nous avons examiné les éléments importants afin de
déterminer les modes de comportement prévisibles et imprévisibles, susceptibles d'être
utilisés aux fins du programme de prévention. Dans les deux derniers articles du rapport,
nous donnons un aperçu des nouvelles étapes logiques de la modélisation de la cinétique
de reaction chimique du DMA. Le rapport comprend également six annexes qui donnent
au lecteur un aperçu des phénomènes non linéaires.





Section L

Introduction

One of the major sources of environmental concern related to mining in general, and to
coal mining in particular, has been the so.called acid rock drainage (ARD). This term
describes contamination resulting from waste rock materials which contain such sulphide

minerals as, for example, pyrite and pyrrhotite. Natural oxygenation of sulphide minerals
occurs in rock which is exposed to air and water. Acidic drainage, if not neutralized by

such constituents as limestone and dolomite, may in general be generated [ARDPM] from
the following sources: (a) underground workings, (b) open pit mine walls, (c) waste rock

dumps, (d) ore stockpiles and (e) tailings impoundments. Once ARD formation has been

initiated, the process is very dificulty to arrest. Of course, the presence of alkaline rocks

may lead to a reduction in ARD by providing a neutralization potential. It should be

mentioned that ARD is a world-wide problem in mining operations and its impact on the

environment can be quite severe due to the toxicity of heavy metals and other products

as has beên witnessed, for exa,rnple, in Norway.
It is, therefore, extremely important to understand the processes involved in the ARD

formation so that protective mear¡ures can be taken early in time. The most cost-effective

method of reducing the impact of ARD is accurate prediction. However, as will be dis-

cussed later in this report, the complexity of the chemical reactions involved precludes an

easy and simple approach to the problem of prediction. The chemical processes are not

only strongly dependent on external conditions (such as the prevailing weather conditi-
ons) and the geology of the terrain but, perhaps more importantly, they involve feedback

loops making the problem inherently nonlinear. Competition between neutralization and

acid potential complicates the problem even more. To the best of our knowledge, most of
the earlier models studied in this connection did not include this aspect in their analyses.

A notable exception of modeling that included competition between acid generation and

neutralization are the studies of Scharer et al. (1993) exploring models for tailings and

Jaynes et al. (1984) in regard to coal spoils. We believe that any accurate model must

account for this aspect to be successful.

This project has been chiefly concerned with the modelling of nonlinear kinetics of the

chemical reactions present in both acid production and neutralization that are associated

with the ARD processes. Since the conceptual framework involved is based on a range

of novel scientific ideas, we have decided to include a section that deals exclusively with
a pedestrian-level explanation of these important concepts. 'We discuss later in the text
and in the Appendices nonlinear kinetic equations, phase-space descriptions, limit cycles,

chaos and fractality, all of which are of significance to the problem studied. They will
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SECTION 1. INTRODUCTION

play a key role in the modelling techniques employed later on to the chemistry of the
ARD processes. The following section provides an overview of the ARD chemistry to the
extent available in the literature on this topic. The main part of the report then follows
and it addresses the questions of:

(a) Deriving the equations of chemicalkinetics for both acid production and acid neutra-
lization reactions. (The presence of reverse reactions and inflow-outflow conditions
will be discussed sepa,rately in this context.)

(b) Solving the derived equations under a range of conditions that are model dependent.

(c) Setting up and solving kinetic equations that efiectively include the porous nature
of the rock medium.

The final section of the report is a discussion of the obtained results and of the need for
further improvements in the modelling techniques. Of particular importance will be the
requirement to account for the inhomogeneity of the medium. This will lead us to propose

a modern approach that includes the fractal character of the porous rock structure.
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Section 2

Nonlinear Chemical Kinetics

2.L l{omogeneous Media
In this subsection we develop our primary topic of interest, i.e. the modelling of nonlinear
chemical reactions. The reader is referred to the Appendices for general information on the
role of nonlinearity which may be necessary in order to properly analyze the complexity
of the problem at hand. The important factor in our discussion will be the presence of
autocatalytic reactions. As one of the simplest examples imaginable consider the reaction:

A + 28 5 sn (2.1)

where ,b is the reaction rate and it is assumed that the reaction takes place in a continuous-
flow stir¡ed reactor as shown below.

Denoting the concentrations of the chemical species A and B as a and ó, respectively,
we find the relevant equations describing the time evolution of a(l) and ö(t) as

da

dt = -kab' (2.2)

¡¡2çtof

input -+ -+ oùÞut

$írrcr

Figure 2.i: A schematic of a continuous-flow stirred reactor.

b



SECTION 2, NON¿INEA R CHEMICAL KINETICS 6

{ = Irob,dt 
(2'3)

If we allow reverse reactions to take place at a rate fr-, so that the equilibrium constant

for the formation of A from B is E : lc- lle , i.e. we have [Gray (1988)]

k
A+28 + 38

k-
(2.4)

the corresponding equations now take the form

-lcab2 + ,t-bg (2.5)

(2.6)kab2 - Ie-b3

'We note here that the terms on the right-hand sides above are proportional to the product

of the concentrations corresponding to each type of the molecular species reacting.

An additional feature of these types of reactions may be the presence of flows through

the tank. If the net outflow rate is k¡ where:

k¡ : outflow rate/reactor volume

then the time evolution equations take the final form

d,a,

dt
db

dt

9 : k¡(o"- a) - køb2 + Ic-b3 (2.7)

dbY : k¡(b"- ô) + Ieab2 - le-bt (2.8)

where oo and bo represent reactant concentrations at the input port of the two species

involved.
A very well studied example of a potentially chaotic chemical reaction is the Belousov-

Zhabotinskii reaction [Baker et al. (1990)]

k¡
A+B+C

Ie,

(2.e)

carried out in a container with a flow rate r for reactants A and B. The governiug

equations are

dA

= 
: -krAB + lç,C - r(A - A") (2.10)

dt¿'
dB

= 
: -ktAB + k,C - r(B - B") (2.11)

dt
dC
E -- *k¡AB - lc,C - rC (2'12)

where .Ao and Bo are the respective reactant concentrations at the input port. If I :-0,
the reaction proceeds to equilibrium. If r is large, the materials are exhausted from the
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container before they have time to react. However, for i,ntermeiliate values of r the sy-

stem exhibits both chaotic and time'periodic states. The important aspect to point out
is the open nature of the reactor and the rate of flow r as a control parameter. Experi-
mental studies confirming these predictions abound and they involve catalytic reactions,
enzyme reactions and another important example, the decomposition of SO!-. They
were observed both in homogeneous and surface catalytic reactions [Cvitanovió (1984)].
The important factors are the autocatalytic character of the reactions through a feedback
mechanism [Glansdorff et al. (1971)] and the stirring process that maintains homogeneity.

Let us consider two more examples which are intended to illustrate different types of
behavior. The three coupled reactions below [Glansdorff et al. (1971)] described by the
reaction chain

t

X+Y (2.14)

and

(2.15)

include two autocatalytic steps (the first and second reactions) and an uncatalyzed con-

version (the third step). The global reaction is A * .E and the equilibrium concentrations
axe:

(#)",
le-Je-zk-s

Neglecting the inverse reactions (frt : Icz = ks : 0) gives the kinetic equations in the
form

(2.r7)

(2.18)

Their analysis yields a single non-v¿nishing steady-state with

,.:3r, ,: Loo (2.1e)

which supports stable periodic oscillations around this focus point. They are represented

by
X(t): Xo ¡ tei'ti y(¿) - Y + yei't (2.20)

with the oscillation frequency: u: !r,/W.
However, a difierent picture emerges when we investigate the following system of four

reactions:

Iq
A + X (2.21)

Ic-t

A+X

lclezles k_r
Xec Yc=#^

Y

kt
+2X
å-1

k2

+2Y
k-2

ks

+E
k-g

(2.13)

(2.16)
k1

#=ktAX-kzxy

#: kzxy - ksy.
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lez

2X+Y + 3X (2.22)
k-z

'tsB+x + Y+D (2.23)
,t-¡

and
Iea

K + E (2.24)
lc-q

where the second step is autocatalytic. The overallreaction is: A* B è E *D and the

equilibrium conditions give

8

lc/eq D lczks
(2.25)

Ic-le-t' B k-zk-s

Assumingfor simplicitythat let :lcz- ks=lee: I and å-1 - k-z: k-s - k-e = ß, we

obtain the kinetic equations as

+- A+x2y - BX - x +k(YD+ E -x -x') (2.26)
dt

# = BX - x2Y + k(x' -YD). (2.27)

The steady-state solution is

x^:A+k.E ' kx:+Zx^. (2.2g)'ro-- l+k; 'o:illÆin,
Normal mode analysis for these coupled equations leads to a neïv behavior characterized

by u,¡x instability of periodic oscillations about the steady state beyond the critical value

of B which is B" : L + A2. For B 1 B" alimit cycle replaces a focus point as a stable

solution in a process called a bifurcation.
The behavioral patterns discovered by Prigogine and his associates are characteristic

of a class of multidimensional vectorial evolution equations of the type

dxr = Í@) (2.2s)

where /(x) is a nonlinear function of x and x: (xr,x2¡...,x.) represents the concen-

trations involved. The objective in their study is to find stable attractors and determine

possible bifurcations [Glass et al. (1988)]. The use of Lyapunov theory of stability is of

great help.
These models have been extended to a much larger chain of coupled reactions, for

example 7 in ref. 12. State'of-theact computer ðodes can handle up to 20 coupled varia-

bles but, in most cases, the main features can be obtained by studying several (typically
three) skeleton reactions (e.g. the Oregonator). The observed behavior usually indicates

the existence of periodic regimes with their basins of attraction as well as regions of chae

tic behavior and intermittency. Therefore, depending on the details of initial conditions

and control parameters the system rnay or may not be predictable [Vidal et al. (1984)].

f"e:Yrrr:*n-. ortU

and
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2.2 Reactions in Porous Media
Very recently, applications of Prigogine's theory have been extended to heterogeneous

reactions in porous materials which is of particular importance to geochemistry [Kopelman
(1986)1. The key to the modelling of such reactions is to evaluate the size of the effectively
explorãd space per unit time, i.e. the efficiency of the random walker (reactant). The
actual exploration volume of the random walker, denoted .S, is a fractal object whose

effective volume grows only (approximately) aß V2/3 where V is the diffusion space volume.

Here, V - trrs where r : Dt and D is the diffusion constant. If the molecules execute

coherent mõtioo or if the exploration space is isotropic, then S - t and, as a result, the

reaction rate k is constant since & - d,Sldt. The latter quantity, dsldt, is also referred

to as the efrciency of the walker. However, for locally heterogeneous media (e.g. porous

media), the exploration volume ^9 is a function of time characterizing the medium. It was

found through computer experiments that in general

S - td'12 (2.30)

where d" is the spectral dimension of the fractal medium. Consequently, the reaction rate
is

le - t-h (2.31)

vihere h = L-+ ff d" 12, and /¿:0 if d" ) 2. In particular, for a homogeneous

medium, d, : dr: 3 and h -- 0 giving a constant reaction rate, as expected. It was also

found [Kopelman (1986)] that in the ca.se of a onedimensional pore (d - d" : L),h.: T.
More impártantly,perhaps, for percolating clusters in both d=2 and d:3, d": $ and

consequently h : $. The same is true for diffusion-limited aggregation and for a random

fractal. In our applications to the AMD problem we will therefore use the latter result

and assume in our simulations that lc - frls in order to account for the porosity of the

medium.

I
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Section 3

The Chemical Processes in AMD

S.L Introductory Comments

Acid generation is caused by the exposure of rock containing sulphide minerals, principally

pyrite (FeS2) to oxygen and water. This results in the production of acidity and elevated

concentrations of sulphate and metals as a consequence of the oxidation of sulphur in the

mineral to a higher oxidation state and the precipitation of ferric ion water hydroxide, if
possible.

The abitity of a particular rock sample to generate acidity is dependent on the relative

content of acid generating minerals and acid consuming ones. The latter ones participate

in the process of neutralization. Both acid generation and acid neutralization are complex

multi-step chemical reactions with complicated behavior that depends on many external

and internal factors. The net effect in the process of ARD is determined by the balance

between (a) acid generation caused by the exposure of sulphide minerals in rock to air

and water and (b) neutralization of acid upon contact with acid-consuming minerals.

The oxygenation reactions are often accelerated by biological activity which is very

significant (see Fig. 3.1) but at this stage we will not attempt to include this aspect in

ori, uouly.is. Crystalline substances which contain sulphur combined with a metal or a

semi-metal but no oxygen are called sulphide minerals and below we list some of the most

commonlyfound [Glansdorff et al. (1971)]: pyrite (FeS2) and pyrrhotite (Fe1-''9) which

play the most dominant role, as well as several less important sulphides such as marcarite

lr"sr), smythite, greigite (Fe3,Sa), mackinawite (.Fe^9), chalcocite (cu2s), etc. In the

analysis below we practically assume that only pyrite is responsible for AMD processes.

The reactions triggered yield low pH water which can mobilize heavy metals contained

in the waste rock and its surroundings. Through water transport the resultant drainage

carries elevated metal levels and sulphate into the receiving environment"

3.2 Acid Generation
The main pathway to acid generation involves pyrite_(^F",Sr) and its chemistry is known

to occur through the following stages: [DARDTG v.1]

(1) direct oxidation of the sulphide mineral into dissolved iron, sulphate and hydrogen

Fe.sr(s) *Iorfnl * Hzo \ F"'* + 2sol- (aø) + 2H+ (aq) (3'1)

10
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Sulphide Oxidation Rate (Normalized)

o t23456
pH

Figure 3.1: Sulphide oxidatioû as a function of pH following ref. 16

which elevates acid of the water a¡d thus lowers its pH.

(2) Provided the supply of oxygen in the environment is sufrcient, ferrous iron oxidizes

to ferric iron

Fe2+ +Lrort") + H+("q) ? Fe3+ + îrro. (3.2)
lc-2

(3) Ferric iron then precipitates as Fe(OH)s at pH r¡alues above 2.3 to 3.5

,tg

Fe3+ + 3H2o + Fe(oï)s+ 3ã+ (3.3)

Ê-g

resulting in the lowering of pH.

(a) Any remaining amount of Fe3+ cau be used to oxidize additional pyrite from the

reaction (1) providing a feedback loop

FeSz * LAFes+ + 8H2O \ tl["'* + 2SOl- (øq) + 16¡/+(cq). (3.4)

This set of reactions (3.1), (3.2) and (3.3) can be graphically illustrated as shown in

Figure 3.2IDARDTG v.1].

7

Biological

Ghemical
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FeS ,* o
2- 2+

SOo+ re

t2

2+
Fe+5

,-

2

.¡ Oz

Slow

Fast

FeS,

2+
Fe

Figure 3.2: Graphical illustration of the combined reactions (3.1), (3.2) and (3.3).

A combination of the first three reactions gives acidic leachates according to

Fesz*lor*Ir"o + Fe(oH)s+zso!- +4H+ (3.5)

which applies mainly to low pH pyrite oxidation, while including all the reactions other
than the third produces

Fesz**o, * *r""* +Lln"o -']r"'* +zsol- **"* (8.6)

which is schematically shown in the diagram above and applies to high pH pyrite oxidation.
Fig. 3.3 shows the above reactions as occurring in three distinct stages:

- Stage I (alkaline), mainly chemical oxidation occurs producing alkaline drainage with
elevated sulphate and metals.

- Stage II (transitional).

- Stage III (acidic) results in elevated sulphate levels and acidity. Acidity here is a mea-

sure of accumulation of Fe2+, Fe(OH)2+, AI3+ and HSOa. Unless neutralization
processes take place at significant levels, there is a strong correlation between the
amount of sulphates and acidity.

We have summarized the properties of the four constituent reactions in Table 3.1

below following the report of Otwinowski [Otwinowski (1993)]. Each reaction rate k¡(i :
L,2,3,4) is believed to be dependent on temperature through the Arrhenius relation

ft; : Á; exp
Ei(T -T") (3.7)

RTTo

where T is the temperature in degrees Kelvin, E¡ is an activation energy, .R is the gas

constant and 4 is a characteristic temperature.
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Figure 3.3: Stages in the formation of acid rock d¡ainage following ref. 16.

3.3 Acid Neutralization
On the other hand, there exist several acid consuming minerals, such as calcite (CaCOs)
and gibbsite (AI(OHs)) that neutralize the products of oxidation through the following
types of reactions:

CaCOs(s) + H+ -> Ca2+(aq) + HCO; (aq) (3.8)

CaCOs(s) +2H+ -> Co2+(ag) + UzCOr-(oq) (3.e)

AI(OHV + 3¡/+ -> Al3+ +3H2O. (3.10)

The balance between the two types of processes (acid production and acid neutralization)
determines the net amount of acidity.

As was mentioned earlier, our interests lie in studying the kinetics of the chemical
reactions discussed here and in the determination of the influence of both external condi-
tions and internal composition on the overall rate of ARD. In the next section we derive

F.*l +

or

and
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Table 3.1: A summa,ry of characteristic properties

following Otwinowski (1993)'

of the four reactions in eqs' (3'1)-(3'4)

the equations governing the nonlinea¡ chemical kinetics for both acid generation and acid

neutralizatioo pro""rrå. This wilt be followed by numerical modelling under a diverse

range of conditions.

Rate Activation EnergY pH-dependence

(1) k1 X1 crn E Et:57 È 7.5kJ/mot pH independent uP to PH=7'

on
lqn=1.66xL}-søtrn -1 s-1

fot pH < 3.5; To:25oC
lczz :
4.0 x 10-6M-løfnr-ls-r for
pH <2iTo=30oC
Iczs

1.33 x lgts ¡Y¡ -z o¡nr.-ls-l for

= 25oC

Ez, = 74 kJ/mol for
pIl < 3.5
Ezz :85 kJ/mol for
3.5 < pH <5
Ezs :96 kJ/mol for
pH>5

pII independent uP to PH=3'5'
frrst order w.r.t. OH- for

3.5 < pH <5.

second order w.r.t. OH- lor
pH >5.

(4)
x qn

Ee :90 kJ/mol. complicated





Sectiorl 4

Modelling and lts Results

In this section we set up the equations for the chemical kinetics of the AMD problem and

then provide a host of numerical results obtained under difierent conditions. We analyze

separately the two groups of reactions, i.e.: (a) acid production and (b) neutralization
reactions. In the last subsection we deal with the issue of the modelling of chemical

reactions occurring in porous media.

4.L Acid Production (Homogeneous Medium)
The four reactions studied here are:

lc1

zFeSz *7Oz *2H2O + 2Fe2+ + 4So1- +2H+ (4.1)
lc-1

lcz

4Fe2+ * Oz * 4H+ + 4Fe3+ + 2H2O (4.2)
k-2

lcs

Fes+ + 3H2O + Fe(OH\ + 3/l+ (4.3)
lc-s

ka

FeSz i L4Fe3+ + 8H2O + r5Pe2+ + 25024- + 16¡/+. (4.4)
le -a

For the sake of convenience we introduce the following notation for the concentrations of
the chemical species present

Xt = lFeS2l; X2 = lO2l; X3 : [H2O]; Xe = lF"'*l;
Xs: lsol-h )fu - [¡f*]; X7 =lFe3+l; Xa = lFe(OH\l

For all practical purposes the above reactions are not reversible due to the large free

energy of reaction involved. Since our analysis did not become much more complicated

by the inclusion of reverse reactions and we set out to investigate the most extreme role

nLnlinearity may piay, we nonetheless performed several simulation with the presence of

15



SECTION 4. MODELLING AND ITS NESUITS 16

reverse reactions. Based on the discussion provided in the previous section we set up the
equations of chemical kinetics for these processes as follows:

x, : -hx?xtrxï - k4xÅ+4x3 (4.5)

(4.6)*, = -lu,*?xîx\ - k2x1x2xâ

*, : -klx?x|xt + zk2xlxzxâ - kexzxS - Bkrx:xlíxS Ø.7\
*n = k\xlxTxS - 4k2xtx2xâ + L5k4xÅ+4xg (4.s)

& : zhx?xTxï +2k4xÅ+4x3 (4.e)

xu _ hx?xTxï - 4lr2xîx2xun + ksx7xï + L6k4x:x+4x3 (4.10)

x, = 4k2xîx2xâ- ftrxrxi -L4k4xtxl4x3 (4.11)

& : kexzxï Ø.12)

Note that at this stage we have not included the possibility of either reverse reactions, or
inflows into and outflows out of the system. The above equations automatically satisfy
mass balance and we checked it numerically for all our solutions. We should make here

an important qualification. The equations we derived above a,re only valid for elementary
reactions. in realit¡ the stoichiometric coeffcients imposed above can not be used a
priori as the order of reactions for complex reactions. Hence, the order of reactions must
te determined empiricatly. This efiectively means that the approach we present here

is simplified for the purpose of ma.king the analysis easily tractable. It represents the
most extreme scenario from the point of view of nonlinea¡ity of the equations studied.

However, at present ïve are unable to make the analysis more realistic for the lack of
reiiable experimental data.

Having no precise knowledge regarding the reaction rates we have run several trial
computations with a range of test values of both initial values of concentrations and

reaction rate magnitudes. Our findings are illustrated in Figs. 4.1+.8. In Fig. 4.L-
a.8 (and also further below) we have normalized the concentrations of all the chemical

species {Xr,...,Xr} to be within the 0 to 1 range,0 mea''ing completedepletion and I
complete saturation. This has been dictated by expediency and simplicity. We do not have

precise knowledge of the abundances and reaction rates but at this stage we were mainly
interested in qualitative behavior. The time n¡iable is also scaled and is represented in
a,rbitrary units. However, in reality the time units will be those of the slowest reaction

in the cLain. Comparing with Figs. 5.1*5.4 we can make an educated guess and identify
one time unit in our diagrams with approximately 1(Þ15 days of real time. The initial
points (ie. those at t : 0) were selected in several possible ways in order to examine

,¡arious feasible situations. For example, it was commonly assumed that Fe.9z, Oz and

H2O are initially at their saturation levels while the remaining five species are, in the

beginning, not present. As the reader may see from the figure captions, other p'ossibilities

were also considered. The reaction rates were all set at unity except for Fig. 4.4 where

lez : lce: 0.1 (with very little change in the qualitative behavior). The numerical codes

used in these simulations are very reliable and give consistant, reproducible results. We

have a mea5ure of confidence in our findings and intend to perform more computations

with different input data in the future. As the reader may easily appreciate, the problem

is not computational in nature, but rests with obtaining a reliable set of empirically-based

input data.
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We have studied the above equations under a number of difierent conditions as well.
What emetges, however, can be summarized as a rather smooth and regular tendency of
all the chemical species involved to reach their equilibrium concentrations. This is the
case whether ïye change the initial concentrations or rrary the reaction rates for the various
reactions. Therefore, at this stage of modelling complete predictability of these processes

seems virtually guaranteed and no hallmarks of chaos or irregularity have been found.
In the next step of our investigation we attempted to find out if the behavior of the

system significantly changes when reverse reactions .are allowed to take place. To this end

we assumed that k-z # 0 and k-s t 0 leaving å-r : k-q:0. The relevant equations are

different and they now become

*,
X,

*,

Xn

*u
*u

_ -hx?xIxï - kFxrxl{xï
: -f,t'rxixixS - k2xîx2xâ + k2xîx3

-kÅ? xlxS + 2tezxî xzx! - tksxzx8 - 8k? xÅ+4 x3

-2k2xlx3 + 3å3x8xå (4.15)

kÅlxtrxT - Akzxâxzxâ + tsknxrxl4xï + 4k-2xlx3 (4.16)

zkLxlxtrxï + 2k4xx|4x3 (4.17)

kLx? xIxS - 4k2x1x2xâ + 3hx7xå + L6k4xÅ].4x3

+4k-2x1x2 - 3e-sx8x3 (4.18)

4k2xîxzxâ - ksx¡xï - L4k4&x+4x3 - 4k-rxlxï + È-sx8xå (4.19)

1f!r.x7x3 - fr-.xrx8 (4.20)

(4.13)

(4.14)

Xz:
Xr:

A sample result of our numerical simulation of this system is shown in Fig. 4.9 where

we have exaggerated the efiect somewhat by assuming that the reverse reaction rate is

half of the forward rate. Nevertheless, what we obtained indicates a by and large smooth

behavior and, again, a tendency towards equilibration . There is a short-lived period of
non-monotonic behavior close to the begin''ing of the process but it rapidly gives way to
the asymptotic trend towards equilibrium.

In the final stage of modelling the acid production processes rve allow the presence

of inflows into or outflows from the system. This applies to the abundances of water

and oxygen. As a result, the only reactions that a¡e afiected by this change of prevailing

conditions are

xr: -Iktrxfxlx! - k2x1x2xâ + k-2xîx3 - k(x, - xù (4.21)

*s: -fuxlxixt +zkzx/x2xâ -2k-2x+x3 -ïlesxzxï
+3,t4x8x3 - 8k4I.rxl4x3 - Íz(xs - xr) (4.22)

where f2 and. fs arcthe mean flow rates for oxygen and water, respectively, while -*2 and

i3 represent the equilibrium values of the oxygen a¡d water concentrations, respectively.

What follows is a selection of modelling results for a variety of initial conditions,

reaction rates and flow rates. Fig. 4.10 illustrates the efiect of flow rates on the ch*
mical kinetics. It is assumed here that no reverse reactions are present. Note again the

smoothness and regularity of the resultant behavior.



SECTION 4, MODELLING AND ITS RESULTS 18

In Figs. 4.11-4.18 we illustrate the behavior when both reverse reactions and flow

rates are nonzero. The first group of diagrams shows the chemical kinetics for positive
flow rates (Figs. 4.11-4.13) while the second group (Figs. 4.13-4.18) allows one or both
of the flow rates to be negative.

To summarize our findings in this part we emphasize the very sensitive dependence

of the chemical kinetics on the flow rates. This is evident for both positive and negative
flow rates. In the former can¡e, a drastic difference is clea^rly seen iú the intermediate time
range on going from Fig. 4.11 to Fig. 4.12 resulting from a change in the magnitudes
of /2 and /s. Asymptoticall¡ however, positive flow rates result in a long-range smooth

relaxation towards equilibrium concentrations. On the other hand, when one or two flow
rates become negative, this leads to the emergence of divergent behavior in the associa

ted generation of a given species. Simultaneously, the irregular, non-monotonic region of
behavior is substantially extended in time.

4.2 Acid Production (Porous Medium)
As discussed in subsection2.2, the net result of porosity in the mediumwhere chemical

reactions take place is that the reaction rates become strongly time dependent. It was

argued earlier in this report that to effectively account for the porosity aspect of the
medium, the chemical reaction studied must be assumed to have reaction rates such that

[Kopelman (1986)l
k¿ : ft?¡-rls (d : 1,2,1,4\. (4.29)

In order to study this efiect we repeated our numerical modelling with the above conditions

built into.the coupled equations for chemical kinetics. Our results a¡e summarized in Figs.

4.19-4.22.
What emerges from the diagrams above is an even more sensitive dependence on the

flow rates for these reactions in a porous medium as compared to a homogeneous medium.

Regions of transient non-monotonic behavior a¡e extended in the time domain and much

of the regularity has been removed. Strictly speaking, the long-time behavior presented

in Figs. 4.20-4.22 contradicts the assumptions built into the model since some of the

c¡ncentrations involved exceed their saturation r¡alues of one. One can deal with this

by either further rescaling or a change in the initial conditions or, finally, by restricting
the time y¿riable. It should also be added that all these diagra,rrs involve inflow-outflow
conditions a¡d hence the total mass is not conserved within the system over time.

An interesting observation based on this set of simulations can be made that the

prevelence of monotonic growth or depletion characteristic of homogeneous models is

here destroyed by the assumption that the medium is porous. The fractality of the rock

(see discussion in Sec. 5.3) implies time.dependent reaction rates which lead to often

non-monotonic chemical kinetics. It appears obvious, however, in view of earlier remarks

that the scaling laws such as eq. (4.23) should have validity over a limited range of time,
or conversely should be tempered by saturation factors.
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4.3 Acid Neutralization Reactions
The main acid neutralization reactions are

CaCOs+ H+ \ Cø2+ + HCO;
CøCO.+2H+ Y+ Ca2+ + H,,Cos

At(OH)s+ 3H+ S AP+ + 3H2O

19

(4.24)

(4.25)

(4.26)

(4.27)

where Ku Kz and Kg are the associated reaction rates. For simplicity, we have introduced
the following symbols for the concentrations of the chemical species present:

Yy =lCaCOsl; Y2=lH+l; Ys: fCaz+l; Vn: lHCOll;
Ys : lH2C Osl; Y6 : IAI(OH)¡I; ç : lAls+7; Ys = lH2Ol

Using the sa¡ne technique as in the preceding subsections we derive the kinetic equa-
tions for acid neutralization as

h : -KtYtYz - KzYtYÎ (4.28)

Y, _ -K1Y¡Y2 - 2K2YY; - 3r.f,Y6Y; (4.29)

Y" = KtYtYz+ K2Y:Y; (4.30)

Y, = KtYYz (4.31)

Y, : KrYtY] (4.32)

Y" : -KLY6Y; (4.33)

Y, : KLY6Y¡. (4.34)

Y" : 2KIY6Y; (4.35)

This system is much simpler than the one fo¡ acid production and the order of non-
linearities is also significantly reduced. In fact, due to their structure, the equations on
Ya,YerYs and Yt are effectively decoupled from the remaining three and the dynamics
is governed by the equations on Yr, Yz and %; the other four concentrations are solely
determined by the results from the interplay between Yt,Yz and Y6. Not surprisingly,
our numerical modelling of the acid neutralization reactions produced a very smooth and
predictable behavior. This is illustrated on a sample result given in Fig. 4.23. We see

that all the species concentrations follow monotonic curves to their equilibrium values.

We conclude that the process of acid neutralization should be primarily determined by
the abundance of CaCOs, H* and the equilibrium reaction rates. No indications of non-
linear stochastic or chaotic behavior have been found and no challenges to the problem
of predictability seem to be ofiered by this set of reactions. This is, of course, in contrast
to the acid production reactions discussed above where a substa,ntial amount of unpre-
dictability exists due prima,rily to the two factors: (a) porosity of the medium and (b)
flow rates of oxygen aud water. Note that acid.neutralization reactions do not seem to
be dynamically coupled to the reactions of acid production. It is probably safe to assume
that pH oscillations that ca¡ be observed just prior to acid generation a¡e a result of this
setup. Thus, such oscillations could be considered a good predictor of the onset of AMD
process.
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Figure 4.1: Chemical kinetics of the acid production reactions assuming: X1(0) - X2(0) :
X.(0):&(0):1,X¿(0) :Xu(0) :Xu(O) :Xr(Q) - 0 and kt:kz -k3: k¿:1. No
inflow-outflow conditions and no reverse reactions are present.
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Figure4.4: Chemicalkineticsof theacidproductionreactionsassuming: X1(0) : X2(0):
Xr(O) - 0,X¿(0) = Xu(0) : Xu(0) : Xt(0) : Xr(Q):0 and let=ka - 1.0,k2:lcz-
0.1. No inflow-outflow conditions and no reverse reactions are present.
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Figure 4.5: Chemical kinetics of the acid production reactions assuming: X1(0) : Xr(0) :
Xr(Q):1,X¿(0) : Xu(Q) :...: Xr(Q) = 0 and let: lez - lca: let: I. No inflow-
outflow conditions and no reverse reactions are present.
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Figure 4.6: Chemical kinetics of the acid production reactions assuming: X1(0) : X
x.(0) : xn(O) : 1,xr(0) : xu(O) = xr(O) : xr(0) : 0 a¡rd lq : lcz - let - lea -
inflow-outflow conditions and no reverse reactions are present.
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Figure 4.7: Chemical kinetics of the acid production reactions assuming: Xr(0) - X2(0) :
Xr(O) : X¿(0) : Xu(Q) : f,X6(0) : Xt(O) : Xr(Q) : 0 and kt : lcz- ks : å¿ : 1. No
inflow-outflow conditions and no teverse reactions are present.
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Figure 4.8: Chemical kinetics of the acid production reactions assuming: X1(0)
Xr(O) : Xu(O) : 1'X¿(0) : Xr(0) : Xt(0) : Xr(O) - 0 and kt : kz- å3 :
inflow-outflow conditions and no reverse reactions are present.
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Figure 4.9: Chemical kinetics of the acid production reactions assuming that Xt(O) :
... - X.(0) : 1, kt: kz - ,t3 : lee=t and k-2 - k-s:0.5.
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Figure 4.10: Chemical kinetics for the acid producing reactions assuming that Xr(0) :
... : X*(0) : 1, kt : lez - ks: k¿ : l, no reverse reactions are present, the flow rates
are /2 : .f¡ : 0.5 and the equilibrium concentrations ar" X2 : Xs : 0.1.
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Figure 4.11: Chemical kinetics for the acid producing reactions assuming that Xr(0) :
... *X.(0) :1, kt:kz - å3:ka:1, lc-z: k-s: fz: h:0.5 and Xz:Xe:0.1.
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Figure 4.12: Chemical kinetics for the acid producing reactions assuming that Xr(0) :
... : I8(0) : 1, kr - lçz = ks : kq : l, le-z - k-s = 0.5, fz : fe: 1.0 and
Xz:Xs:0.5.
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Figure 4.13: Chemical kinetics for the acid producing reactions assuming that X1(0) :
xr(0) : x.(0) : I, x4(0) : ... _ xr(Q) : 0, kr - lez : lce : Ic¿ : 1,, lc_z- fr_s : rz :
.f¡ :0.5 and Xz : XB :0.1.
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Figure 4.14: Chemical kinetics for the acid producing reactions assuming that X1(0) -
Xr(O) : Xr(0) : 1, X¿(0) : ... : Xr($) : 0, kr - kz : ks : lrq : I, k-z- k-s : 0.5,

fz: -0.4,.fs : 0 and X2 : Xs : 0.1.
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Figure 4.15: Chemical kinetics for the acid producing reactions assuming that X1(0) :
Xr(0): X.(0):1, X4(0) =... = Xr(Q):0, &r - lez:lcs:ke:!,k-z: å-s - 0.5,
fz :Q;,fs: -0.4 and X2 : Xs:0.1.
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Figure 4.16r Chemical kinetics for the acid producing reactions assuming that X1(0) :
Xr(0) : Xu(0) : 1, X4(0) : ... : X.(0) : 0, frr - lez : kt : kq : 7, k-z: k-s : 0.5,

f, : f": -0.5 and f,2 : Xs : 0.1.
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Figure 4.17: Chemical kinetics for the acid producing reactions assuming that Xt(0) :
xr(0): x.(0):1, x4(0):...: xr(Q):0, kr - lez:les: leq:l,k_z = å_g:0,
fr: h: -0.5 and X2 : Xa = 0.1.
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Figure 4.18: Chemical kinetics for the acid producing reactions assuming that Xr(0) :
Xr(0): Xu(O) :1, X4(0) :...: X*(0) = 0, kr - lez: lcs: kq:I,k-z: k-e:0,
,fz: -0.5, and /3:0 and Xr: X¡:0.1.
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Figure 4.19: Chemical kinetics for the acid producing reactions in a porous medium with
the assumption that X1(0) : Xr(O): Xr(O) - 1,X¿(0):...: Xr($) :0,/2:,fs:0.5
and Xz - Xs:0.5.
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Figure 4.20: Chemical kinetics for the acid producing reactions in a porous medium with
the assumption that X1(0) =... = Xr(0) :I,fz:.fe:0.5 and Xz= Xe = 0.5.
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Figure 4.21: Chemical kinetics for the acid producing reactions in a porous medium with
the assumption that X1(0) : ... = Xr(O) : I, fz* 0.5,,fs : -0.5 and Xz: Xs = 0.5.
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Figure 4.22: Chemical kinetics for the acid producing reactions in a porous medium with
the assumption that X1(0) -... = Xr(0) :I,fz - -0.5,"fs:0.5 and Xz: Xe:0.5.
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Figure 4.23: Chemical kinetics of the acid neutralization process where we have assumed
that f1(0): %(0) : %(0) - 1,Ys(0) = yn($) : yr(Q) : yr([) : yr(Q):0, and that
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Section 5

Discussion and F\rture Outlook

S.L Summary and Conclusion
The present report has outlined the activity that has been undertaken within the frame-

work of the above project.
First of all, a very extensive literature survey encompassing both geochemical analyses

regarding the acid mine drainage problem and the reievant aspects of nonlinear chemical

kinetics has been carried out. We have found detailed analyses regarding the primary

chemical reactions involved in acid production. Qualitative aspects of chemical kinetics,

such as which reactions a¡e slow and which ones are fast can be readily found in the

literature. Detailed characteristics in terms of activation energies and reaction rates were

independently described by Dr. M. Otwinowski who submitted a parallel report.

In terms of nonlinear chemical kinetics we now have all the required information

needed to solve the problem at hand. Several factors emerged as important theoretical

considerations which were included in the numerical work described above. These are:

(i) inflow-outflow ratios for water which will be strongly correlated with the porosity of

the rock and seasonal variations. such as rainfall, (ii) porosity of the medium, in contrast

to the rather crude assumption about its homogeneity has been included in our model.

Moreover, the inclusion of uncatalyzed reactions may be of importance in modelling,

. We found that the efiect of medium's porosity and size distribution of the rock can

be accounted for by introducing time'dependent reaction rates. The time dependence

required takes the form of po$¡er laws with exponents that are functions of the fractal

dimension. The latter, in turn, is a characteristic quantity defining the structure of the

rock and must be determined experimentally first (see Sec' 5.3)'

The second stage of our work consisted in analyzing in detail the chemical kinetics

in the AMD problãm. We have set up the kinetic equations for the concentrations of

the compounds involved. Two groups of equations have been investigated separately.

In the acid production stage we found 8 coupled differenlial equations (highly non-

linear) for tlie concentrations of: Fes2ro2, H2o, F"'* , so'n- ,l{+ , 
pe3+ and Fe(OH)z

and describing their time evolution. However, the last equation for Fe(OH)s is ef-

fectively decoupled from the rest making the system consist of 7 first-order ordinary

differential equations. One of the results of this stage of chemical activity enters into

the second stage, i.e. acid neutralization which is, otherwise, independent of the pre'

vious process. The acid neutralization stage involves 7 different concentrations, i.e.:

CaCOs, H+ ,Ca2+, HCO;, H2CO,, AI(OH)s and A/3+. The seven kinetic equations we

32
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have set up are also nonlinear but this time the problem is substantially reduced as four

of the equations decouple from the rest. Thus, we obtained just 3 coupled equations.

This part of the project has been completed by buitding mass balance into the equations,

"urryir,g 
out dimensional analysis to maximally simplify the mathematical problem at

n.ná 
"nd 

looking for steady states. No interesting steady-state solutions appear to exist

other than complete depletions of reactants.
The third part of the problem has been to set up the numerical machinery at our

disposal. Witù the newly acquired Next Work Station (including a laser printer) and

the great time involvement of the students MLAN and DS, the required numerical code

h6 b"en written and tested and many results obtained. Our results can be summarized

as follows. Although the kinetic equations derived are highly nonlinear, no hallmarks of

bifurcations or chaátic dynamics were found thus fa¡. This would indicate the question of

predictability is perhaps not as complicated as it could at first appear. However, we have

also detected the p.urlo"" of complex, non-monotonic behavior of the concentrations of

the chemical species involved under special circumstances. This irregular behavior seems

to be mainly afiected by two factors:
(i) the porosity of the medium
(ii) the presence of non-zero flow rates of oxygen and water'

Thus,'depend.ing on the physical structure of the waste rock, specificaliy depending on

the level of its inhomogeneity, the production of acid may follow a different course' being

more regular in time ior a more homogeneous medium than in a fractal-like distribu-

tion of waste rocks. Moreover, the fl.ow rates of oxygen and water affect the reactions

very significantly and they are certainly related to both climatic changes (rainfall, hu-

*iáityf as well as the waste rock shape and structure, especially vis a vis the exposure

to o*y!ro. Support of this conclusion can be found in the work of Doepker and Drake

[Do"ilier et at.ifSgt)] where significantly different effects of leaching have been obtained

ù"t*ã.n air-exposed and water-submerged tailings. Similarly, Steffen, Robertson and

Kirsten[RPWqfuf Rep. No. 195201] show a marked difference in the production of SO¿

between flooded and unflooded test samples'

In numerous cases sulphate production kinetics exhibits a smooth, relaxation-type

behavior with time. Test results shown by Steffen, Robertson and Kirtsten IRPWQM
R"p. No. 195201], Denholm and Hallan [Denholm (1991)], Bradham, and Caruccio

[Uåan"m et al.] uod F"tgnren and Morin [Ferguson et al.] aÌl indicate largely regular

iirrr" d"p"nden"L of. SOe production arð. CøC03 dissolution. We have reproduced below

,o*" of- the plots presented by these authors. This is consistent with the bulk of our

reéults.
We should add a word of caution here regarding the predictability of AMD as based

on purely physico.chemical models. As can be seen from Fig. 3.1, the biological activity

of åi"roãrguoir*r present in the environment adds a whole new dimension to the analysis

and could ãfiectiveiy alter the end results in terms of the release time and the amount of

acid produced. What we wish to rather emphatically stress, however, is that in spite of the

highþ nonlinear characteristics of the chemical kinetics involved' the observed processes

*ã ulry regular. No hallmarks of chaos, quasi-periodicity or intermittency have been

found. Thus these phenomena should be very easy to model and predict pr-qvided reliable

input data rr" uuuiluble in terms of initial concentrations, reaction rates, flow rates and

the structural properties of the medium. Therein lies the challenge of predictability and

we believe that wiih steady progress in understanding the processes involved in AMD we
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Figure 5.1: Samatosium column leach test following Denholm and Hallan [18]
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Figure 5.2: Cumulation of SOe with time following Ferguson and Nlorin [20]

should achieve predictability rather sooner than iater. Obviousiy, the model itself is not
perfect and several weak points could be identified. We discuss some main areas in need

of improvement in Secs. 5.2 and 5.3.

6.2 F\rture Outlook
In the model developed in the studies presented in this report a major point requiring
further improvement is related to the inhomogeneity of the medium. Although we have

effectively included porosity through the use of time dependent reaction rates, the other
aspect of the problem, i.e. diffusivity of motion of the chemical species still needs to
be addressed. It is well known that when there is neither stirring nor sufficient natural
convection, molecular diffusion may govern transport and species concentrations may vary

from point to point [Gray (1988)]. This would call for the use of time and space dependent
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Figure 5.3: Plot of cumulative acidity for acidic weathering cells following Bradham and

Caruccio [19].

concentration fields X;(t,a) and Y¡(t,s) in the acid production and acid neutralization

reactions studied in this rePort.
We should mention that Davis and Ritchie [Davis et al. (1986)] have developed a

series of mod.els simulating diffusion into rock piles. The initiat model, called the simple

homogeneous model, simulated oxygen differences from the top of a pile downwards to

oxidation sites. The model equations were solved assuming pseudo-steady -state diffusion

within the particles. Howevár, this and all the subsequent models[Morin et at. (1990)]

were based on a linear diffusion equation of the type:

dC
6 -R

Where D" is the effective diffusion constant, C is the oxygen concentration and -R is the

rate of ¿72 uptake. As demonstrated by Prigogine and many other reseachers [Glansdorff
et al. (19?l), a more appropriate description for reaction-diffusion equations calls for the

use of nonlinear coupled partial differential equations ofthe form

ôu
Tt 

: /(,t) + DV2u (5.2)

where D is a difiusion constant [Kuramoto (1984)] and /(u) is a nonlinear function coup-

ling the species involved according to reaction kinetics. Depending on the particulars of

the system, a reaction-controlled, a difiusion-controlled or an intermediate regime may

prevail. Both oscillatory and chaotic temporal regimes may exist and spatial patterns

,ho* u*uzing complexity exhibiting propagating and standing wave behavior, rotating

spiral formation[Henze et al. (1990)] as well as chemical turbulence. Bifurcations are

known to occur resulting from unequal diffusion coefficients for the individual reactions.

Importantly to our probiem, observations of such behavior have been.made for heteroge-

neous processes o".rrrring at gas-solid and liquid-solid interfaces, e.g. catalytic oxidation

of CO on Pt (110) singlã crystal surfaces. In a recent study [Ertl (1991)] it was shown

o"l*+?
Ldr" r
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through computer simulations, scaling arguments and experiments (naphthalene aggrega-

tion) that in porous media where interplay between energetic "nd geometric heterogeneity
exists, fractal nature of chemical reactions can be seen. We expand on this aspect in Sec'

5.3 below.
Our conclusion, therefore, is to contemplate an extended model of nonlinear chemical

kinetics which would account explicitly for diffusion of chemical species, their reactivity
as well as the porosity of the medium. Only then can we adequately address quantitative
aspects of predictability and prevention in the AMD problem as seen through nonlinear

modelling techniques.
In order to provide the reader with some basic information on the complexity of the

problem ahead, we have written a subsection deaiing with the modelling of rock and flow

processes in rock. This should, at the next stage of our model development, be incorpora-

ted into the chemical kinetics analyzed here largely as a process in a homogeneous medium
which, obviously, is a gross oversimplification.

5.3 Rocks: characterization and flow properties

One of the most important findings of the present paper was the role flow rates and

porosity of the rock material may play in the chemical kinetics of the AMD problem. In
ihi, corr"lrrding section we wish to outline some pertinent points that should be taken

into account in future modelling and prediciton of the phenomenon investigated. In what

follows we have largely drawn on the excellent recent review of the topic by Sahini (1993).

In the phenomena discussed in this report, a complex pore structure of the medium
is in existence and it significantly affects the distribution, flow, mixing and displacement

o' 15 20
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of fluids present. Various physical mechanisms play a role, such as heat and mass trans-

fer, thermodynamic phase behavior, forces of viscosity, buoyancy, gravity and capillarity
making the analysis especially demanding. For reactive fluids, the pore structure of the

medium may even change due to the reactions of the fluid with the rock surface. A crucial

point to emphasize here is that the analysis performed depends on several length scales

over which the porous medium may or may not be regarded as homogeneous.

When there are inhomogeneities in the system that persist over various length scales,

the overall behavior is dependent on transport processes (diffusion, conduction' convec-

tion) and morphology. The general classes of porous media distinguished are: (a) micro-

scopically disordered but macroscopically homogeneous (charact efized,by size'independent

transport properties) and, (b) macroscopicatly hetrogeneous (with several types of trans-

port properties).
To model transport processes in porous media, two types of approaches have been

adopted: (a) continuum models; and (b) discrete models. However, only in the past

fifteen years have modern ideas from statistical physics been applied to flow, dispersion

a^nd displacement processes in porous rocks. Such concepts as percolation, fractality,
self-similarity and pattern formation are only now being implemented in the procedures

used. We will discuss some of the repercussions that follow in the discussion below. For

example, the pore volume and pore surfaces of many reservoir rocks are fractal and hence

classical laws of physics have to be significantly modified. For instance, Fick's law of
diffusion with a constant diffusity is no longer applicable to diffusion processes in fractal

systems. Instead, the diffusion coefficient becomes time'and space'dependent.

Porosity of reservoir rocks, ie. the volume fraction of their open space, has either

a primary or a secondary origin. Primary porosity is due to.the original pore space of

the rock while secondary porosity is due to the chemical and physical changes through

reactions with water.
The geometry of rock describes the shapes and sizes of its pores or fractures. In a

porous medium, the space between its particles are called voids, whereas if the particles

lhemrel.t "r 
are porous, then the void spaces in the particles a¡e called pores. Pores can be

divided into two groups: (a) pore bodies where most of the porosity originates, and (b)

pore throats which are the channels that connect pore bodies. In a network representation

ãttn" pore space, the pore bodies are shown as sites or nodes while throats represent bonds

of the network.
The pore size distribution is defined as the probability density-function that gives the

distribution of pore volume by an effective pore size. Four main methods of measuring

pore-size distributions are: (a) mercury porosimetry; (b) adsorption-desorption experi-

ments; (c) small-angle scattering and (d) nuclear magnetic resonance.

In Fig. 5.5 we have shown a comparison between several types of porous media and

theoreticàl simulation results. Fig. 5.6 illustrates pore.size distibution functions of sample

rocks.
Pore.space models are required for calculating transport coefrcients, permeability k

and other dynamical properties of porous media. The simplest property of a porous

mediumis its porosity {. Relationships between,h and { have been over the years proposed

and tested, but there cannot be any general relationship between k and { since there exist

porous media with the same / but difierent È.

In recent years it has been demonstrated that rock and other porous media (see Fig.

5.7) have fractal properties. There are six basic methods of measuring fractal proper-
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Figure 5.5: Comparison of mathematical models and actual porous media.

ties: (a) the box method; (b) adsorption studies; (c) chordJength measurements; (d)

correlation function measurements, (e) small angle scattering 3.nd (f) spectral methods.
In addition to fractality of the pores, fractal properties also cha¡acte¡ize hetrogeneous

and fractured rocks. Fractures provide high permeability patterns for fluid flows and can

be parameterized by fracture aperture, ie. the volumetric flow rate through a fracture (as a

function of aperture cubed). Fractures in a network appear to have differeut characteristics
than isolated fractures. It was found that the frequency of inverse aperture y as a function
of inverse aperture follows a power law, indicating fractality. Fractured rock has fractal
geometry and is scale independent so that it can be represented by a singel parameter,

the fractal dimension D defined as

þ- los(Nr)
los(t//)

where N¡ is the number of fractures of length I (see Fig. 5.8).

A study of the literature indicates the existence of three classes of models of fractured

rocks: (a) the classical multiporosity model, (b) network models of f¡actured rocks (frac-

tal models) and (c) multifractal models. Many recent results definitely demonstrate the

relevance of fractal statistics to modelling hetrogeneous media and especially transport
processes in them. Simulations taking into account fractality lead to substantial improve'
ments in the predictions of process performance. Fractal properties of the medium require

the use of scale. anc{ time-dependent dispersion coefficients as, for example, is the case

with the typically-usecl convective diffusion equation

AC AzC

#*.u >.YC = D"#¡ Dyvzrc (5.4)

{ ,.D
ä't

(5.3)
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where < u > is the macroscopic mean velocity, C the mean concentration of fluid, ?
and ¿ stand for transverse and longitudinal direction, lesPectively. It is the objective

of modern techniques to determine the dependence of D¡ a¡d Dr on the nature of the

porous medium present. Monte Carlo simulations demonstrate that dispersion coefficients

u¡" ."u1" dependent and for fractal hetrogenities grow with the distance travelled.

TUSCARORA SANOSTONE (c)

ô
K

= 107"
= 0.05 md

(b)
BAKER DOLOMITE

þ = 20/"
K=68rnd

(d)DRUM UMESTONE

Ô - 16.1olo
K :0.01 md



SECTION 5, DISCUSSION AND FUTURE OUTLOOK

ro 2.a
log.o[CnorO length (¡m)]

Figure 5.7: Typical fractal plot for Coconino sandstone .

lo!

40

E
<.
l,
o
u
o
os
E
z
oe

3.O

to5

lo'

tol

t02

ro

Nl

I ro
,¿

D.2.73

cocoNrNo

go
eo
Qt

0o
o
o

Figure 5.8: Fractal plot of surface fracture pattern.



SECTION 5. DISCUSSION AND FUTURE OUTLOOK 4T

Acknowledgements

The authors with to thank Mr. B. Godin for his encouragement and for providing
them with copies of numerous articles and reports that introduced them to the problem
of AMD and its modelling. We also acknowledge valuable input given by Dr. R.V.
Nicholson which resulted in significant improvements to the quality of this report.



An IntroductorY Overview of
Nonlinear Phenomena

In the past two decades we have witnessed the emergence of new scientific paradigms that

*" *Jliog a revolutionary impact on the developments in the natural sciences' Such

concepts aI chu,o., strange attractors, limit cycles and fractals are gradually taking root

in th; vocabulary of baãing-edge scientists. The field of chemical kinetics has been an

integrat part of tli, o"* ooitio* science since its beginning. In the sections that follow

we provide a non-specialist overview of the key concepts required in the sophisticated

moáe[ing of nonliuea¡ chemical kinetics. \üe begin by iatroducing the idea of chaotic

behavior. This is iollo*ed by a subsection on coupled systems and limit cycles' The

question of predictability a,rises naturally and here we give the example- of the Lorenz

system *heie predictability is completeþ impossible- Having introduced- these general

concepts we proceed to distuss their relevance to chemical kinetics. In order to describe

chemical kinetics ii poro* media we then introduce the concept of a fractal and the

associated'id"" of pulcolation. The finat subsection deals with an emergiug paradigm

catled pattern formation.

A: Chaotic Behavior
In the last few decades, the deterministic viewpoint of modern science has been challen-

ged by the discovery or oort"lle dyna,mic, conservative systems with totally unpredictable

behavior. The majority of dynamis systems, until a few years ago''were thought to be

ruled by deterministic laws and their behavior totally predictable. -Unstable 
systems

were considered to be aa e:<ception to the rule. However, very simple conservative sy-

stems exist with r"* d"gr*, ojf fr""dom which show sensitive dependence on the initial

conditions and exhibit rãgimes of chaotic behavior. Their evolution may become unpre'

dictable in spite of an a"b'itra,rily large a'mount of information we may have about them'

Throogh it utt tu"y *" indeed subjãct to the deterministic laws of classical dynamics!

The so-called deterrnìnistic chaos "*ir", 
as a result of simple, well-defined mathematical

algorithrns o, "qou,ti,o-r-G 
* the logistic.loa¡ investigated extensively by M' Feigen-

t;"* þrku, er al. (199b¡, C.,ituoovie [rsAa)]. This is a rather simple iterative equation,

r'e' 
onrr : rcr,(l - t.) (A'1)

wherer in therange: 0 < r ( 4is called acontrolpararneter' Forrr¿lues of r ( 3' the

results eventually;;;;gr to a steady state called a¡ attractor. flowever, for values of

r ) 3, the resulta¡rt oscillition do", noi settle down and remains stable, i.e. the behavior is

periodic. The two possible values of æ't(r) never converge and the curve ø^(r) shows what

42
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we call a bifu¡cation. [Iigher values of the coutrol parameter r produce fu¡ther splitting

a¡rd doubling of the periãdicities involved. Each period doubling is a bifurcation. If one

plots the inãreasing control parameter r horiZontally and the r¡a¡iable c,. verticall¡ we

äbt.io Fig. A.l. Airuptly, .t r : 3.58, the result for ø,n no longer oscillates periodically

but chanies in a chaotic iashion. The splittings, which.sta¡ted coming faster and faster

for r ) 3, u"" now squeezed together and the growth rate seems to. take any value at

random.
Although for the values of r above r" chaos and randomness seem to prevail, a further

increase of the control para,rreter, which makes the system even more nonlinea.r, introduces

wiudows of regula"rity'among chaos which is called intermittency. Computer simulations

of the logistic map readily demonstrate (see the inset ol- Fig. 4.1) that the structure is

inûnitetidop uoå seü-simila¡. Pa¡ts of ìt, r,'hen magnified, show identical patterns, a{

infi^nitum. These patterns (though in this exa.rnple they come from a one-dimensional

system) ."" u *r"rf common cha¡acteristic of the dyn^'nic behavior of nonlinear systems

Èading to chaos and complexity. Bifurcations with successive, infinite period doubling

define one of the possible routes to chaos [Ba,ker et al. (1990)].

B: Coupled SYstems and Limit CYcles

In chemical applications, in pa,rticula.r, the use of a single quantity (such as the variable ø,,)

is inadequate as concentratiou, of several reacting chemical species must be described as

indepenåent 
'¿riables. 

Ilere, instead of the well-studied rela¡<ation dynamics cha¡acterized

U" ", exponential time evolution towa¡ds a steady-state attractor, a completely new type

of behavior may a,rise. Specificall¡ a pattern of oscillating growth or_extinction Processes

of individu"l ,p""iu, *ry bu obrãi*r"å to act as a stable attractor. Perhaps the simplest

example of such a cyclic population evolution can be found in the Lotb-Volterra model

of pråy and predatá "oåpåtiti"n. 
Consider as a simple illustration the populations of

;il (predåtor) *ã r"¡¡its (prev) living in an isolated geographic 

=ea 
(e.g. an island)

to.limit the influences of other faciors. St.rtiog with a large population of wolves we

readily predict a demise of rabbits as they will soon become an easy prey for the roaming

wolves. However, ar¡ soon as the rabbii population is decimated, the wolves will face

sta¡vation leading to a downturn in their numbers. This, in turn, will allow ¡abbits to

repopulate as they face a diminishing population of starved out wolves. As a consequence'

"ou' 
phase in tle development .ppt*t with numerous rabbits but few wolves' That

,ilt, of 
"o*se, 

lead to a rapid tupãp.rlttiou of wolves and we have thus completed one

.y"í". This pattern repeats itself periodically' . t
In mathematical tìrms, we denote the concent¡ation of each species (for 

91ampl.e

one t¡rye of reacting molecules) using a scala¡ timedependent rr¿¡iable, say c¡(ú), with

I < i ( n deuoti"'g tU" o*ú", of-species pr911nt. The time evolution of the entire

,vJ"* i, then goveäed þv coupled first order differential equations of the general type

[ôhnsdorfi et J. (tSZl'), Kura^moto (198a)]

*:f,({c¡;l<i<n}) 
(8.1)

where /, is in general a function of all the conceutrations involved a¡d it usually contains
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significant nonlinea¡ities. Take for exa.rrple the following simple system [Ilale et al. (1991)l

dat . '2,2\E = t2 + uîr(t? + 'ï 
(B'2)

(8.3)

where a is an adjustable constaat (a control pa.ra.rreter). In fact, depending on the nu-

merical r¡alue of this constant, three completely difierent types of behavior arise for the

solution set: c1(ú), q(t). In Fig. 8.1 we have shown phase portraits in each case, i.e'

plotted the trajeciories of {rt(¿), øz(¿)} with time t ta.ken as a ruuning pa^ra,rneter. Wben

ã < O a stable focus ø1 = 1lxr: 0 ir foood so that all initial conditions lead to a spiralliug

d.own on the focus point. \ilhen a = 0 all the orbits a¡e stable circles since the system

can be represented as a harmonic oscillator. Finally, for c ) 0 an unstable focus appears

a¡d all orbits överge to infinitY.

¡=05
¡=0

#=q+csz(æ?+r?)

= -0.5

Figgre 8.1: The three possible behaviors in phase space for the solutious of eqs. (B'2)

aud (8.3).

I. prigogine [prigogine et al. (1968)] studied a t¡imolecula¡ model for a reaction in a¡

op"o ,yri"Ã tnrt .uol" schematically described by the reaction chain

(8.4)

B+X Y+D (8.5)

2X +Y 3x (8.6)

x E (8.7)

where A,, B, D, E rX aod Y denote rrarious molecules, krrkrr,b3, åa stand for forwa¡d while

k_1,1e_2,1e_.s,k_t for reverse reaction rates. This system has been referred to as the

xA
kr

k-r
kz

k-z
kg

k-s

k4

k-e



AN INTRODUCTORY OVERVIW\ OF NONUNEAR PHENOMENA

Brusselator. In subsection 2.1 of the main text we demonstrate in detail how to derive

the associated kinetic equations for the concentrations of X a¡d Y molecules, denoted

here for consistency by t, ""d 32, respectively' They result in

dst 
-r?x,-bxr*a-xt (B.s)

î : ,?,cr- ôc, + a- 
.xr

* = -r?rr* öær. (B.e)

What Prigogine noticed solving these equations (see Fig. 8.2) was _the 
presence of a

(periodic)-ctãsed orbii in the phase space (rt,tr) to which atl the neighboring trajectories

a¡e attracted. He called it a limit cycle and demonstrated its ubiquitous applicability as

a self-sustaining pattern of oilîiÏãiãñ-ry behavior. Prigogine's discovery was revolutiona'ry

euough to the fi'"i¿ of chemical kiuetics that he was awa¡ded a Nobel Prize in Chemistry'

Figure 8.2: Trajectories obtained. by numerical integration for the Brusselator reactions

1ei¡-1n.2) for (r) X=Y:0; (2) X=Y:l; (3) X=10; Y:0; (4) X:1; Y=3'

More complicated nonlinea¡ systems may possess a nunber of attractors (either-point-

Ut oi ti*it cycles) and their trajectories may tend to one or more of them depending on

the initial 
"ooditioor, 

i.e. their location with respect to the basins of attraction present

[Glass et at. (1938)].

It could at first appea¡ that all attracto¡s in nonlinea.r dyna'nical systems have rather

regula,r geometries. 
- 
fuo*urrur, a large class 9f systems were discovered which display

atîractor's whose geometry i, ,o 
"omplicated 

that it defies description. This is partly why

this new type of aitractor-was called a strange attractor. In the next Appendix we discuss

this novel nonlinea¡ Phenomenon.

cr strange Attractors and Prediction Limitations

The MIT meteorologist E. Lotenz worked in thè ea,rly sixties on simple models of atmos-

pheric convection *Èi"h results due to the daily operatlo1 of the Sun's rays. He managed

i" ,irrpri¡v the problem to a system ofjust three coupled differential equatious given below

dL 
= o(x -Y) (c.1)

A- - v\'L
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(c.2)

(c.3)

where ø, r and ô a¡e fixed model-dependent pa^rameters and the physical rtariables X, Y
a¡¡d Z depeud ou time t. Here, X denotes the intensity of the convection current, Y is
the temperature difference ¿t the boundary layers and Z stands for the deviation from a
linea¡ vertical temperature profile in the absence of convection. These three equations look
deceptively simple even to a non-specialist but they proved to be unsolr¡able analytically.
Lorenz's meticulous numerical work led to his discovery of a very important uew concept.

He uoticed that his computer-generated solutions differed beyond recognition when a
seemingly negligible round-off correction was int¡oduced to his input data. This ca.me

to be known as the nButterfly Efiectn signifuing sensitive dependence of the solutions on

the initiat conditions. The illustrative hyperbola used was that of a butterfly flapping its
wings and thus disturbing the weather pattern at a distant location over a sufrciently
long time.

When Lorenz plotted his solutions in the phase space, he obtained sets of trajectories

which looked uoythiog but regular. The curve traced by the r¡alues of X(ú), Y(t) ar.d Z(t)
had very peculia,r features ¡x¡ cãn be seen in Fig. C.1.

x
Figure C.1: The strange attractor of Lorenz.

We see in Fig. C,2 a multitude of loops that never repeat themselves and which circle

a¡ound two areas of phase space switching from one side to the other iu an arbitrary

fashion. This diagra,m was called by D. Ruelle a strange attractor. On a closer inspection

of the Lorctz attractor rve find that its trajectories a.re iofiniteþ close together but never

iatersect one another. Auy part of the attractor where the spirals seem to join, contains

infinite numbers of trajectãries. Yet, although the number of trajectories is infinite,

the attractor holds the system's dynamics within ñuite bounda¡ies, lhe latter being a

somewhat contradictory incompatible term. Indeed, a chaotic attractor is ia itself a
contradiction: an infinite number of trajectories of infinite length a¡e contained in a
fi¡ite space. Another importa.nt property already mentioned here is its chaotic, random,

infiniteiy complex behavior. This gives rise to unpredictability symbolizedby the butterfly

#=-rx-v-xz
#=:-bz+xy

¿-

v
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effect concept mentioned ea¡lier. The fractal nature of a stra¡ge attractor introduces

with it 
" 

ooo-iot"ger dimension. Point attractors a¡e zero-dimensional,limit cycles are of

dimension oou ("uir"s) and quasi-periodic attractors (tori) a¡e twedimensional (surfaces).

Curiousl¡ the àimensíonatity of a strange attractor, as in general is the case for a fractal

object, is'a real, non-integer number, say 1.74. A number like this can be obtained

through a rigorous algorithmic limit finding procedu¡e which will be discussed in the

uext Jection lUi"U deals specifically rvith fractals. Instead of the traditional time series

analysis, phase space trajeãtories revea I the implicate order present in chaotic dynamics.

Fig.-C.2 r"hum.ii."tly juxtaposes both ways of presenting data for a variety of modes of

behavior.

leady stetc am¡t cyclc period threc lrangc ¡ttr¡ctor

x
llme
¡erles

Figure C.2: Time-series versus phasespace cha¡acteristics for several nonlinea¡ modes of

behavior

D: Fractals
Many pattern forming systems, especially when they are fa¡ from thermodyna'mic equi-

Ebriu;, exhibit " s;#U of formr which qre of fractal nature [Feder (198s)l' Specific

oca,rnples include:

(a) Dendritic solidification in a.n undercooled medium;

(b) Viscous fingeriug phenomena which occur when two fluids of difierent viscosities

penetrate each other;

(c) Ag$egation phenomena such as difiusion-limited aggregation; and

(d) Electrodeposition patterns of ions onto an elect¡ode.

Some of these examples are graphically illustratãd in Fig. D.1.

The basic prop"*y of alliraital objects is their self-simila¡iüy, i.e. when we cut a part

of the object *¿ tiu" -agnify it, the rãsulting objecE!!ffiã sa.me as 
-(or 

at least very

simila¡ tå¡ tle origi""r ob-jeci. Ánother propérty of fractals, which actually ea¡ned them

a

X phasc
portraits

at
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(r) snowflakc
(b) visco¡¡s flngering

(c) $¡rf¡æ dischargt

Figure D.1: Exa.mples of fractals iu nature'

their na,me, is that their dimensionality is not an inieger lut ia general- a real number' In '

the simplest form, the so-called fracti dimension D is given by the relationship

v(R) n RD (D'1)

where v@) is the volume of the region bounded' by the interface whose radius is 'R'

The notion of fractuar especially ." it pertains to geometrical objects was principally

introduced ioto ,"i"o"" b;-8. M.o d"lbroi. It ","" 
subsequentry studiedty Eary physicists

an¿ generalizations of tL definition were PloPosed, iucluding multi-fractality' In the

pnvri""l context it is useful to distinguish two general classes of fractals:

fa) deterministic where a simple iterative rule is present, e.g. involviqg a procedure to

cut a p"rt of tU" 
"U¡ã"t "f "r"h 

stage and replace it with a fixed element' and

(b) random where a stochastic approach is used so that a given 
-operation, 

e'g' aggre-

gation 
"*,"nt, 

is predicted,, with a preselected probability level'

Fractal objects can also be constructed algorithmicaüyin two- or th¡eedimensionalspaces.

Two famorr, "*.-Ju..iitr*A 
objects-oristing on a plane a¡e the so-called Sierpinski

gasket and the Sierpinski carpet (see Fig' D'2)'

In a more rigorous sense, a fractal il " ,ut of points in space fo1 whicf the so-called

Ilausdorff-Besicovitch dimensiou ^o rlii*rv occ.eds the.topological dimeosion Dr' rvl/hile

the topological dime nsion is always an intlger (1r2 or 3), the fractal dimension D is never

an integer but a ,ã"r-i"-u.r. Túe latter qou,nìity expresses the property of size scaling
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(¡) Sierpinski gasket (b) SierPinsk¡ c¡rp'l
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D =HI= 1.58...

FigureD.2:Twooca,mplesofmathematicalfractals.

with the distance from the centre of a fractal object. The fractal dimension presents a

way of quantifying properties that otherwise would have no clea¡ deûnition. It etq'sesses

the aegtL rf ;*gü"ss or irregularity of a fractal object. In Figs. D.l and D'2 we have

given il" A."t¡ dimensions of the objects illustrated there.

E: Percolation Process

The concept of percolation qias originaüy iutroduced to deal with the Process of spreadiug

of a fluid through "ãJ"- mudirrä, for ocatnpt oil or water in the Pore sPace of a rock'

In general, thu ,rn¿"rlyios mechanism ôf 
".odo-oos 

in the Process can be of 2 different

t¡pes: (a) the classici di-ftrsion Pr-ocess iut¡oduces randomness to the fluid, and (b) the

j"r"ol"iioo process introdo"o ra,ndomness to the mediumts stnrch'e'

ffinãr"rr"rl"r prJr"- ig based on a network of lattice sites which a¡e either

occupied (proU"Uiút' p'i.t *".tt (probability L - ù. Two nea¡est-oeigþbor sites a¡e

catted connected ilh"y ""r ¡otl oäcupied. óne simila,rly defi¡es a co^nnected cluster'

Tbere is a site p*;d"ti"" th"gh"ld p"' above which an- infinite cluster of counected sites

spa,ns the networf..ffi;¡;also defircs the following important cha¡acteristics:

(i) the P(P) which cha¡acterizes the probability that, when the

rspra given site belongp to the infinite cluster of occupied

bonds.

(ii) the accesible fractios XA(ù is the fraction of coducting bonds belonging to the

infinite cluster.

(iii) the backbone fraction XE(e)jt ,.1" fraction of conducting bonds in the i"fi"ite clu-
" @inconduction(flow)'
(iv) the correlatiou length €"(p) i, the radius of the connected clusters for p ( P" a¡d

the length ,"¿ño.r", .-úiiÉ tn" percolating network is homogeneous îot p ) p6'

ID= ln8
¡ñ:i= 1.89...

(v) the avera,ge uumber of clusters of size s, nr(P)
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("i) the effective conductivitY of the network, 9,

It has been demonstrated that the above quantities satisfy simple scaliug laws

P(p) È (P-P.)P'
xn(p) N (P-P")P'
xB(p) N (P-P")P'

€r(P) ry (P-P.)-'

s"b) È (P-P")'
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(8.1)
(8.2)
(8.3)
(E.4)

(8.5)
(8.6)

Since, accordiog to Einstein's relation, the efiective difiusivity Do is related to 9. via

g¿ - ÍùeDe (where n" is the density of pa.rticles), we also have

D"(p) - (P - P.)t'-e'. (E'7)

We conclude that the behavior of percolating networks close to the percolation threshold

is inse¡,sitive to the lattic structu¡e and, to whether the percoloation process is a site or a

bond percolation problem.

fig. B.f below illustrates some of the scaling relations discussed above'

to

Figure E.1: Typical behavior of some percolation quantities as a function of p, the fraction

ofãccupied sites in a simple cubic lattice'
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F: Pattern Forrnation

A newly emerging paradigm of nonlinea¡ science ca¡' be identified as pattern formation

a¡d it involves effects in inhomogeneous systems out of thermodyna"'icequilibrium which

are subjected, to "*tÃA forc"J. Ex."npl.t of n-atlgrnjorming system: Tt legion a^nd

they range fro- 
"ooru"iion 

in tow-dimensional fluids (eg' the Rayleigh-Béna"rd effect'

P

xr
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the Taylor-Couette flow) to solidification patterns (dendridic growth of the solid helium

phase in solutiou), to cúemically-active media (spiral patterns in Belousov-Zhabotinskii

reactions), to bioÍogical systems (eg. growth patterns in morphogenisis). 
-

Re"ent progress-in thã mathematical analysis of nonlinea¡ differential equations, the

developmeot oi nign-speed reliable numerical codes and. the associated hardware, as well

as the adr¡ances mad"ln shtistical physics, all made it possible to investigate this broad

range of scientific problems within a single unified fra,rrework of nonlinearity at work.

The basic assumption is that nonequilibrium spatial patterns may be classified accor-

ding to the linear instabilities of an inûnite, initially spatially uniform system when it is

brought away from thermal equilibrium by increasing a given control parameter (eg. the

temperature gradient or the flow rate). Generally, the observed instabilities fall into three

cl*r"s: (a) päi"aic in space and stationary in time, (b) uniform in space and oscillatory

in time. .oa 1"¡ periodic in space and oscillatory in time'
Traditionallv, it nas been thought that we should select the state (a solution of the

underlying 
"qortioo 

of state) that grows fastest with time. However, while commonly

true, rrariou, ãth", mechanisms a¡e knowu to exist in pattern selection which restrict the

av¿ilable states. Exa,rrples of such efiects include: bounda¡ies, pa,rameter inhomogenai-

ties, distortions, noise, etc.. A prima.ry mecha"ism for pattern selection-is through the

-oiioo and interaction of defects since they provide a way for a region of space with a¡
*unfavorable" pattern to give way to a more favorable one. It should be stressed that a

conì.mon featu¡e of patterJ-formiug systems is the persistence of irregular ba.havior (chaos)

over long periods of time under ûxed external constraints.

Briefly spea,king, the methods of analysis applied to these problems include linea¡

stability anaylsis, åpUtoa" equations, perturbation methods,. multiple scale expansions,

phase ãquati,ons und a wealth of nr¡merical methods. For more detailed information on

ihuru technical aspects the reader is refer¡ed to an excellent upto-date review by Cross

and llohenberg (1993).

\üe close this briei overview of pattern formation with an exa,rnple which is pertinent

to the subject-matter of this report, ie. a chemically active medium' In the simplest

version of the or"goouto, modei (see sec. 2), one retains only the concentration xr of

the autocatalytic rlp""i", HBrOz and the concentration Xz of the transition catalyst iu

the oxidized state jeg. Fe3+). The chemical dynamics is described using two coupled

nonl inea¡ partial differential equations below

0XtT = ll(Xt,Xr) + DtYzXt (F.1)

and a{l : g(xt,xr) + DzYzxz (F.2)
æ;

where Dr and D2 a;rethe corresponding difiusion constants of the species and the functions

f , I æe defined through

f : xr(l - xr) -wr!-,i-Xt*ø (F.3)

(F.4)9=Xt-Xz.
Depending on the r¡alues of the model parameters chosen (ø,- ô and 7-), a-very rich dyna-

mical picture "*"rg", 
with: oscillatoryìela><ation bahavior, front and pulse propagation'

periodic wave trains, target patterns a¡d even spirals present' In Fig' F'l we have shown
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the formation of spiral patterns as ol¡tained in a computer simulation. Fig. F.2 shows a

comparable experimentally-observed pattern.

(a)
h

(b)
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fl
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u

u

h u

u

(c)

Figure F.1: Schematic illustration of spiral pattern dyo'-i.t. (a) and (b) Formation of

a spiral by breaking a Propagating pulse.

Figure F.2: Spiral patterus in excitable media. (a) Belousov-Zhabotinskii reaction pho-

tographed in blue light.
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