CONSTRUCTION AND INSTRUMENTATION OF A MULTI-LAYER COVER LES TERRAINS AURIFÈRES

MEND Report 2.22.4a

This work was done on behalf of MEND 2000 and sponsored by Barrick Gold Corporation, le Ministère des Ressources naturelles du Québec and the Canada Centre for Mineral and Energy Technology (CANMET) through the Canada/Québec Mineral Development Agreement

February 1999

CONSTRUCTION AND INSTRUMENTATION OF A MULTI-LAYER COVER LES TERRAINS AURIFÈRES

MEND REPORT 2.22.4a Contract No. 23440-6-1024/001/SQ

presented to

Natural Resources Canada CANMET 555 Booth Street Ottawa, Ontario K1A 0G1

February 1999

SUMMARY

Since January 1997, Barrick Gold Corporation's Les Terrains Aurifères (LTA) tailings site has been the subject of a detailed study - MEND Project 2.22.4 - aimed at assessing the performance of a composite cover placed on the acid-generating tailings impoundment. The full-scale composite built in the winter of 1996 the cover was on 60-hectare site. Alkaline tailings were used for the fine material layer. In addition to being the first full-scale cover of this type (e.g. oxygen barrier) in Canada (and possibly elsewhere), this project offers the added advantage of using mine tailings, a waste product.

The main objective of this report is to describe the various phases of the LTA project, from the initial conceptual design of the cover to the final construction and monitoring. The theory behind composite covers ⁽¹⁾ and design methods ⁽²⁾ have already been thoroughly discussed in the literature; the present report will, therefore, be a practical field application example of this technology.

This report will describe initial concerns, the flow charts used in the decision process, the laboratory work performed as well as the fundamental properties of all the materials used for construction. Sequence of events, construction difficulties will be presented subsequently along with monitoring instruments used. Analytical results outlined in this report will allow preliminary comparison of properties observed in laboratory and in situ. Conclusions will be formulated and discussed to assess the applicability of this technology to other sites. A final monitoring report will be available in 1999.

Nicholson et al., 1989, 1991; Collin and Rasmuson, 1990; Anon, 1991; Aubertin and Chapuis, 1991; SRK, 1991; Aachib et al., 1993; 1994; Aubertin, et al., 1995.

Baccini, 1988; EPA, 1989; Bagchi, 1990; Nicholson et al., 1991; Hutchison and Ellison, 1992; Daniel, 1993; Wing, 1993, 1994; Aubertin et al., 1995; Woyshner and Yanful, 1995; Ricard and al. 1997.

SOMMAIRE

Depuis janvier 1997, le site Les Terrains Aurifères (LTA) fait l'objet d'une étude détaillée dans le cadre du programme NEDEM (projet 2.22.4) dans le but d'étudier la performance de la couverture multicouche construite sur le parc à résidus potentiellement générateurs d'acide. Il s'agit d'un recouvrement multicouche construit à grande échelle (sur 60 hectares) à l'hiver 1996. La couche fine utilisée est principalement composée de résidus miniers alcalins. En plus d'être la premier recouvrement de ce type (barrière à oxygène) à être construit au Canada (et probablement ailleurs), ce projet présente l'avantage de revaloriser des résidus miniers.

L'objectif principal de ce rapport consiste à exposer les différents aspects requis pour mener le projet du stade de conception à celui de produit fini et ce, en présentant les diverses étapes réalisées lors du projet. Les aspects théoriques du fonctionnement des couvertures multicouches ⁽¹⁾ ainsi que les méthodes de conception ⁽²⁾ ont déjà été traitées abondamment dans la littérature. Le présent rapport se veut plutôt un exemple pratique d'application de ce type de technologie.

Ce rapport présente la problématique initiale, le schéma décisionnel utilisé puis décrit la campagne exhaustive d'essais de laboratoire ainsi que les propriétés fondamentales des matériaux qui ont été utilisés lors de la construction. La séquence des événements et les défis de construction seront présentés par la suite, incluant une description des instruments utilisés pour le monitoring. Les résultats analytiques présentés dans ce rapport permettent une comparaison préliminaire des propriétés observées in situ avec ceux obtenus en laboratoire. Les conclusions sont élaborées autour d'une discussion sur l'applicabilité de cette technologie pour d'autres sites. Un rapport de suivi du comportement (projet 2.22.4b) sera disponible en 1999.

⁽¹⁾ Nicholson et al., 1989, 1991; Collin et Rasmuson, 1990; Anon, 1991; Aubertin et Chapuis, 1991; SRK, 1991; Aachib et al., 1993; 1994; Aubertin, et al., 1995.

Baccini, 1988; EPA, 1989; Bagchi, 1990; Nicholson et al., 1991; Hutchison et Ellison, 1992; Daniel, 1993; Wing, 1993, 1994; Aubertin et al., 1995; Woyshner et Yanful, 1995, Ricard et al., 1997.

Summary SUM-		
Sommaire SOM-1		
<u>SECTION</u> <u>PAGE</u>		
1.0 INTRODUCTION	1	
1.1 Site Description and History	1	
1.2 Problems Requiring Assessment	2	
1.3 Geochemical Modelling	3	
1.4 Risk Analysis	6	
1.5 Feasibility Study	7	
1.6 Cover System	9	
2.0 DESCRIPTION OF SELECTED CHARACTERIZATION PROCEDURES	10	
2.1 Laboratory Testing	10	
2.1.1 Sieve Analysis	11	
2.1.2 Specific Gravity (Gs)	11	
2.1.3 Compaction Testing	11	
2.1.4 Atterberg Limits	11	
2.1.5 Permeability Testing	12	
2.1.6 Moisture Retention Testing	12	
2.1.7 Oxygen Diffusion (De)	13	
2.1.8 Particle Migration Testing	14	
2.1.9 Freeze-Thaw Permeability Testing	14	
2.2 Field Testing	14	
3.0 COMPOSITE COVER MATERIAL PROPERTIES	16	
3.1 Basic Characteristics3.2 Hydraulic Properties	16 17	
3.2.1 Saturated Hydraulic Conductivity Coefficient3.2.2 Water Retention Curves	17 18	

SECTION

PAGE

3.3	Oxygen Diffusion	19
3.4	Long-Term Stability	20
3.5	Performance Modelling	21
3.6	General Comments - Composite Cover Material Properties	23
4.0 C	COVER CONSTRUCTION	24
4.1	Logistics	24
4.2	Phase I - Fall 1995	25
4.3	Phase II - Fall 1995 and Winter 1996	27
2	4.3.1 Cover System4.3.2 Description of Activities	28 29
4.4	Phase II - Summer 1996	32
5.0 H	FIELD MONITORING PROGRAM	35
6.0 (CONCLUSIONS	35
7.0 H	FUTURE PROJECTS	37
REFE	RENCES	40

List of Tables

Table 1	Summary of laboratory results
Table 2	Compaction tests - MNR tailings, experimental cells
Table 3	Summary of permeability testing results
Table 4	Summary of in-situ permeability testing
Table 5	Water retention results summary
Table 6	Approximate material volumes put in place

List of Figures

Figure 1	Site plan view
Figure 2	Cross-section A-A' – existing conditions
Figure 3	Dry cover layout
Figure 4	LTA site material grain size distribution
Figure 5	Saturated hydraulic conductivity - MNR tailings
Figure 6	Saturated hydraulic conductivity - sand from the borrow pit
Figure 7	Saturated hydraulic conductivity - LTA tailings
Figure 8	Saturated hydraulic conductivity - silt from the borrow pit
Figure 9	Water retention curves - MNR tailings
Figure 10	Water retention curves of the silt from borrow pit #1
Figure 11	Oxygen diffusion coefficient vs saturation of the MNR tailings
Figure 12	Column 1 material grain size distribution
Figure 13	Column 2 material grain size distribution
Figure 14	Saturated hydraulic conductivity of the MNR tailings with freeze-thaw cycles
Figure 15	Saturated hydraulic conductivity of the silt from the borrow pit
Figure 16	Dry cover monitoring station location plan
Figure 17	Monitoring station location
Figure 18	Monitoring station profile

List of Photographs

Photograph 1	Start of work. Placing the 0.5 m thick Zone 1 (sand and gravel). South- east direction.
Photograph 2	Zone 1 (sand and gravel) placed, compacted and leveled. South-east direction.
Photograph 3	Placing the MNR tailings (Zone 2) over Zone 1 (sand and gravel). South-east sector.
Photograph 4/5	Tailings infiltrating through the sand and gravel layer (Zone 1).
Photograph 6	Flattening the MNR tailings in the south-east zone.
Photograph 7	Compacting the MNR tailings in the south-east zone.
Photograph 8	Density measurements in the field.
Photographs 9/10	Borrow pit - stratification.
Photographs 11/12	South-east dyke - Leveling of the slope.
Photograph 13	South dyke - Leveling of the slope.
Photographs 14/15	Haul road construction.
Photographs 16/17	Lime spreading on the slopes of the east, south-east and north dykes.
Photograph 18	Zone 1 - Placing and compacting of the sand and gravel layer.
Photograph 19	Field machinery.
Photograph 20	Placing and compacting MNR tailings (Zone 2) over Zone 1 (sand and gravel).
Photograph 21	Placing the Zone 2 material. South direction.
Photograph 22	Zone 3 - Placing and compacting.
Photograph 23	Placing and compacting Zone 3 (sand and gravel) over the MNR tailings.
Photograph 24	Reprofiling the west dyke prior to placing Zone 1 (sand and gravel).
Photographs 25/26	West dyke. Placing and compacting the 0.5 m thick Zone 1 (sand and gravel).
Photograph 27	West dyke. Placing Zone 2 (MNR tailings) on the reprofiled slopes.
Photograph 28	North dyke. Reprofiling Zone 2 (MNR tailings) placed in winter 1996. View west.
Photograph 29	North dyke. Compacting the reprofiled Zone 2 (MNR tailings).
Photographs 30/31	North dyke slope. Placing Zone 3 (sand and gravel).
Photographs 32/33	West dyke. Placing Zone 2 (silt) over Zone 1 (sand and gravel).
Photograph 34	Dismantling the haul road on the top of the tailings basin.
Photograph 35	Haul road. Placing Zone 2 (silt) over Zone 1 consisting of the sand and gravel of the road.

List of Photographs(continued)

Photograph 36	Haul road on top of the tailings basin. Placing Zone 2 (silt).
Photograph 37	Haul road on top of the tailings basin. Cover construction.
Photograph 38	Placing a station for oxygen consumption measurements.
Photograph 39	Oxygen consumption measurements station.
Photograph 40	Placing a TDR probe.
Photograph 41	Placing a Watermark probe.

List of Appendices

Appendix A	Geotechnical data of the borrow pit sand (École Polytechnique)
Appendix B	Geotechnical data of the MNR tailings (École Polytechnique)
Appendix C	Geotechnical data of the LTA tailings (École Polytechnique)
Appendix D	Geotechnical data of borrow pit #1 silt (École Polytechnique and URSTM)
Appendix E	Particle migration tests results (École Polytechnique)
Appendix F	Permeability tests results with freeze-thaw cycles for MNR tailings and silt
	(École Polytechnique)
Appendix G	In situ compaction monitoring results (fall 95 - winter 96)(Golder Associés)
Appendix H	In situ compaction monitoring results (summer 96) (Golder Associés)

1.0 INTRODUCTION

1.1 Site Description and History

The Les Terrains Aurifères (LTA) site is located approximately 8.5 km south-east of the City of Malartic, in northern Québec. An underground mine, decommissioned since 1965, a mill, and a tailings disposal facility are the main features on the property of roughly 140 hectares. The LTA property is owned by Barrick Gold Corporation.

The LTA tailings disposal facility is bordered to the east by the former Malartic Goldfield Mine tailings disposal area which is currently owned by the Québec Ministry of Natural Resources (MNR) (see Figure 1). Originally, the Malartic Goldfield tailings area covered the present LTA site. The LTA site is built over the Malartic Goldfield tailings, as shown in Figure 2. The LTA tailings facility is bordered to the west by a sand and gravel pit (west borrow pit on Figure 1) which also belongs to the MNR.

Historically, the site was selected due to its proximity to the mill (100 m to the south) and its location in a natural depression thus allowing containment without significant dyke construction. During the operating years of the Malartic Goldfield Mine (1930-1965), approximately 10 Mt of alkaline tailings placed the site depth were on to an average of 5 m.

The site was reopened in 1977, however, only the mill was operational and only half of the tailings area was used. Nearly 8.0 Mt of acid-generating tailings were produced and placed over the Malartic Goldfield alkaline tailings (see Figure 2). The average depth of the LTA tailings is 12 m. The LTA site is bordered to the north, east, and west by dykes constructed of acid-generating tailings. The site is bordered to the south by natural ground. The average height of the dykes is 15 m.

In summary, the LTA tailings impoundment contains two chemically distinct types of tailings. In effect, the bottom layer (5 m thick) contains no sulphide minerals and more than 10 % calcite (CaCO₃). Laboratory work showed that these tailings consumed more than 100 kg/t of acid. The LTA tailings (in fact originating from Barrick's nearby Bousquet property) are sulphidic. Extensive testing on mineralogy, acid base accounting and mineral content were carried out, and results showed that the LTA tailings contain about 6 % sulphide sulphur of which pyrite is the predominant sulphide mineral. Other sulphides present in minor amounts include pyrrhotite, chalcopyrite, sphalerite and arsenopyrite. The net acid producing potential averages about 200 kg/t as CaCO₃.

The tailings were maintained at neutral to alkaline pH up to closure in the fall of 1994, due to the alkaline contribution of the leaching process on the deposited tailings and associated pore water. However, these tailings have a high acid-generating potential. They were expected to become acid-generating in the near future and produce acidic runoff and seepage for hundreds of years.

1.2 Problems Requiring Assessment

Recognising the acidic potential of the tailings, there were a number of questions that needed to be answered in order to develop a cost-effective closure plan for the tailings impoundment. These questions included:

- i) How much acid will be released?
- ii) Over what time period?
- iii) What will it cost to collect and treat?
- iv) What can be done to control acid production?

-2-

v) What are the costs of alternative closure options?

Through the use of geochemical (acid generation) modelling, as a tool to obtain predictions of future water quality, it was possible to answer questions i) through v) above.

1.3 Geochemical Modelling

Acid mine drainage (AMD) prediction modelling was performed by Senes Consultant. The AMD model used is a complex model, which integrates the physical and geochemical factors controlling acid production. Some of the key input parameters required are mineralogy, oxygen diffusion coefficients, particle size distribution, and the depth of the various modelled layers. The model uses the oxygen diffusion coefficients to calculate the level of oxygen penetrating into each layer that is available to oxidize the sulphide minerals. The available surface area of sulphides that can react is calculated from the particle size distribution. The model considers the rate of sulphide oxidation based on temperature, pH, oxygen and other conditions. Both chemical and biological oxidation are considered. The geochemical reactions of sulphide minerals, their oxidation products and the buffering minerals are evaluated, and the model provides the resultant geochemistry of the pore water. Chemical processes such as dissolution, precipitation and sorption are considered. Mass balances keep track of the aqueous and solid species.

Water quality predictions were done for three distinct intervention scenarios :

 Cover LTA tailings impoundment with a thin cover of borrow material (sand and gravel) on the reprofiled contoured tailings pond surface in order to achieve basic erosion protection/stabilization. Final surface to be vegetated. Collect acidic seepage and treat with lime;

- 2) Cover LTA tailings impoundment with a single cover made of alkaline tailings coming from the adjacent MNR tailings pond; final surface to be vegetated; and
- 3) Cover LTA tailings impoundment with a composite cover composed of a sand and gravel surface protection layer overlaying a layer of MNR alkaline tailings acting as a moisture retaining layer, and a bottom layer of sand acting as a capillary break. Final surface to be vegetated.

More details about the geochemical modelling description and assumptions can be found in McMullen et al., 1997.

As a result of the AMD modelling, the main conclusions were:

Alternative # 1: Basic surface protection. Bousquet tailings stored at LTA are strong acid generators and, if left uncovered, will soon produce acidic runoff and later, net acid seepage. Because of the occurrence of buffering minerals in and underneath the tailings, much of the seepage will not become acidic for about 60 years. Anticipated copper and zinc levels, at this stage in the seepage, have been estimated to reach a range of 40 to 50 mg/L. A basic erosion protection cover with vegetation will produce unacceptable levels of acidity and metals in both the surface runoff and seepage. As a result, untreated release of the final effluent would have a significant impact. The evaluation concluded that the construction of a treatment plant for AMD neutralization would be required in the very near future, because it is expected that some acidic seepage will initiate in the short term, in addition to the longer term requirements as described above. The closure cost assessment of the tailings area using the collect and treat scenario is inclusive of the construction of a soil cover (assume at 0.5 m) on the regraded tailings, construction of perimeter spillways and ditching, site revegetation, and collection pumping and treatment in a new treatment plant for acidic seepage.

The capital cost associated with the above, is estimated at CAN\$4.28 M (1995 dollars). The net present value (NPV) of future operating costs amounts to CAN\$8.3 M and CAN\$5.0 M at discounted rates of 3 % and 5 % respectively. The total closure cost for this alternative has therefore a range of CAN\$12.58 M to CAN\$9.28 M.

Alternative #2: <u>Single cover made of MNR tailings</u>. The implementation of a 2 m alkaline simple cover (above Bousquet sulfide tailings) should eliminate surface acid runoff and delay acidity release in seepage for 100 to 150 years. Ultimate maximum copper and zinc levels in the seepage and ex-filtration would be in the range of 20 to 30 mg/L. Despite lower rates of acid production, a treatment plant is expected to be required, but only in 100 years when compared to Alternative #1.

The capital cost of this cover type implementation has been estimated at CAN\$5.3 M. The NPV of future capital and operating costs amount to CAN\$0.35 M for a total of CAN\$5.65 M.

Alternative #3: <u>Composite cover</u>. The engineered cover would effectively eliminate any acid releases and elevated metal discharges for several hundred years. As a result of the oxygen flux barrier proposed, it has been estimated that the oxidation rates would be reduced by two orders of magnitude. This alternative would eliminate acid release for more than 400 years. Copper and zinc levels would be maintained in the seepage to less than 1 ppm. Also, this alternative would eliminate any need for treatment, and practically no noticeable downstream impact on the Piché River (final effluent) should occur.

-5-

The capital cost of the composite cover implementation has been estimated at CAN\$5.2 M. Interestingly, the capital cost of this option compares to Alternative #2, as the volumes of materials to be handled are comparable. Since water quality is anticipated to be adequate, no additional future capital and operating costs for a treatment plant are anticipated for this scenario.

1.4 Risk Analysis

Without considering long-term treatment charges, the capital cost of Alternative #3 is equivalent to Alternative #2 but offers a much greater potential of obtaining a low maintenance walk-away solution. When compared to Alternative #1 (i.e. status-quo/collect and treat), the capital cost for the recommended direct tailings reclamation activities was higher by \$0.9 M (a total of \$5.2 M vs. \$4.28 M). A sensitivity analysis was conducted comparing Alternative #3 against #1, taking into account the estimated long-term recurring treatment charges assuming that Alternative #3 might not be as successful as originally planned. Equivalent NPVs to Alternative #1 were encountered if:

- Alternative #3 delayed the ARD process by 12 years compared to the 400 years predicted in the modelling exercise, which represented only 3% of the expected performance period, and assuming that treatment charges at year 13 and onwards would be equivalent to those of Alternative #1.
- Alternative #3 delayed the ARD process by 2 to 7 years considering that treatment charges, when incurred, would be reduced when compared to Alternative #1 by 50 % and discounted at 5 and 8 % respectively.

3) Considering an additional capital cost of \$1.0 M to Alternative #3, it would delay the ARD process by 18 to 20 years, assuming treatment charges at 100 % of Alternative # 1 using a discount rate of 5 and 8 % respectively.

In conclusion, Alternative #3 requires no long-term treatment while Alternative #1 requires \$8.3 M (discounted at 3 %) of future expenditures. Alternative #2 (which uses strictly MNR tailings), shows a relatively low NPV on future charges (\$0.35 M), and was discarded because it showed no advantage over Alternative #3. In fact, it was less certain to function suitably in the very long term. The project risk (Alternative #3 versus Alternative #1) was therefore approximately \$0.9 M and Alternative #3 presented much more upsides than downsides. Thus the closure alternative selected for the LTA tailings impoundment was Alternative #3. Conclusions from the above analysis demonstrated that only slight improvements over Alternative #1 are required to justify the recommendation of choosing Alternative #3. It is believed that the accuracy of the models used will most likely fall within these margins.

Also, with cover construction, all the slopes had to be reprofiled to 3H:IV. To intercept the internal pond water table seepage, toe drains had to be included for the north and west slopes.

1.5 Feasibility Study

Based on preliminary geochemical modelling, a composite cover for the tailings impoundment was recommended as the closure option.

The effectiveness of a cover is assessed by its effectiveness to reduce the oxygen flux. The oxygen flux value is a function of the oxygen diffusion value (De) of the material, and the thickness of the layer. The lesser the coefficient (or the thicker the layer), the better the cover is to reduce oxygen flux, and thus to reduce oxidation of tailings. The oxygen diffusion coefficient

value is impacted mostly by the saturation of the material. The greater the saturation the smaller is the De coefficient for a given material. The efficiency of a composite cover concept thus comes from the fact that the cover acts as a moisture retention structure, hence providing a low diffusion barrier from atmospheric oxygen as well as enabling thinner layer construction (cost saving).

The preferred materials for construction of such covers are fine materials (silt, clay), because they typically yield excellent water retention properties and present low permeability. The primary objective of a composite cover is to isolate the acid-generating tailings from both oxygen and water (two necessary components in the production of acid mine drainage). The AMD modelling showed that a composite cover with a 0.8 m thick fine material layer yielding an oxygen diffusion coefficient of $1*10^{-8}$ m²/s would inhibit acid production (Senes, 1995).

The moisture retention capability is possible because the composite cover system ensures that the low permeability (fine) material placed between two coarser material layers remains saturated almost indefinitely. Since the coarse layer does not easily retain water, its unsaturated hydraulic conductivity is low. Consequently, the fine material layer in the middle thus remains saturated, since water is attracted to this layer by greater capillary forces, and because downward flow is greatly reduced due to the low unsaturated hydraulic conductivity of the coarse layer underneath (Nicholson et al., 1989; Collin and Rasmuson, 1990; Anon, 1991; Aubertin and Chapuis, 1991; SRK, 1991; Aachib et al., 1993; 1994; Aubertin, et al., 1995a, b).

Finally, a physical-evaporation protection layer is added to the system.

In the LTA case, plenty of coarse materials were available in the west borrow pit (sand and gravel), and MNR tailings impoundment (to the east) for fine materials (Figure 1). However, the cover hydrogeological performance characteristics (its capability to remain saturated) had to be

-8-

assessed.

1.6 Cover System

As mentioned previously in Section 1.5, the composite cover built over the LTA tailings impoundment consists of three layers (see Figure 3). The first layer is a 0.5 m-thick sand layer and is identified as Zone 1. This layer keeps moisture from escaping from the overlaying layer by the capillary break effect.

The second layer was a 0.8 m compacted layer of fine material with a low permeability and good water retention capacity, acting as an oxygen diffusion barrier. The MNR tailings were used for this layer, and are identified as Zone 2. Figure 1 depicts the location of the MNR tailings the borrow area for the Fall of 1995.

The third layer is a 0.3 m compacted layer of sand and gravel from the west borrow pit and is identified as Zone 3. This layer acts as a protection layer, as well as an evaporation protection layer for the underlying Zone 2 layer.

To complete such a study, many tasks had to be performed. The following sections present material characterization procedures, geotechnical and hydrogeological properties of the materials used, and performance modelling. These sections are not intended to be a cover design handbook, but rather a good starting ground for preparing a similar study for other sites.

2.0 DESCRIPTION OF SELECTED CHARACTERIZATION PROCEDURES

The characterization of the materials used in the construction of the composite cover was determined by in situ compaction testing as well as laboratory testing programs performed at l'École Polytechnique de Montréal (Mining Environment and Hydrogeology Laboratories) and the Unité de Recherche et de Service en Technologie Minérale de l'Abitibi-Témiscamingue (URSTM) in Rouyn-Noranda.

2.1 Laboratory Testing

Four types of materials were subject to laboratory testing programs at various phases of the LTA project. These include: MNR tailings (alkaline), LTA tailings (acid-generating), sand from the west borrow pit, and silt from borrow pit N^o 1 (Figure 1). Samples from all materials considered were subjected to the following tests:

- sieve analysis;
- specific gravity;
- compaction;
- Atterberg limits;
- permeability;
- water retention;
- oxygen diffusion;
- particle migration; and
- freeze-thaw permeability.

2.1.1 Sieve Analysis

The grain size distribution of the MNR tailings, the LTA tailings, and the silt materials were determined using a hydrometer analysis (more precise for finer soils), while the grain size distribution of the sand was determined using a sieve analysis. ASTM D422 provides a detailed description of the testing procedure.

2.1.2 Specific Gravity (Gs)

The specific gravity of each material was obtained using a pycnometer as described in ASTM D854-91.

2.1.3 Compaction Testing

The Standard Proctor method was used for the determination of the degree of compaction. Each sample was tested using the ASTM D1557-78 A method for at least four different water contents.

2.1.4 Atterberg Limits

The Casagrande apparatus was used to determine the liquid limit (w_L) and plastic limit (w_P) of the MNR tailings, the LTA tailings, and the silt. The apparatus characteristics as well as handling instructions are described in ASTM D4318-84.

Since most of these materials did not exhibit significant plasticity, careful interpretation was required.

2.1.5 Permeability Testing

The permeability of the four types of materials was determined by the falling-head method which uses a flexible membrane triaxial cell as described in ASTM D5084-90.

The permeameter allowed testing of samples 7.25 cm in diameter and up to 15 cm high. For placement in the apparatus, a 1 kg sample of a material with approximately 10 % water content (thus approximating the optimum water content as determined by compaction testing) was prepared. The material was then placed into split mold in a 5 to 10 layers. Each layer was compacted using a 850 g compaction hammer when a high void ratio (e = 0.65 to 1.1) was needed or with a 4.5 kg compaction hammer for a lower void ratio (e = 0.5 to 0.65). Void ratios ranging from approximately 0.5 to 1.1 were therefore achievable. Once the densification was complete, the sample was saturated in the triaxial cell by the back pressure method as describe in ASTM D5084-90. Permeability testing began once the sample was saturated and inlet flow equaled outlet flow. For all permeability tests, the hydraulic conductivity was temperature corrected.

2.1.6 Moisture Retention Testing

The moisture retention testing was done in order to determine the capacity of the materials to store or release water. The water retention curves were obtained using ASTM D3152-72. More information on water retention curves (WRC) can be found in Aubertin et al. (1995b), as well as MEND (1997). The soil sample was placed on a porous plate in a Tempe pressurized cell, where it was subjected to a positive pressure while the outlet water experienced atmospheric pressure. Air was compressed into the cell and, at equilibrium, the amount of water remaining in the sample represented its water retention capacity in relation to the applied

pressure. Based on results of several tests at varying pressure levels, the water retention curve (WRC) was generated. The Air Entry Value (AEV) was estimated to be the pressure yielding 90 % saturation (Ψ_{90}) in the tested materials, and this in order to simplify the analysis of the results, as described in Aubertin et al. (1998). Values for AEV are typically determined graphically, and a discussion on AEV determination is presented in Aubertin et al. (1998).

2.1.7 Oxygen Diffusion (De)

Oxygen diffusion was measured at various saturation levels. The testing procedure requires a column where the oxygen concentration at the source was decreasing with time while the one in the receiver unit was increasing proportionally. This test was performed using a transparent PVC cylinder, 10 cm in diameter and 20 cm high, to which were attached oxygen sensors.

Moisture was added until a chosen saturation level was achieved. The material was then placed in the test column and densified. Before testing, the column was purged with nitrogen to remove any oxygen from the sample. After purging, the upper reservoir (source) was opened, allowed to fill with ambient air (approximately 21 % oxygen), and then closed. The closed system allowed oxygen diffusion in the sample. Time measurements of the oxygen concentration were taken until equilibrium was reached.

The oxygen drawdown curve versus time in the upper part of the reservoir enables the calculation of the effective oxygen diffusion coefficient (De) of the material. More details about this experiment and its interpretation can be found in Aubertin et al. (1995a).

-13-

2.1.8 Particle Migration Testing

The test was performed to evaluate the compatibility of materials with respect to fine particle migration. A 29.5 cm sand layer was placed in a 15 cm diameter, 120 cm long clear Plexiglass column. A 12.2 cm layer of MNR tailings was placed in a loose state on top of the sand. Periodically, water was poured over the sample, allowing gravity flow through the two-layer system. The amount of water added gradually increased from 1 000 to 10 000 cm³ with each cycle. Initial and final grain size distribution of the materials were analyzed, using the method described previously, to determine whether water flow through the layers modified the particle distribution. If so, this would suggest that some fine particles had migrated.

2.1.9 Freeze-Thaw Permeability Testing

The test was performed to assess the permeability of MNR tailings and the silt materials to freeze-thaw cycles. Between two constant-head permeability tests in a rigid wall permeameter (ASTM D5084-90), the sample was subjected to a freeze-thaw cycle by placing the permeameter in a freezer for 24 hours, then allowing it to thaw for 24 hours at room temperature. The variation in permeability results following freezing and thawing indicates the material's structural sensitivity to freezing.

2.2 Field Testing

Since the tailings impoundment over which the cover was to be placed was very wet and soft, the determination of levels of achievable compaction of the various materials proposed for cover construction was required. Also, the representativity of values used for the performance modelling was critical, and the combination of laboratory results as well as field results would provide those values (results discussed in Section 3.5).

This assessment was performed using two 400 m^2 in situ test cells. They were constructed on the outer slope wall of the south-east dyke and on top of the north dyke. Cell 1 consisted of an 800-mm layer of MNR tailings spread and compacted in a single lift, over a 500-mm layer of 2 sand also compacted in single lift. Cell consisted of a two 400-mm compacted lifts of MNR tailings over 500 mm of compacted sand. The materials in both test cells were densified using a smooth drum roller compactor, and the number of passes carefully recorded.

In addition, tests were performed on the test cell materials themselves, to permit comparison between in situ results and laboratory results. These activities, performed in the early fall of 1995, consisted of:

- MNR tailings sampling;
- sand and gravel (west borrow pit) sampling; and
- test cell density determination using a nucleodensometer probe.

Soils samples collected from the test cells were submitted for particle size analysis, compaction testing and water content. These tests were performed at Golder Associés's laboratory in Val d'Or, Québec, using the procedures described in Section 2.1. Since freezing conditions were present during the night, one sample was collected immediately after compaction, while another was collected the next day in order to evaluate the effect of freezing on test cell material density.

3.0 COMPOSITE COVER MATERIAL PROPERTIES

The material properties observed in the laboratory as well as in situ are described in the following sections. This description is provided along with a discussion on LTA design parameters from the feasibility study. The materials were grouped according to their basic characteristics, hydraulic properties, oxygen diffusion barrier properties, and long term stability.

3.1 Basic Characteristics

Table 1 summarizes the laboratory results obtained from École Polytechnique and URSTM. Complete results of testing on the sand from the west borrow pit, the MNR tailings, the LTA tailings, and the silt from the N° 1 silt borrow pit are outlined in Appendices A, B, C, and D respectively.

Review of the materials' basic characteristics shows that both the LTA and MNR tailings can be described as inorganic silts according to the USC classification system, while sand from the west borrow pit is described as a uniform gravely sand with little or no fines. Silt from the N^o 1 silt borrow pit straddles two categories: plastic inorganic silt and plastic organic silt.

Particle size analysis allowed envelope curves, as illustrated in Figure 4, to be prepared for the MNR tailings and the sand from the west borrow pit. This figure shows that both these materials are within the limits of those observed for the field test cell cover material.

Laboratory compaction testing on MNR tailings (Golder Associés, Val d'Or) resulted in an optimum dry density of 1650 kg/m³ and an optimum water content of 15.7 %. Density results for the two in situ test cells (early fall 1995) are listed in Table 2. The average dry density was 1560 kg/m³ with a water content of 16.1 % which represents 94.5 % of the STD Proctor, or a

void ratio of 0.768.

Even if better values were obtained, a conservative void ratio of 0.8 (92 % of the STD Proctor) was supposed to represent attainable large scale conditions of the Zone 2 material on a soft foundation for performance modelling purposes, as presented in Section 3.5. Control of the void ratio rather than the level of compaction is desirable since the void ratio is directly associated with the effectiveness of the cover to retain water and greatly affects the hydraulic properties of a material. This way, different fine materials can be used, at various compaction levels, as long as void ratio criteria is met.

3.2 Hydraulic Properties

The most important hydraulic properties of materials are those that influence the water retention of a cover and, therefore, its capacity to act as an oxygen diffusion barrier. Typically, the saturated hydraulic conductivity coefficient (commonly referred to as permeability) and the AEV are the two key parameters for cover design.

3.2.1 Saturated Hydraulic Conductivity Coefficient

During previous field work at the site (Golder Associés, 1995), permeability tests were performed in piezometers (using the Horslev method) to determine the saturated hydraulic conductivity of the soils beneath the tailings as well as of the LTA tailings. Figures 5 to 8 depict hydraulic conductivity coefficient versus void ratio curves for the various materials tested in the laboratory, while Table 3 summarizes these results. The 1995 permeability results are summarized in Table 4 (Golder Associés, 1995).

For a void ratio of 0.8, as discussed in Section 3.1, the expected saturated hydraulic conductivity of the various materials under investigation are as follows:

- MRN tailings: $5 * 10^{-5}$ cm/s (e = 0.80);
- sand from west borrow pit: $1.21 * 10^{-1}$ cm/s (e = 0.60);
- LTA tailings: $2.5 * 10^{-5}$ cm/s (e > 0.75); and
- silt from N° 1 borrow pit: $1.0 * 10^{-6}$ cm/s (e < 0.75).

These values were used for modelling.

3.2.2 Water Retention Curves

Water retention curves represent the capacity of a material to retain water by capillary action in relation to the negative hydraulic head applied. Theses curves are derived from the water retention test described in Section 2.1.

Figures 9 and 10 depict the water retention versus void ratio curves for the various materials tested in the laboratory, while Table 5 summarizes these results. As mentioned, the Air Entry Value (AEV) was estimated to be the pressure yielding 90 % saturation (Ψ_{90}) in the tested materials. By using Ψ_{90} to quantify the AEV, available information in the literature can be used to compare the results and experimental uncertainties that could exist for the MNR (alkaline) tailings.

The following empirical equation is based on typical values observed at several other mine sites in Québec (Ricard, 1994; Aubertin et al., 1995b):

$$\Psi_{90} = \underline{C (mm)^2}$$
 where C is a constant that varies from 4 to 10
e D₁₀ (mm)

The equation estimates the Ψ_{90} value of a fine non-plastic material (tailings) with a void ratio of 0.8 with a varying pressure of 1.0 to 2.5 m of water. When comparing the results presented in Table 5 for MNR tailings, laboratory testing seems to be concordant with the range predicted by the empirical approach.

Also in Table 5, laboratory results show that silt from borrow pit N° 1 has far better water retention capacity than the MNR tailings. For example, the silt retains 90 % of its water at a pressure head in excess of 4 m of water, while the MNR tailings retain the same amount of water at a head of approximately 1.5 to 2.5 m of water. Based on these results, the use of silt would be a good alternative to MNR tailings in areas where water retention is problematic. Although not enough volume of silt material was available to be used as the primary fine material for the cover construction in the LTA project, this material offered some advantages that are explained in Section 4.0 - Cover Construction.

3.3 Oxygen Diffusion

Figure 11 illustrates the results of the various oxygen diffusion tests performed on the MNR tailings. For quality control purposes, an empirical curve for e = 0.8 (or a porosity n = 0.44) was drawn using the Milington and Shearer (1971) model.

The results of the empirical model seem to corroborate the experimental results. The most interesting results, for design purposes, are found at a saturation level of 80 to 95 %, where

oxygen diffusion drops by nearly two orders of magnitude. Results from laboratory work are concordant with those from the literature, which have also shown that, at saturation levels of at least 90 %, the effectiveness of a composite dry cover is the same as a water cover (Aachib et al., 1994).

3.4 Long-Term Stability

Particle migration and the effect of freezing and thawing on permeability were studied to evaluate the long-term stability of the composite cover.

The preliminary calculations of filter criteria between the MNR tailings and the sand indicated that typical filter criteria for dyke construction were not met. However, the hydraulic conditions of a cover system are very different from those of a dyke. Nevertheless, the column tests were performed in the hope of simulating site conditions and studying possible particle migration.

Approximately 90 to 95 litres of water was circulated through two identical columns, as described in Section 2.1.8. This represented approximately five years of precipitation for the region. For the last cycle, 10 litres of water were added, all at once, to each column. This represented a gradient eight times greater than the maximum daily precipitation ever recorded in Val d'Or, 67.8 mm.

Figures 12 and 13 illustrate the particle size distribution curves for the sand and the tailings respectively, before and after the column tests. A significant difference in particle size distribution between the sand and the tailings would have made it easy to identify an increase in fines (< 0.1 mm) in the sand if the systems were unstable. Careful study of the particle size distribution curves does not indicate that any particle migration occurred (see Appendix E for complete results). Due to the extreme conditions to which the columns were subjected to,

particle migration is not expected to be a problem.

Freeze-thaw tests were performed to assess the sensitivity of the MNR tailings and the silt to structural damage caused by freeze-thaw cycling. Figures 14 and 15 present the results of these tests for the MNR tailings and the silt respectively. As can be seen in Figure 14, the MNR tailings are not sensitive to freeze-thaw cycles, which is as expected for most silty non-plastic materials.

The natural silt, which possesses significant plasticity, is potentially sensitive to damage from freeze-thaw cycles (Figure 15). As expected, after 10 freeze-thaw cycles, the average permeability of the silt increased from $1*10^{-6}$ cm/s to $5*10^{-6}$ cm/s. This, however, is not expected to be a major concern.

3.5 Performance Modelling

The performance modelling of the composite cover was based on a sensitivity analysis while considering water retention in drought periods (2 months), resistance to surface erosion, ability to withstand extreme precipitation, as well as damage potential of freeze-thaw cycles (Baccini, 1988; EPA, 1989; Bagchi, 1990; Nicholson et al., 1991; Hutchison and Ellison, 1992; Daniel, 1993; Wing, 1993, 1994; Aubertin et al., 1995a; Woyshner and Yanful, 1995, Ricard et al., 1997).

Procedures and material properties presented in Sections 2.0 and 3.0 were used for sensitivity analyses. One of the difficulties of the feasibility study was to identify parameters that could be modelled and at the same time provide clues on cover effectiveness.

During the geochemical modelling phase described earlier in Section 1.5, the effective oxygen diffusion coefficient (De) required to ensure minimal oxidation was identified to be around $1*10^{-1}$

 8 m²/s for a 0.8 m thick fine layer (Senes, 1995). Figure 11 shows that at least 85 % saturation is required to obtain this value, and this was the target selected to analyze cover performance through hydrogeological modelling with specialized software.

Hydrogeological assessment modelling of the cover was done by Golder Associés in Pointe-Claire, Québec, in collaboration with Professor Michel Aubertin from École Polytechnique. The design was based on both laboratory and in situ testing results. Due to the complex hydraulic behaviour of a composite cover system, the optimum configuration was determined using numerical models. The water balance and various drainage and seepage parameters for the site were evaluated using the HELP and SEEP/W models. These programs were previously used in other studies (Woyshner and Yanful, 1995).

Initial results showed saturation level under 85 % in the upper part of the north dyke. Modelling also showed that water movement with the cover are essentially ruled by transient conditions, which means that quasi-stable permanent conditions are never met. To achieve proper humidity conditions anywhere on the tailings site, recharge conditions must be higher than seepage and evaporation. In the case of the north dyke, this was obtained by using hydraulic cut-offs, to reduce lateral slope seepage within the cover. According to the model, adequate humidity, even with a two-month drought period, was not related to Zone 2 layer thickness, but rather spacing of hydraulic cut-offs within the outer slope. Theses results were encouraging enough, on technical grounds, to allow the project to proceed.

The final selection of the layer thickness was done based on sensitivity analyses. For simplification purposes, the various layers of the composite cover were identified (see Figure 3) and are:

- Zone 1 (capillary break) composed of 0.5 m of sand from the sand and gravel borrow pit to the east of the LTA tailings impoundment (Figure 1);
- Zone 2 (oxygen diffusion barrier) composed of 0.8 m of alkaline tailings from the nearby MNR site (to the west, Figure 1); and
- Zone 3 (protection) composed of 0.3 m of sand and gravel, also from the east sand borrow pit (Figure 1).

3.6 General Comments - Composite Cover Material Properties

As described in the previous sections, the geotechnical properties of the MNR tailings, proposed to be used as the fined grained layer in the LTA composite cover, are neither exceptional nor uncommon. The fine layer of a composite cover system, which is key to reducing oxygen flow, determines the ultimate efficiency of the cover. Nevertheless, the selected material, MNR tailings, exhibit characteristics of typical silty sand or sandy silt. In many areas, materials to be used for the fine layer are scarce. Alternative materials, such as tailings (and materials ranging from sandy silt to silty sand), could be used if they demonstrate the necessary properties and are available in sufficient quantities. They would not be expected to be as effective as silt or clay, but with proper system design, tailings could still be effective at retaining humidity with appropriate capillary break thickness selection.

This shows that to ensure optimal design of a composite cover, at least three characteristics are required:

• The value of the maximum oxygen flux allowable (obtained typically through geochemical modelling or column testing) that would provide negligible oxidation;

-23-

- The effective diffusion coefficient (De) versus saturation of the material considered for cover construction (also obtained from laboratory test). By knowing the maximum flux available, thickness calculation of the fine layer (Zone 2 in the LTA project) can be obtained using the calculation method presented in Elberling et al., 1994; and
- The water retention capacity of all the materials considered for cover construction, to enable design of capillary and hydraulic break (in certain cases, to prevent water flow within the cover) that will ensure proper saturation of the critical cover material layer.

As described, the process to properly design a composite cover can be straight forward if a good work plan is adhered to. However, many challenges awaited on the construction site. Trying to construct a composite cover on a soft and very wet tailings impoundment, which was the case in the LTA project, demanded an innovative approach. This innovative approach will be presented in the following section.

4.0 COVER CONSTRUCTION

4.1 Logistics

Construction of a composite cover on top of a tailings impoundment, such as the one proposed for LTA, requires the placement of a 1.6 m-thick soil structure on a surface of nearly 60 hectares. This work cannot be done cost effectively without the use of heavy machinery. However, circulation of any kind, especially of heavy equipment during construction, proves to be a challenge due to the elevated phreatic surface of the tailings. Any movement would raise the water level to the surface of the tailings, and trafficability would be next to impossible.

From the start of the feasibility study, it was evident that the placement of relatively thin layers requiring compaction and large-scale homogeneity on a soft foundation would be a challenge. However, the LTA tailings impoundment does offer advantages for traffic movement and

subsequent construction. Since the tailings were stacked, the peripheral dykes are relatively permeable, with only one side contained by natural topography. They are generally well-drained and dry. Construction traffic in these areas is not a problem.

Due to the uncertainties surrounding construction feasibility and logistics, the project was divided into distinct phases. Phase I, scheduled to begin in late fall 1995, was the installation of test cells similar to those described in Section 2.2, with construction starting on top of south-east dyke (Figure 1), a dry area, and going inward onto the tailings impoundment (to the west) toward smoother areas. Phase II started in winter 1996 with the placement of the composite cover, and will end in the winter of 1999. This includes the construction of the cover on the whole site which ended in September 1996 and a two-year monitoring period.

4.2 Phase I - Fall 1995

The main goals of Phase I were: to verify site accessibility for construction equipment, better define the construction risks, and confirm that adequate compaction of Zone 2 material (MNR tailings) was possible. Adequate compaction is achieved when the void ratio meets the design criteria, set at 0.8.

Construction of the 2.5-hectare monitoring cell (see Figure 1) in the south-east corner of the site consisted of:

- 1) placement of the 0.5 m thick layer of sand (Zone 1) which would be required to prevent erosion and allow vegetative growth in the case where cover construction proved to be unfeasible; and
- 2) placement of the two remaining layers.

Placement of the first layer in the test area (see Photographs 1 to 7) started in late fall 1995. Due to the typical climatic conditions of this region (temperature of approximately $+6^{\circ}$ C during the day and -5° C at night, resulting in tailings being frozen at a depth of less than 15 cm), the placement of the Zone 1 material (sand) created, as expected, traffic circulation problems, particularly toward the centre of the tailings impoundment. As shown on Photographs 4 and 5, limited infiltration (piping) of finer LTA tailings into the sand layer (0.5 m) was observed at the beginning. Compaction of the Zone 1 material was not considered critical for the cover system. The homogeneity and drainage characteristics of this layer are significantly more important to ensure a capillary break effect, and the presence of finer particles in the coarser material must be controlled. The piping effect ceased as temperature decreased and the deeper tailings froze.

During the field test work described in Section 2.2, test cells to verify compaction requirements for Zone 2 material were installed in relatively dry areas of the site, namely the north and southeast dykes. During Phase I work, a compaction value of 90 % of the STD Proctor was required on softer foundations to achieve the 0.8 void ratio target as presented in Section 3.1.

Essentially, the same procedure used for the test cells (two 0.4 m lifts versus one 0.8 m lift) was kept with compaction levels tested using a nucleodensometer (see Photograph 8). This testing was performed immediately after compaction as well as the following day to assess frost action. Results showed that a single 0.8 m thick layer of Zone 2 material undergoing four to six passes with a vibrating roller drum compactor was the best alternative. Compaction values achieved were greater than 90 % of the STD Proctor.

As noted above the main objectives of Phase I were to verify site accessibility for construction equipment, and to confirm that adequate compaction of Zone 2 (MNR tailings) was possible. Results from Phase I showed that to enable heavy equipment circulation, and to prevent piping of tailings particles into the capillary break layer (Zone 1 - coarse layer), the Zone 1 layer needed to be placed and compacted in winter, while

the underlying tailings surface was frozen.

Phase I work also demonstrated that acceptable compaction levels for fine-grained materials (Zone 2) were attainable even in freezing conditions if these materials were not too wet (about 15 - 18 % water content) and were compacted immediately. Phase I work has therefore shown that composite cover construction is feasible, as long as the work is performed in winter when the tailings to be covered are frozen.

4.3 Phase II - Fall 1995 and Winter 1996

With Phase I work completed, much confidence was gained on the constructability aspects of the concept for full-scale application. Phase II was implemented, and consisted of covering the softer tailings areas first, preferably during the winter of 1995-96. A comprehensive QA/QC program was required to ensure that the required minimum standards be met. The program included:

- 1) snow removal prior to material placement;
- 2) material placement and immediate compaction (before freezing);
- 3) continuous compaction testing, sampling, laboratory analysis, and layer thickness verification;
- 4) snow and ice management at the borrow pits and work site to minimize handling of frozen materials and avoiding subsequent mixing with snow and/or ice; and
- 5) material management (frozen materials not used during winter construction are set aside for possible later use elsewhere during the warmer construction season).

This section describes the activities that took place at the LTA site in the fall of 1995 and winter 1996. The activities are presented in chronological order. Brief descriptions of the equipment used for the construction of the cover are also provided. The sequence of events does not
include all activities performed on the site; it is focused on the actual construction of the cover system. Photographs are included for completeness.

Construction Norascon Inc. was the contractor while Golder Associés managed and supervised the field work.

4.3.1 Cover System

As mentioned previously in Section 1.5, the composite cover built over the LTA tailings impoundment consists of three layers (see Figure 3). The first layer is a 0.5 m-thick sand layer and is identified as Zone 1. This layer keeps moisture from escaping from the overlaying layer by the capillary break effect. The material is from the borrow pit located west of the LTA tailings impoundment (see Figure 1). This pit also served as a source of material used to raise dykes and to construct the toe drains. The estimated available volume of sand and gravel was 500 000 m³. The stratigraphy of the west borrow pit is shown in Photographs 9 and 10. This layer was spread as a single lift, and compacted using the spreading equipment only.

The second layer was a 0.8 m compacted layer of fine material with a low permeability and good water retention capacity, acting as an oxygen diffusion barrier. The MNR tailings were used for this layer, and are identified as Zone 2. Figure 1 depicts the location of the MNR tailings the borrow area for the Fall of 1995. Approximately 1 Mm³ of useable tailings was available for cover construction. Useable tailings are described as fine, unfrozen, not too wet, and within the design particle size envelope. This layer was spread as a single lift, and compacted with four to six passes of a vibrating roller drum compactor.

The third layer is a 0.3 m compacted layer of sand and gravel from the west borrow pit and is identified as Zone 3. This layer acts as a protection layer, as well as an evaporation protection

-29-

layer for the underlying Zone 2 layer. This layer was spread as a single lift, and well compacted with a vibrating roller drum compactor.

4.3.2 Description of Activities

Since the LTA impoundment is actually a stack, the dykes are also composed of acid-generating materials and needed to be covered. Hence, one of the first tasks requiring some attention was the external slopes of the dykes, which were too steep to assure long-term stability. This task was not directly related to cover design layout, but had to be performed prior to cover construction.

Phase II rehabilitation work began in late fall 1995 with the profiling of the south-east dyke (see Photographs 11 to 13) that was constructed solely of tailings. The slope was reduced (maximum slope of 3H:1V) and directed away from the tailings area. The profiling work was then completed on the east, north, and west dykes. The inner slopes and crests of the dykes were also profiled to a maximum slope of 3H:1V for covering purposes.

An access road was also constructed (see Photographs 14 and 15). This road joins the west borrow pit, where Zone 1 and 3 materials are located, to the LTA tailings area via the settling pond (see Figure 1). This 7.5 m wide road was built to facilitate circulation of heavy equipment on the settling pond surface in winter. Before freezing, traffic circulation was impossible. This road was continued up to the MNR property where the Zone 2 material is located. An access ramp was constructed, using dry tailings, which led from the LTA impoundment tailings to the MNR property, crossing over the east dyke (see Figure 1).

During this period, lime was placed on the downstream slope of the peripheral dykes (see Photographs 16 and 17). This work began on the south-east dyke and then continued on the

east and north dykes. Agricultural lime was spread as a precautionary step to delay any acid generation that could occur as the dyke crests were not yet covered. In total, approximately 350 tons of lime were spread on the east, south-east, and north dyke slopes and crests at a ratio of 100 t/ha.

Zone 1 material placement began on the north dyke crest, and then continued in the direction of the east and south-east dykes, as well as towards the softer areas to the south-west. The sand was excavated using a Hitachi EX-700 hydraulic shovel, loaded by a CAT 980 loader, and transported using four to six 35-ton off-road Volvo trucks. The number of machines used varied depending on work conditions and crews (day or night shift). The tailings were spread by one or two CAT7/D6 bulldozers and compacted by one or two smooth vibrating drum compactors. Since no compaction was required for Zone 1, only a road grader was used to level the Zone 1 layer in preparation for the placement of the Zone 2 layer (see Photographs 18 and 19).

With the establishment of a good working surface for Zone 1, placement of the Zone 2 MNR tailings on the south-east dyke (see Photographs 20 and 21) was started. Winter construction resulted in frozen borrow materials. The frozen tailings at the MNR site were excavated and stockpiled mainly on the outer slopes of the north dyke for future use. Frozen materials accounted for approximately 30 % of the total volume excavated. Unfrozen material from the MNR site was transported to the LTA site for placement and compaction as Zone 2 material. Even if nearly 10 Mt of alkaline tailings were present in the MNR site, only about 10 % had suitable characteristics as construction material for the composite cover. Only efficient management of these materials allowed for the completeness of the work.

Placement of Zone 1 (0.5 m-thick layer of sand) over the entire surface of the LTA tailings impoundment was completed by the end of March 1996. The only area left uncovered was the west dyke. The downstream slope of this dyke required using profiling/reprofiling (3H:1V)

before placement of the cover, scheduled for the summer of 1996.

Near the end of March 1996, most of the acceptable MNR tailings identified (unfrozen and 18 % water content on average) had already been used. The moisture content of the tailings increased with depth, thus gradually reducing the attainment of adequate compaction for the cover.

A second borrow area, north-east portion of the MNR property, was used to supply Zone 2 materials (winter 1996 on Figure 1). These tailings were found to be finer and much drier (15 % water content on average). The remainder of Zone 2 construction was carried out using this material. Temporary access roads to this new borrow area on the MNR property were constructed.

Zone 3 construction (final protective layer) began as soon as the Zone 2 material was placed. Hence, a large portion of the composite cover was completed by mid-March 1996 (see Photographs 22 and 23). With a thickness of 0.3 m, this layer was spread and compacted in a single lift using spreading equipment.

Work planned for the fall 1995 - winter 1996 period was completed by the end of March 1996. During this time, the entire LTA tailings surface, with the exception of the access road and the downstream slope of the west dyke, was covered with the three-layer composite cover system. The south-east dyke was also completely covered. The east dyke was covered by Zone 1 material only, while the north dyke has Zone 1 layer completed as well as stockpiles of frozen MNR tailings (Zone 2 material).

A strict quality control program was implemented during the composite cover placement. Good compaction of the Zone 2 layer was essential for cover efficiency. The quality control program was especially important since construction was performed in difficult winter conditions, a first

for this type of application.

For the MNR tailings (Zone 2), the average in situ compaction obtained using a nucleodensometer was 94.7 % of the Standard Proctor. This corresponds to an average void ratio of 0.778, which is better than the 0.8 void ratio considered in the feasibility study. The work performed during the fall 1995-winter 1996 period can therefore be considered in conformity with the design criteria.

The complete results of all compaction testing for the fall 1995-winter 1996 period are presented in Appendix G.

Table 6 provides an estimate of the volume of material put in place. Approximately 0.97 Mm^3 of materials were used in this period for the construction of the composite cover.

4.4 Phase II - Summer 1996

Construction on the LTA site was delayed in the spring of 1996 because of melting snow which made traffic circulation on the site impossible. In early July, work resumed with the removal of ponded water and debris that had accumulated in existing ditches to permit proper drainage of the site.

During winter construction, the MNR tailings were used for the Zone 2 fine layer. The spring thaw left the MNR site untrafficable. To complete Zone 2 of the composite cover, silt from the N° 1 borrow pit was used (see Figure 1). Although material availability was limited, the silt demonstrated better water retention capabilities than the MNR tailings previously used in the winter of 1996. A 3 m-thick strip of silt was used from the borrow pit to complete the cover.

The west dyke required slope reprofiling before placement of the composite cover. This was one of the first tasks performed on the site during the summer of 1996. The outer dyke wall was given a 3H:1V slope and covered immediately by a layer of Zone 1 material (see Photographs 24 to 26) followed by the Zone 2 silt layer (see Photograph 27).

During Phase I, cover placement over the north dyke was not completed. Frozen MNR tailings (Zone 2 material) were instead stockpiled at that location. The north dyke was first reprofiled, because the spring melt created gullies on the slope walls (see Photographs 28 and 29), and stockpiled tailings were spread out and compacted. Zone 3 material was placed immediately afterwards (see Photographs 30 and 31).

The placement of the Zone 2 silt layer over both the north and west dykes was completed by mid-August 1996 and was followed by the placement of the Zone 3 layer (see Photographs 32 and 33). Due to the rain and the relatively high moisture content of the silt, the Zone 2 layer was sometimes compacted several days after allowing material to air dry. Adequate compaction was then achieved using a smooth drum vibrating compactor.

Construction materials were excavated using a Hitachi EX-700 hydraulic shovel, loaded by a CAT 980 loader, than hauled by four to six 35-ton Volvo off-road trucks. The number of trucks used varied with work conditions (day or night shift). The materials were spread over the tailing surface and the dyke slopes by one or two CAT7/D6 bulldozers and subsequently compacted by one or two smooth drum vibrating compactors.

Erosion of the dyke slopes, because of runoff, was also a problem at the east and south-east dykes. Reprofiling was necessary prior to placement of Zone 2 and Zone 3 material.

Work continued on the tailings pond where the access road was removed and replaced with the

composite cover. Work began at the eastern extremity of the road and proceeded west toward the west borrow pit (see Photographs 34 to 37).

It should be noted that the LTA tailings, even in mid-summer, had a high moisture content. They were almost fully saturated and traffic circulation created a quicksand effect. As observed in Phase I under these conditions, tailings compaction using standard equipment was virtually impossible. This would create a quicksand effect which would induce piping of the LTA tailings through the Zone 1 sand layer. Hence, compaction was achieved using only the excavator bucket. Particular attention was paid to blending the remainder of the Zone 2 layer properly with the partial Zone 2 layer placed during winter construction. Since heavy equipment could not circulate on the composite cover, dismantling of the access road and placement of the cover were performed in successive 50 m long sections. This ensured continuous access to the work area via the access road. All work was completed by October 1996.

Therefore, the decision to proceed with construction of the cover on soft tailings in the winter was justified. In fact, difficulties encountered during the summer months proved that such work would have been impossible to perform during summer seasons. Furthermore, from experience, the protective Zone 3 layer must be placed as soon as possible since thawing and spring runoff can cause significant erosion, even to the point of compromising the integrity of the composite cover.

The compaction test results are presented in Appendix H. For the Zone 2 silt, the average compaction was 92 % of the Standard Proctor, which relates to a void ratio of 0.762. This is again below the target void ratio of 0.80.

Table 6 provides an estimate of the volume of material used for the composite cover construction. Approximately 100 000 m^3 of various materials were used to cover the tailings area in the summer of 1996. For both 1995 and 1996, a total of approximately 1.0 Mm³ of material was used for cover construction.

5.0 FIELD MONITORING PROGRAM

Phase A of the monitoring program consisted in the installation of 20 monitoring stations throughout the site to adequately monitor the efficiency of the composite cover. These stations are in addition to the existing piezometers on site.

The first series of monitoring stations, identified CS96-1 to CS96-10 (top of impoundment) and PS96-1 to PS96-3 (outer slopes) was installed in June 1996. The PS96-4 to PS-96-10 (north dyke) series was installed in August 1996. The locations of the monitoring stations are shown on Figure 16. The difference in elevation between the stations is shown on Figure 17.

A typical monitoring station is illustrated in Figure 18. The oxygen probe enables the measurement of oxygen consumption, that is converted to oxygen flux through the composite cover (Photographs 38 and 39). The TDR (Time Domain Reflectometry) probes are used to evaluate the in situ moisture content of a material (Photograph 40) and the Watermark probes are used to measure capillary potential in soils (Photograph 41). A correlation between moisture content, capillary forces, and oxygen flux through the saturated layer as well as cover efficiency can be determined using these three instruments. More information on instruments characteristics can be found in MEND 1994.

Phase A monitoring stations were installed in the Zone 2 layer (MNR tailings) of the composite cover. Given the short time period between the end of construction and the first monitoring campaign results, the interpretation, which takes into consideration varying seasonal conditions, will be included in the final monitoring report due in March 1999.

6.0 CONCLUSIONS

The LTA project has increased the knowledge base of construction techniques in full-scale applications of composite covers. Initial observations on site indicate that the cover was placed in conformity with construction objectives. The design, construction, and monitoring program for the LTA soil cover provides a unique opportunity to evaluate the performance of an engineered soil cover in Canadian climate.

Several new concepts and construction techniques were developed for this project, such as the use of locally available tailings to be used for the fine layer when clays are not available. This concept could be applicable to a large number of other acid-generating sites.

The geotechnical properties of the MNR tailings used for the fine layer of the composite cover are neither particular nor uncommon. The MNR tailings exhibit characteristics that a relatively common silty sand or sandy silt may have. Often, the difficulty is not in identifying suitable locally available materials but rather in determining the required thickness of the cover layers that will ensure minimal oxidation conditions, that is the fine material at near saturation with a capillary layer.

At least three key elements are required to ensure optimal design of a composite cover:

- The value of the maximum oxygen flux allowable (obtained typically through geochemical modelling or column testing) that would provide negligible oxidation;
- The effective diffusion coefficient (De) versus saturation of the material considered for cover construction (also obtained from laboratory test). By knowing the maximum flux available, thickness calculation of the fine layer (Zone 2 in the LTA project) can be obtained using the method presented in Elberling et al., 1994.
- The water retention capacity of all the materials being considered for cover construction. This will enable the design of capillary and hydraulic breaks (in certain cases to prevent water flow within the cover) to ensure proper saturation of the fine layer in the cover system.

Furthermore, three important design parameters that effect the financial impact of the project must be considered.

The first aspect, geochemical modelling of the site specific conditions, is one of the most important parameter affecting the cost of rehabilitation. In this case study, the precise establishment of site requirements allowed the use of MNR tailings instead of other more costly materials.

The next critical parameter is knowledge and identification of available materials. Using coil covers as a closure option is cost effective when transportation costs are kept to a minimum. The LTA project confirmed that using locally available material, such as tailings, for cover construction is a viable closure option. The project also demonstrated that the results of the laboratory testing were representative of the field conditions (Aubertin et al., 1995a, b). When transportation costs are kept to a minimum, the cost of a cover system such as the one used at LTA are viable.

The final parameter in determining the total cost of construction is field conditions since cover placement requires a specified density on an often soft foundation. Innovative solutions are often required. In the LTA case, winter construction was deemed the most appropriate solution.

The final cost of the LTA composite cover, an area of almost 60 hectares, was CAN\$3.9 M or \$45,000/hectare/m of thickness (revegetation cost not included). The preliminary estimate of all reclamation costs (including ditches, foot drains, spillways, etc.) was approximately \$93,500/hectare.

7.0 FUTURE PROJECTS

Monitoring of Phase A stations will be continued. Additional monitoring stations will be installed during Phase B. These will be carefully installed to minimize disturbance of the composite cover. TDR probes, to measure the water content, and tensiometers, to corroborate the Watermark probe readings, will be installed in the Zone 2 layer. This phase will allow a spatial distribution of results as well as the determination of an average saturation value through the entire thickness of the fine layer. These results will complement the vertical profiles of the Phase A monitoring stations. Phase B began in the spring of 1997.

To calculate the infiltration, a more detailed hydraulic balance is required. A meteorological station on site, along with the meteorological stations at the Val d'Or Airport and that of École Polytechnique at the Norebec-Manitou site (located 10 km east of Val d'Or), will provide all necessary precipitation and evaporation data. A flow measurement station will be installed at the south spillway to monitor runoff.

The impacts of surface erosion and root penetration on the effectiveness of the cover are recommended areas of research for future studies.

The final monitoring report, which will include the data and the interpretation, will be available in March 1999.

AUTHORS:

Pascal Garand, Golder Associés Ltée Mayana Kissiova, Golder Associés Ltée Jean-François Ricard, Golder Associés Ltée

TECHNICAL REVIEWERS:

Michel Aubertin, École Polytechnique de Montréal Pierre Pelletier, Barrick Gold Corporation Phillipe Poirier, Barrick Gold Corporation Gilles Tremblay, Natural Resources Canada (Canmet)

WITH SPECIAL THANKS TO:

Michel Julien, Golder Associés Ltée Frederick W. Firlotte, Golder Associates Ltd. Jacques McMullen, Barrick Gold Corporation Paul Viannello, Golder Associates Ltd.

REFERENCES

- Aachib, M., Aubertin, M., Chapuis R.P. 1993. Étude en laboratoire de la performance des barrières de recouvrement constituées de rejets miniers pour limiter le drainage minier acide - Un état de la question. Rapport EPM/RT-93/32.
- Aachib M., Aubertin, M., Chapuis R.P. 1994. A Laboratory Investigation of Milling Wastes Properties Used to Build Cover Systems in Column Tests. Proc. of the Int. Land Reclamation and Mine Drainage Conf. and the Third Int. Conf. on the Abatement of Acidic Drainage, Pittsburgh, PA, Bureau of Mines Special Pub. SP 06B-94, Vol. 2, pp. 128-137 (MEND Project 7.1).
- Anon, 1991. The Use of Low-Permeability Covers on Acid-Forming Waste Material. A Literature Search Conducted for the Membership of AMIC, ASSMR, CLRA and REGRO (Oc.1991), 23 pages.
- ASTM (American Society for Testing Material), 1995. Annual Book of ASTM Standards, seat. 4, vol. 04-08. ASTM, Philadelphia.
- Aubertin, M., Chapuis, R.P., 1991. «Considérations hydrogéotechniques pour l'entrepo-sage de résidus miniers dans le nord-ouest du Québec. C.R. 2e Conf. Int. Réduction des eaux de drainages acides (MEND Project 5.6.1.)
- Aubertin, M., Chapuis, R.P., Aachib, M., Bussière, B., Ricard, J.F., Tremblay, L., 1995a. Évaluation en laboratoire de barrières sèches construites à partir de résidus miniers. Projet P1622, C.D.T. École Polytechnique, novembre 1995 (Rapport NEDEM 2.22.2A).
- Aubertin, M., Ricard, J.F., Chapuis, R.P. 1995b. A Study of Capillary Properties of Mine Tailings: Measurements and Modeling. Proc. 48th Can. Geoth. Conf. Vancouver, pp. 17-24.
- Aubertin, M., Ricard, J.F., Chapuis, R.P. 1998. A Predictive model for the water retention curve: application to tailings from hard-rock mines. Can. Geotech. J. 35: 55-69.
- Baccini, P., ed., 1988. The Landfill Reactor and Final Storage, Springler-Verlag.
- Bagchi, A., 1990. Design, Construction and Monitoring of Sanitory Landfill, John Wiley and Sons.

- Bussière, B., Benzaazoua, M., 1997. Valorisation des résidus miniers: Une approche intégrée (Phase II, rapport d'étape 5). URSTM, mars 1997 (Rapport NEDEM 2.22.3).
- Collin M., Rasmuson, A., 1990 Mathematical Modeling of Water and Oxygen Transportation in Layered Soil Covers for Deposits of Pyritic Mine Tailings, Acid Mine Drainage: Designing for Closure. GAC-MAC Annual Meeting. pp. 311-333.
- Daniel, D.E., Editor, 1993. Geotechnical Practice for Waste Disposal. Chapman & Hall.
- EPA, 1989. Final Covers on Hazardous Waste Landfills and Surface Impoundments, Technical Guidance Document, EPA/530/SW/89-047.
- Hutchison, I. P., et Ellison, R. D. eds., 1992. Mine Waste Management. California Mining Association.
- MEND Project 2.31.1b, 1994. Engineering Design and Construction Report : Phase IV -Composite Soil Cover Acid Waste Rock Study Heath Steele Mine. November 1994.
- MEND Project 2.21.3, 1997. Review of Soil Cover Technologies for Acid Mine Drainage A Peer Review of the Waite Amulet and Heath Steele Soil Covers, July 1997.
- McMullen, J., Firlotte, F.W., Knapp, R., Aubertin, M., 1997. Les Terrains Aurifères Property Site Closure and Rehabilitation Conceptual to Construction. 29th Annual CMP Operators Conference, Jan.21-23, 1997.
- Millington, B.J. Sharer, B. C. 1971. Diffusion in Aggregated Porous Media. Soils Science, vol. III, no. 6. pp 372-378.
- Nicholson, R.V., Gillham, R.W., Cherry, J.A., Reardon, E.J, 1989 Reduction of Acid Generation in Mine Tailings Through the Use of Moisture-retaining Covers as Oxygen Barriers. Can. Geotech. J. Vol. 26, pp. 1-8.
- Nicholson, R.V., Akindunni, F.F., Sydor, R.C. et Gilham, R.W., 1991. Saturated Tailings Covers Above the Water Table: The Physics and Criteria for Design. Deuxième Confér. Int. sur la réduction des eaux de drainage acides, pp. 443-460. (MEND Project 5.6.1).

- Nicholson, R.V. et Tibble, P.A., 1996. An Oxygen Consumption Survey of the Barrick Gold Covered Tailings Impoundment, December, 19, 1996.
- Ricard, J.F., 1994. Étude en laboratoire de la relation capillaire et de la conductivité hydraulique de résidus miniers. Mémoire M.Sc. A., Département de génie Minéral, École Polytechnique de Montréal, 207 pages.
- Ricard, J.F., Aubertin, M., Firlotte, F.W., Knapp, R., McMullen, J., Julien, M., 1997. Design and Construction of a Dry Cover made of Tailings for the Closure of Les Terrains Aurifères Site, Québec, Canada. Proc 4th ICARD Conference, Vancouver, May-June 1997 (MEND Project 7.2).
- Senes Consultants Ltd., 1995. A Review of AMD Control Strategies for Les Terrains Aurifères, Malartic, Québec. Rapport no. 31638, juillet 1995.
- SRK, 1991. Guide technique préliminaire sur le drainage rocheux acide (une traduction de «Draft Acid Rock Drainage Technical Guide». 1989, BCAMD Task Force). Vol. I et II, Centre de recherches minérales, Québec
- Wing, N. R., 1993. Permanent Isolation Surface Barrier: Functional Performance. Report Prepared for the U.S. Department of Energy, Westinghouse Handford Company, WHC-EP-0650.
- Wing, N. R., 1994. Permanent Isolation of Surface Barrier Development Plan. Report Prepared for the U.S.. Department of Energy, Westinghouse Handford Company, WHC-EP-0673.
- Woyshner, M.R., Yanful, E.K., 1995., Modeling and Field Measurements of Water Percolation Through and Experimental Soil Cover on Mine Tailings. Can. Geotech. J., 32: 601-609.

ITEM	MNR	SAND	SILT	LTA
	TAILINGS			TAILINGS
Grain size				
D ₆₀ (mm)	0.030	0.870	0.0095	0.030
D ₃₀ (mm)	0.012	0.517	0.003	0.010
D ₁₀ (mm)	0.005	0.300	< 0.001	0.002
Cu	6.0	2.90	>9.5	15
Cc	0.96	1.02	>0.95	1.67
Specific gravity Gs	2.819	2.751	2.747	2.934
Compaction test				
Density (kg/m ³) γ_d	1650	1845	1943	1810
Optimal water content W _o	15.7%	14.2%	13.3%	15.5%
Void ratio e	0.708	0.491	0.414	0.621
Atterberg's Limits:				
Liquid limit w _t	23.0		25.1	23.0
Plastic limit w _p	19.5		19.06	21.9
Plasticity index I _p	3.5		6.05	1.1
Soil type	ML	SP	ML-CL	ML
USC Classification				

SUMMARY OF LABORATORY RESULTS

COMPACTION TESTS - MNR TAILINGS EXPERIMENTAL CELLS

Description : Compaction test. South-east test cell. LTA site							
Personnel	PersonnelEric BouchardGolderCompaction unitSmooth drum compactor						
Gs	STD Proctor Results						
2.819	Optimal Density	(Mg/m^3)	1.650	Optimal water	· content	15.7	

Test #	Material	γd	W	% Standard	Void ratio	Field notes
		(kg/m ³⁾	%	Proctor		
110	MRN	1550	17	93.9%	0.774	
111	MRN	1537	22.7	93.2%	0.789	
112	MRN	1536	19.4	93.1%	0.790	
113	MRN	1552	17.1	94.1%	0.772	
114	MRN	1481	19.3	89.8%	0.857	
115	MRN	1487	17.1	90.1%	0.849	
116	MRN	1530	13.1	92.7%	0.797	
117	MRN	1480	12.6	89.7%	0.858	
118	MRN	1555	13.1	94.2%	0.768	
119	MRN	1543	19.9	93.5%	0.782	
120	MRN	1580	10.8	95.8%	0.741	
121	MRN	1527	17.5	92.5%	0.801	
122	MRN	1539	14.5	93.3%	0.787	
123	MRN	1528	16.3	92.6%	0.800	
132	MRN	1564	17.6	94.8%	0.758	
133	MRN	1593	16.2	96.5%	0.726	
134	MRN	1535	18.6	93.0%	0.792	
135	MRN	1506	17.8	91.3%	0.826	
136	MRN	1534	14.4	93.0%	0.793	
137	MRN	1611	15.3	97.6%	0.707	
138	MRN	1510	14.7	91.5%	0.821	
139	MRN	1561	17.3	94.6%	0.762	
140	MRN	1581	16.2	95.8%	0.739	
141	MRN	1517	12.8	91.9%	0.813	
142	MRN	1623	17.6	98.4%	0.694	
143	MRN	1635	10.6	99.1%	0.682	
144	MRN	1577	18.6	95.6%	0.744	
145	MRN	1594	19.3	96.6%	0.725	
146	MRN	1658	10.9	100%	0.659	
147	MRN	1608	15.2	97.5%	0.710	
148	MRN	1519	12.7	92.1%	0.810	
149	MRN	1580	16.1	95.8%	0.741	
150	MRN	1651	10.8	100.1%	0.666	
151	MRN	1535	18.1	93.0%	0.792	
152	MRN	1521	17.7	92.2%	0.808	
153	MRN	1483	19.5	89.9%	0.854	
154	MRN	1594	18.9	96.6%	0.725	
155	MRN	1488	18.2	90.2%	0.848	
156	MRN	1610	14.3	97.6%	0.708	
157	MRN	1655	16.1	100.3%	0.662	
158	MRN	1641	12.7	99.5%	0.676	
159	MRN	1637	16.8	99.2%	0.680	
	Average	1560	16.1	94.4%	0.768	

SUMMARY OF PERMEABILITY TESTING RESULTS

Void ratio	MNR tailings	SAND	SILT	LTA tailings
	(cm/s)	(cm/s)	(cm/s)	(cm/s)
0.582			2.91*10 ⁻⁶	
0.586		8.57*10 ⁻²		
0.598		$1.17*10^{-1}$		
0.614		$1.55*10^{-1}$		
0.615		1.64*10 ⁻¹		
0.666			$1.05*10^{-6}$	
0.684			$1.46*10^{-6}$	
0.712	$3.06*10^{-5}$			
0.725				9.30*10 ⁻⁶
0.795	4.96*10 ⁻⁵			
0.824				2.39*10 ⁻⁵
0.833				1.85*10 ⁻⁵
0.844	8.61*10 ⁻⁵			
0.919			7.63*10 ⁻⁷	
1.014	1.94*10 ⁻⁴			
1.028	1.93*10 ⁻⁴			
1.037				3.85*10 ⁻⁵

SUMMARY OF IN-SITU PERMEABILITY TESTING

Location	Piezometer	Depth	Stratigraphy	Permeability
		(feet)		(cm/s)
BH94-01	1	86.5 - 91.5	Silt	4*10 ⁻⁶
BH94-02	1	50.0 - 55.5	Silty Sand	9*10 ⁻⁵
BH94-03	1	49.0 - 54.0	Sandy Silt	2*10 ⁻⁵
BH94-06	1	47.5 - 52.5	Silty Sand	5*10 ⁻⁵
BH94-07	1	15.0 - 20.0	Silt	8*10 ⁻⁶
BH94-09	1	2.0 - 12.0	MRN tailings	8*10 ⁻⁶
BH93-01	1	40.0 - 50.0	Sand	9*10 ⁻⁴
BH93-03	1	25.0 - 35.0	Silty Sand	$4*10^{-4}$
BH93-04	1	55.0 - 65.0	Sand	9*10 ⁻³

		1	
MATERIAL	Void ratio	$AEV-\Psi_{90}$	$\Psi_{\rm r}$
		m water	m water
MNR tailings	0.86	2.21	
MNR tailings	0.90	2.80	
MNR tailings	0.94	0.74	
MNR tailings	0.94	1.36	
Sand	0,55		1,04
Sand	0,64		0,97
Sand	0,66		0,97
Silt-Poly	0,56	2.81	
Silt-Poly	0,58	4.22	25,31
Silt-URSTM	0,70	13.5	
Silt-URSTM	0.80	> 45	
LTA tailings	0.83	4.66	
LTA tailings	1.08	1.10	

WATER RETENTION RESULTS SUMMARY

AEV : Air Entry Value. Brooks and Corey (1969) method use for silt.

- $\Psi_{90:}$ Suction Pressure at 90% saturation. method use for tailings.
- $\Psi_{\rm r}$ Residual suction pressure (typically 5 to 10 % saturation).

Item	Units	Fall 95	Summer 96	Total
		Winter 96		
Zone 1	m ³	323 220	28 760	351 980
		average thic	ckness (m)	0.59
Zone 2-MNR	m ³	335 155	0	335 155
Zone 2 (MNR-frozen)	m ³	153 990	0	153 990
Zone 2 (Silt)	m ³	0	30 000	30 000
		average thic	ckness (m)	0.87
Zone 3	m ³	153 990	34 005	187 995
		average thickness (m)		0.31
	Total	966 355	92 765	1 059 120

APPROXIMATIVE MATERIAL VOLUMES PUT IN PLACE

and the second sec

1------

Tel.: (514) 630-0990 Fax: (514) 630-1178

DRY COVER LAYOUT

3

9730104C.DWG

Figure 7: Conductivité hydraulique saturée - résidus LTA. Figure 7: Saturated hydraulic conductivity - LTA tailings.

Figure 8: Conductivité hydraulique saturée - silt du banc d'emprunt. Figure 8: Saturated hydraulic conductivity - silt from the borrow pit.

. .

Figure 11: Oxygen diffusion coefficient vs saturation of the MNR tailings.

Mars/March 1997

971-7301

PHOTOGRAPHIE 1: Début des travaux. Mise en place de la Zone 1 (sable) de 0,5 m d'épaisseur. Direction sud-est. PHOTOGRAPH 1: Start of work. Placing the 0,5 m thick Zone 1 (sand). South-east direction.

PHOTOGRAPHIE 2: Zone 1 (sable) mise en place, compactée et nivelée. Direction sud-est. PHOTOGRAPH 2: Zone 1 (sand)-placed, compacted and leveled. South-east direction.

PHOTOGRAPHIE 3: Mise en place des résidus MRN (Zone 2) sur la Zone 1 (sable). Secteur sud-est. PHOTOGRAPH 3: Placing the MRN tailings (Zone 2) over the Zone 1(sand). South-east sector.

PHOTOGRAPHIE 4: Infiltration des résidus à travers la couche de sable (Zone 1). PHOTOGRAPH 4: Tailings infiltration through the sand layer (Zone 1).

PHOTOGRAPHIE 5: Infiltration des résidus à travers la couche de sable (Zone 1). PHOTOGRAPH 5: Tailings infiltration through the sand layer (Zone 1).

PHOTOGRAPHIE 6: Étalement des résidus du MRN dans la zone sud-est. PHOTOGRAPH 6: Flattening the MRN tailings in the south-east zone.

PHOTOGRAPHIE 7: Compactage des résidus du MRN dans la zone sud-est. PHOTOGRAPH 7: Compacting the MRN tailings in the south-east zone.

PHOTOGRAPHIE 8: Mesure de la densité sur le terrain. PHOTOGRAPH 8: Density measurements in the field.

PHOTOGRAPHIE 9: Banc d'emprunt - stratification. PHOTOGRAPH 9: Borrow pit - stratification.

PHOTOGRAPHIE 10: Banc d'emprunt - stratification. PHOTOGRAPH 10: Borrow pit - stratification.

Mars/March 1997

971-7301

PHOTOGRAPHIE 11: Digue sud-est - nivellement de la pente. PHOTOGRAPH 11: South-east dyke - levelling of the slope.

971-7301

PHOTOGRAPHIE 12: Digue sud-est - nivellement de la pente. PHOTOGRAPH 12: South-east dyke: levelling of the slope.

PHOTOGRAPHIE 13: Digue est- nivellement de la pente. PHOTOGRAPH 13: South dyke - levelling of the slope.

PHOTOGRAPHIE 14: Construction du chemin d'acces. PHOTOGRAPH 14: Haul road construction.

PHOTOGRAPHIE 15: Construction du chemin d'accès. PHOTOGRAPH 15: Haul road construction.

PHOTOGRAPHIE 16: Épandage de la chaux sur les parois des digues est, sud-est et nord. PHOTOGRAPH 16: Line spreading on the slopes of the east, south-east and north dykes.

PHOTOGRAPHIE 17: Épandage de la chaux sur les parois des digues est, sud-est et nord. PHOTOGRAPH 17: Lime spreading on the slopes of the east, south-east and north dykes.

PHOTOGRAPHIE 18: Zone 1 - mise en place et compactage de la couche de sable et gravier. PHOTOGRAPH 18: Zone I - placing and compacting of the sand and gravel layer.

PHOTOGRAPHIE 19: Équipement de terrain PHOTOGRAPH 19: Field machinery

PHOTOGRAPHIE 20: Mise en place et compactage des résidus du MRN (Zone 2) sur la Zone 1 (sable). PHOTOGRAPH 20: Placing and compacting the MRN tailings (Zone 2) over the Zone 1 (sand).

Mars/March 1997

971-7301

PHOTOGRAPHIE 21: Mise en place de la Zone 2. Direction sud. PHOTOGRAPH 21: Placing the Zone 2. South direction.

PHOTOGRAPHIE 22: Zone 3 - mise en place et compactage. PHOTOGRAPH 22: Zone 3 - placing and compacting.

PHOTOGRAPHIE 23: Mise en place et compactage de la Zone 3 (sable et gravier) sur les résidus du MRN. PHOTOGRAPH 23: Placing and compacting the Zone 3 (sand and gravel) over the MRN tailings.

971-7301

PHOTOGRAPHIE 24: Reprofilage de la digue ouest avant la mise en place de la Zone 1 (sable). PHOTOGRAPH 24: Reprofiling the west dyke prior to placing the Zone 1 (sand).

PHOTOGRAPHIE 25: Digue ouest. Mise en place et compactage de la Zone 1 (sable) de 0,5 m d'épaisseur. PHOTOGRAPH 25: West dyke. Placing and compacting the 0,5 m thick Zone 1 (sand).

PHOTOGRAPHIE 26: Digue ouest. Mise en place et compactage de la Zone 1 (sable) de 0,5 m d'épaisseur. PHOTOGRAPH 26: West dyke. Placing and compacting the 0,5 m thick Zone 1 (sand).

PHOTOGRAPHIE 27: Digue ouest. Misc en place de la Zone 2 (silt) sur la pente de la digue reprofilée. PHOTOGRAPH 27: West dyke. Placing the Zone 2 (silt) on the reprofiled slopes.

971-7301

PHOTOGRAPHIE 28: Digue nord. Reprofilage de la Zone 2 (résidus) placée en hiver 1996. Vue ouest. PHOTOGRAPH 28: North dyke. Reprofiling the Zone 2 (tailings) placed in winter 1996. View west.

PHOTOGRAPHIE 29: Digue nord. Compactage de la Zone 2 (résidus) reprifilée. PHOTOGRAPH 29: North dyke. Compacting the reprofiled Zone 2 (tailings).

Mars/March 1997

PHOTOGRAPHIE 30: Pente de la digue nord. Mise en place de la Zone 3 (sable et gravier). PHOTOGRAPH 30: North dyke slope. Placing the Zone 3 (sand and gravel).

PHOTOGRAPHIE 31: Pente de la digue nord. Compactage de la Zone 3 (sable et gravier). PHOTOGRAPH 31: North dyke slope. Compacting the Zone 3 (sand and gravel).

PHOTOGRAPHIE 32: Digue ouest. Mise en place de la Zone 2 (silt) sur la Zone 1 (sable). PHOTOGRAPH 32: West dyke. Placing the Zone 2 (silt) over the Zone 1 (sand).

PHOTOGRAPHIE 33: Digue ouest. Mise en place de la Zone 2 (silt) sur la Zone 1 (sable). PHOTOGRAPH 33: West dyke. Placing the Zone 2 (silt) over the Zone 1 (sand).

PHOTOGRAPHIE 34: Démantèlement du chemin d'accès sur le sommet du parc à résidus. PHOTOGRAPH 34: Dismantling the haul road on the top of the tailings basin.

PHOTOGRAPHIE 35: Chemin d'accès. Mise en place de la Zone 2 (silt) sur la Zone 1 constituée du sable du chemin. PHOTOGRAPH 35: Placing Zone 2 (silt) over haul road Zone 1 layer.

PHOTOGRAPHIE 36: Chemin d'acces sur le sommet du parc à résidus. Mise en place de la Zone 2 (silt). PHOTOGRAPH 36: Haul road on the top of the tailings basin. Placing the Zone 2 (silt).

PHOTOGRAPHIE 37: Chemin d'acces sur le sommet du parc à résidus. Construction de la

couverture. PHOTOGRAPH 37: Haul road on the top of the tailings basin. Cover construction.

PHOTOGRAPHIE 38: Mise en place d'une station de mesure de consommation d'oxygène. PHOTOGRAPH 38: Placing a station for oxygen consumption measurements.

PHOTOGRAPHIE 39: Station de mesure de consommation d'oxygène. PHOTOGRAPH 39: Oxygen consumption measurements station.

PHOTOGRAPHIE 40: Mise en place d'une sonde TDR. PHOTOGRAPH 40: Placing a TDR probe.

PHOTOGRAPHIE 41: Mise en place d'une sonde Watermark. PHOTOGRAPH 41: Placing a Watermark probe.

GLOSSARY

French to English Translation of technical terms used in the document

% passant	•	% passing
analyse granulométrique	:	sieve analysis
anneau	:	ring
argile	:	clay
banc d'emprunt	:	borrow pit
cellule	:	cell
charge	:	load
chocs	:	impacts
compacté	*	compacted
congélation	:	freeze
corrigée	:	corrected
couche	:	layer
débit	:	flow
dégel	:	thawing
degré de saturation	:	saturation level
densité relative des grains	:	grain density
diamètre	•	diameter
diamètre des grains	:	grain size
eau	:	water
écart type	•	standard deviation
échantillon	:	sample
entrée	:	input
épaisseur	•	thickness
essai		test
gel		freeze
gravier	:	gravel
grs - grammes	:	grams
hauteur	:	height
humide	:	humid
indice des vides	:	void ratio
indice de régression	· · · · · · · · · · · · · · · · · · ·	regression index
lectures		readings
limite de liquidité	:	liquidity limit
limite de plasticité	:	plasticity limit
limites de consistance d'Atterberg	:	Atterberg's limits
longueur	:	length

- -

-

-

- -

-

- -

GLOSSARY (continued)

French to English Translation of technical terms used in the document

1

0

masse volumique	*	density
moule	:	mold
moyenne	:	average
nb nombre	:	number
pds - poids	•	mass
perméabilité	:	hydraulic conductivity
porosité	•	porosity
profondeur	;	depth
résidus		tailings
rétention capillaire	:	water retention
rouleau	:	drum compactor
sable	:	sand
sec	:	dry
sèche	:	dry
sol	:	soil
sortie	:	output
temps	:	time
teneur en eau	:	water content
terrain	:	field
tev - teneur en eau volumique	:	volumetric water content
trou	:	hole
valeurs	:	values

APPENDIX A

GEOTECHNICAL DATA OF THE WEST BORROW PIT

(École Polytechnique)

.

......

-

_. _..

.. _ ..

ECOLE POLYTECHNIQUE, Dépt. de Génie Minéral

DENSITE RELATIVE DES GRAINS

LOCALISATION GOLDER

TROU NO.....

PROFONDEUR SABLE

SECTION

FICHIER: GOLDER\DD\SABLE

DATE: 06-11-1995

1

P

Q

P

IJ

PYCNOMETRE NO	1	3	4
PDS PYCNOMETRE + EAU + SOL GRS (M3T2)	755.38	733.38	739,35
TEMPERATURE D'ESSAI	23.4	23.3	23.3
PDS PYCNOMETRE, + EAU GRS (M2T2)	675.65	665.68	665.00
TARE NO	8	9	10
PDS DE LA TARE + SOL SEC GRS. (MS)	296.39	274.58	290.27
PDS DE LA TARE	171.20	168.26	173.50
PDS DU SOL SEC GRS	125.19	106.32	116.77
MASSE VOLUMIQUE DE L'EAU D'ESSAI (PWT2)	0.99746	0.99748	0.99748
MASSE VOLUMIQUE DE L'EAU @ 20 °C	0.99823	0.99823	0.99823
DENSITE RELATIVE (DR)	2.754	2.753	2.753
DENSITE RELATIVE CORRIGE	2.752	2.751	2.751
MOYENNE:		2.751	
			the second se

ESSAI PROCTOR

IDENTIFICATION:	Sable fin FCHANT		Banc d'emp 09-95 PAR	orunt Ouest	IS		
···· ··· ···	2017/111	1	2	3	4	5	6
MOULE SOL COME	ACTE	6134.2	6169.7	6218.0	6281.9	6357.7	6300.0
MOULE		4351.7	4351.7	4351.7	4351.7	4351.7	4351,7
PDS SOL COMPAC	TF	1782.5	1818.0	1866.3	1930.2	2006.0	1948.3
MASSE VOL. HUMI		1892.9	1930.6	1981.8	2049.7	2130.2	2068.9
MASSE VOL. SECH	<u></u> 1E	1816.8	1816.1	1821.7	1834.5	1839.9	1736.0
NO TARE		14	1	6	4	3	5
MASSE T. +SOL HU	JM.	1949.3	2013.0	2059.7	2127.2	2555.1	2587.5
MASSE T.+SOL SE	C	1877.8	1905.4	1909.1	1925.0	2235.1	2202.6
MASSE EAU		71.5	107.6	150.6	202.2	320,0	385.3
MASSE TARE		170.9	198.1	196.5	200.9	206.9	193.6
MASSE SOL SEC		1706,9	1707.3	1712.6	1724.1	2028.2	2009.0
TENEUR EN EAU %	, ,	4.2	6.3	8.8	11.7	15.8	19.2
						4	
INDICE DES VIDES	:	0,514	0.515	0.510	0.500	0.495	0.585
	·					ł	
POROSITE: %		34.0	34.0	33.8	33.3	33,1	36.9
VOL. DU MOULE:	941.7	cm^3		opt. proctor:		••••••	
Gs: 2.751	teneur en	eau opt.	14.2	%	1845.0	kg\m^3	
% SAT:		22.4	33.7	47.4	64.6	87.7	90.2
1 480 1 977 - 1 186 1 186 1 886 1 886 1 880 1 780 1 700 1 700							
DEGRE SATURATIO	DN:				1000 0	10100	ז
MASSE VOL. Pd:	1700.0	1750.0	1800.0	1840.0	1880.0	1840.0	
SAT. 100	22.47	20.79	19.21	18.00	10.84	18.00	
SAT. 95	21.35	19.75	18.24	17.10	16.00	17.10	
SAT. 90	20.23	18.71	17.28	16.20	15.16	16.20	
SAT. 85-			16.32	15.30-	14.31_		
SAT. 80	17.98	16.63	15.36	14.40	13.47	14.40	
SAT. 75	16.85	15.59	14.40	13.50	12.63	13.50	
SAT. 70	15.73	14.55	13.44	12.60	11.79	12.60	

TEST DE	PERMEAB	ILITE A DIF	FERENCE	DE CHAR	GE CONS	TANTE	
Date du test:		13-11-199	3-11-1995				
Nom de l'échantillon:		sable fin	Banc d'en	nprunt Oue	est	_	
Nom du fichier:		golder\per	méa\sable	> >			
GEOMETRIE (appareil #5)		·					
				FINAL		206	
Longueur echant. (cm):		11.739		PDS SOL	hum +TA		
L1:		16.068		PDS SOL	sec + T	1270.7	
L2:		3.601		TARE		234.1	
t:		0.728		SOL SEC		1036.6	
Diamètre du moule: (cm)		8.125		Teneur en	eau (%)		
Surface (cm):		51.849					
Volume (cm ^ 3):		608.637					
Dist. des m . des mano. (cm.)		7.664					
MASSES (gr)		DEGRE DE	E SATURA	TION			
Tare (perméa):	2428.0	Gs du solide:			2.751		
Tare + sol sec:	3464.6	Volume des vides:			231.8		
Sol sec:	1036.6]					
Tare + eau:	4094.9						
Tare+eau+sol:	4728.4		S <mark>r</mark> initial (S	%):	88.7		
Sol humide:	1040.5	ļ;	Sr finale ((%):	90.0		
Eau dans sol:	3.9						
Mms:	1242.1	Indice des vides:			0.615		
		Masse volu	imique:				
			Humide (g	g/cm ^ 3):	1.710		
			Sèche (g/	cm^3):	1.703		
		OPT. PROC	CTOR (g/c	:m^3):			
		Teneur en	eau opt. ('	%):			
·		% opt. Proctor:					
Masse finale:	4731.4	Teneur en eau compact.:			0.4	%	
Masse eau initiale	205.5	Teneur en eau initiale:			19.8	%	
Masse eau finale	208.5	Teneur en	eau finale		20.1	%	

ł

TEST	Charge	Vol.	Débit	Temps	Q/A?t	Gradient	Ţ	ĸ	k20
NO.	cm	cm3	cm^3/s	s			°C	cm/s	cm/s
14-11-95									
· · · · · · · · · · · · · · · · · · ·	1.4	47.7-	1:59000-		0.91999	0.1827	23.8	-1.7E-01	1.52E-01
2	1.3	47.4	1.58000	30	0.91420	0.1722	23.8	1.8E-01	1.60E-01
3	1.2	46.7	1.45938	32	0.90070	0.1618	23.8	1.7E-01	1.58E-01
4	1.2	45.6	1.52000	30	0.87948	0.1527	23.8	1.9E-01	1.74E-01
5	1.1	43.9	1.46333	30	0.84670	0.1435	23.8	2.0E-01	1.78E-01
		·	·				k=	MOY:	1.64E-01

TEST DE PERMEABILITE A DIFFERENCE DE CHARGE CONSTANTE											
Date du t	est:				13-11-199	5					
Nom de l	'échantilloi	n:			sable fin Banc d'emprunt Ouest						
Nom du f	ichier:			golder\per	méa\sable						
GEOMET	RIE (appar	eil #1)									
		-			-	FINAL		25			
Longueur	rechant. (c	:m):		12.277]	PDS SOL h	um +TARE				
L1:				15.913)	PDS SOL s	ec + T	1274.7			
L2:			2.860		TARE		162.6				
t:			0.776]	SOL SEC		1112.1				
Diamètre du moule: (cm)				8.155]	Teneur en e	eau (%)				
Surface (cm):			52.232							
Volume (d	cm^3):			641.241]						
Dist. des	. des man	io. (cm.)		7.229							
MASSES	(gr)			DEGRE DE	SATURAT	ON					
								_			
Tare (perr	méa):		2231.9	Gs du solid	ie:		2.751				
Tare + so	l sec:		3344.0	Volume de	s vides:		237.0	_			
Sol sec:			1112.1]							
Tare + ea	iu:		3606.0]							
Tare+eau	+sol:		4293.8]	Sr initial (%	<u>6):</u>	91.5				
Sol humic	le:		1115.0]	Srfinale (%):	94.0				
Eau dans	sol:		2.9								
	Mms:		1329.0	Indice des	vides:		0.586				
				Masse volu	mique:						
					Humide (g	/cm^3):	1.739				
					Sèche (g/c	:m ^ 3):	1.734	-			
				OPT. PROC	CTOR (g/cm	n^3):					
				Teneur en	eau opt. (%)):					
				% opt. Proc	otor:						
Masse fin	Masse finale: 4299.6				eau compa	ot.:	0.3	%			
Masse eau initiale 216.9				Teneur en eau initiale:			19.5	%			
Masse ea	Aasse eau finale 222.7			Teneur en	Teneur en eau finale:			%			
						1 .		····· /			
TEST	Charge	Vol.	Débit	Temps	Q/A?t	Gradient	T	K	<u>k20</u>		
NO.	cm	cm3	cm ^ 3/s	S			0°	cm/s	cm/s		
15-11-95		1									

15-1	1-95									
	1	3.3	67,5	2.25000	30	1.29231	0.4565	23.8	9.44E-02	8.55E-02
	2	3.3	67.5	2.25000	30	1.29231	0.4496	23.8	9.58E-02	8.68E-02
	3	3.2	64,2	2.14000	30	1.22913	0.4427	23.8	9.26E-02	8.39E-02
	4	3.2	63.6	2.12000	30	1.21764	0.4357	23.8	9.31E-02	8.44E-02
	5	3.1	65.2	2.17333	30	1.24827	0.4288	23.8	9.70E-02	8.79E-02
	L	I		L <u></u>				k=	MOY:	8.57E-02

	TEST DE PERMEABILITE A DIFFERENCE DE CHARGE CONSTANTE											
Date du te	est:			13-11-1995								
Nom de l'	échantillor	ו:			sable fin	Banc d'en	nprunt O	uest				
Nom du f	ichier:			golder\pe	golder\perméa\sable							
GEOMET	RIE (appar	eil #7)										
					-	FINAL		200				
Longueur	echant. (c	:m):		12.301		PDS SOL	hum +T					
L1:				16.075]	PDS SOL	sec + T	1331.8				
L2:				3.014		TARE		236.4				
t:				0.76]	SOL SEC		1095.4				
Diamètre	du moule:	(cm)		8.155]	Teneur en	eau (%)					
Surface (d	cm):			52.232]							
Volume (o	cm ^ 3):			642.521								
Dist. des	. des man	o. (cm.)		7.437								
MASSES	(gr)			DEGRE D	E SATURA	TION						
				1								
Tare (perr	néa):		2430.6	Gs du sol	ide:		2.751					
Tare + so	l sec:		3526.0	Volume des vides:			244.3					
Sol sec:			1095.4									
Tare + ea	u:		4121.0									
Tare+eau	+sol:		4786.8	Sr initial (%):			87.1					
Sol humid	e:		1098.1		Sr finale	<u>(%):</u>	91.2					
Eau dans	sol:		2.7									
	Mms:		1308.3	Indice des vides:			0.614					
				Masse volumique:								
				Humide (g/cm ^ 3):			1.709					
					Sèche (g/	cm^3):	1.705					
				OPT. PRC	CTOR (g/	cm^3):						
				Teneur en	eau opt. (%):		ļ				
			1	% opt. Pro	octor:							
Masse fina	ale:		4796.7	Teneur en	eau comp	bact.:	0.2	%				
Masse ea	Masse eau initiale 212.9				eau initial	e:	19.4	1% 0/				
Masse eat	Aasse eau finale 222.8				eau finale	:	20.3	70				
TEST	Charac	Vol	Déhit	Tomas	0/02+	Gradiant	 T	k	k20			
NO	Charge	v01,		remps		Gradien	•	cm/s	cm/s			
	GIII		Ciii 3/5		<u> </u>		0					

15-11-95									
1	1.3	43.3	1.44333	30	0.82899	0.1748	23.8	1.58E-01	1.43E-01
2	1.2	42.9	1.43000	30	0.82133	0.1667	23.8	1.64E-01	1.49E-01
3	1.2	41.7	1.39000	30	0.79836	0.1560	23.8	1.71E-01	1.55E-01
4	1.1	40.4	1.34667	30	0.77347	0.1452	23.8	1.78E-01	1.61E-01
5	1.0	42.3	1.28182	33	0.80985	0.1345	23.8	1.82E-01	1.65E-01
			•				k=	MOY:	1.55E-01

_

~

-

• •

-

-

. .

-

TEST DE	PERMEAE	BILITE A DIFFERE	ENCE D	E CHARGE	CONSTAN	ITE		
Date du test:		13-	11-199	5				
Nom de l'échantillon:		sab	le fin	Banc d'em	prunt Ouest			
Nom du fichier:		golder\perméa\	sable					
GEOMETRIE (appareil #8)				_				
		FINAL					3	
Longueur echant. (cm):		12.595		PDS SOL h	um +TARE			
L1:		16.340		PDS SOL s	ec + T		1291.8	
L2:		2.980		TARE			159.2	
t:		0.765		SOL SEC			1132.6	
Diamètre du moule: (cm)		8.155		Teneur en e	eau (%)			
Surface (cm):		52.232						
Volume (cm ^ 3):		657.877			· .			
Dist. des , des mano, (cm.)		8.286			_			
MASSES (gr)		DEGRE DE SAT	URATI	ON				
					-	_		
Tare (perméa):	2376.6	Gs du solide:			2.751			
Tare + sol sec:	3509.2	Volume des vid	es:		246.2			
Sol sec:	1132.6							
Tare + eau:	3988.5							
Tare+eau+sol:	4685.8	Sr ii	nitial (%	Ś):	90.4]		
Sol humide:	1135.9	Sr fi	inale (S	%):	91.1]		
Eau dans sol:	3.3]		
Mms:	1355.2	Indice des vides	;; .		0.598	1		
		Masse volumiqu	le:			1		
		Hun	nide (g	/cm ^ 3):	1.727	1		
		Sèc	he (g/c	m^3):	1.722	1		
		OPT. PROCTOR	l (g/cm	<u>^3):</u>	••	1		
		Teneur en eau c	pt. (%)			1		
		% opt. Proctor:						
Masse finale:	4687.5	Teneur en eau compact.:			0.3	%		
Masse eau initiale	222.6	Teneur en eau initiale:			19.7	%		
Masse eau finale	224.3	Teneur en eau finale:			19.8	%		
TEST Charge Vol	Dábit	Tomps O	1421	Gradient	Τ —		k	k20

TEST	Charge	Vol.	Débit	Temps	Q/A?t	Gradient	Т	k	k20
NO.	cm	cm3	cm ^ 3/s	s			°C	cm/s	cm/s
15-11-95									
1	1.7	40,1	1.33667	30	0.768	0.2052	23.8	1.25E-01	1.13E-01
2	1.7	39.7	1.32333	30	0.760	0.1991	23.8	1.27E-01	1.15E-01
3	1.6	39.0	1.30000	30	0.747	0.1931	23,8	1.29E-01	1.17E-01
4	1.6	38.0	1.26667	30	0.728	0.1871	23.8	1.30E-01	1.17E-01
5	1.5	37.8	1.26000	30	0.724	0.1810	23,8	1.33E-01	1.21E-01
L		•••••••	<u> </u>				k=	MOY:	1.17E-01

U

.
Échantill U-2	Résidus	sable fin	Date mont	age	20 dcccr	nb rc 95	
			kPa	Montage	m.cau	TEV	Saturation
Dr	2.751		0.0000	2003.0	0.10	0.280	0.79
Volume anneau	98.99]	2.1000	2002.8	0.21	0.278	0.78
Anncau+plaque	100.94]	3.4000	1998.7	0.34	0.236	0.67
Masse humide initial	304.44]	5.9000	1990.2	0.59	0.150	0.42
Masse humide finale	284.81	1	10.3500	1983.7	1.04	0.085	0.24
			27.6000	1983.5	2.76	0,083	0.23
Tare	127.50]	41.4000	1983.5	4.14	0.083	0.23
Tarc+sol sec	303.20]	55.2000	1983.5	5.52	0.083	0.23
			69.0000	1983.5	6.9	0.083	0.23
Indice des vídes	0.55]					
TEV initialc	0.28]					
Saturation initiale	79.15]					
TEV finale	0.0825]					
Saturation finalc	23.26]					

Laboratoire d'Hydrogeologie

Ecole Polytechnique de Montreal

Échantill P-1	Résidus	sable fin	Date mont	age	20 decer	mbrc 95	
			[kPa	Montage	m.cau	TEV	Saturation
Dr	2,751]	0.0000	1898.7	0.10	0.319	0.81
Volume anneau	97.63]	2.1000	1895.2	0.21	0.283	0.72
Anncau+plaque	100.14		3.5000	1891.8	0.35	0.248	0.63
Masse humide initial	294.74]	6.0000	1890.7	0.60	0.237	0.61
Masse humide finale	266.05]	7.4000	1889.9	0.74	0.229	0.58
		-	9.7000	1870.1	0.97	0.026	0.07
Tare	129.50]	27,6000	1870.0	2.76	0.025	0.06
Tare+sol scc	293.00		41.4000	1870.0	4.14	0.025	0.06
		_	55.2000	1870.0	5.52	0.025	0.06
Indice des vides	0,64						
TEV initiale	0.32						
Saturation initiale	81.42						
TEV finale	0.0247						
Saturation finale	6.31]					

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

- 10.4

ł

Échantill P-4	Résidus	sable fin	Date mont	age	20 decer	nbrc 95	
			kPa	Montage	m.cau	TEV	Saturation
Dr	2.751]	0.0000	2018.5	0.10	0.350	0.88
Volume anneau	97.94		2.5000	2014.0	0.25	0.304	0.77
Anneau+plaque	102.44		4.0000	2003.8	0.40	0.200	0.50
Masse humide initial	299.20		6.3000	1990.0	0.63	0.059	0.15
Masse humide finale	266.05		9.7000	1987.0	0.97	0.029	0.07
			27.6000	1986.1	2,76	0.020	0.05
Tare	129.70]	41.4000	1986.0	4.14	0.018	0.05
Tare+sol sec	292.20		55.2000	1985.7	5.52	0.015	0.04
			69.0000	1985.3	6.9	0.011	0.03
Indice des vides	0.66					<u> </u>	
TEV initiale	0.35						
Saturation initiale	88.14]					
TEV finale	0.0113						
Saturation finale	2.86						
		-	· · · · · · · · · · · · · · · · · · ·				

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

03-11-95	05-12-199	Colonne No 1	∬Banc d'emprunt Ouest					
Prov. Echant.:	SABLE FIN	1						
				DATE	HRE		%oxy	
Essai No. SABLE 3		Denité des grains	2.751	NOV 95		nb/min		
		—					e	
Tare No105	128.80	Tare No115	127.80	07-11	11.20	0	0	
Tare + sol hum.	459.10	Tare + sol hum.	660.00			0.6	20.8	
sol humide	330.30	sol humide	532.20			<u> </u>	18.2	
Tare + sol sec	412.10	Tare + sol sec	594.30			1.5	17.4	
sol sec	283.30	sol sec (ws)	466.50			2	16.8	
eau dans le sol	47.00	eau dans le sol	65.70			3	16.7	
						5	16.4	
Wi = %	16.59	W1 = %	14.08			11	16.0	
						18	15.6	
Pds colonne vide	2030.60			·		28	15.2	
Pds colonne + sol hum.	2507.00	température °C	22.4	l.		57	14.4	
Pds colonne + sol sec	2439.21]			··· · ······	78	14.2	
Pds sol hum.	476.40	1				107	13.8	
Pds sol sec	408.61					145	12.7	
		indice des vides:	1.047			170	12.5	
Hauteur totale colonne	164.055					242	12.0	
Hauteur bas	44.820	porosité:	0.511			284	11.6	
Hauteur restante	119.235					350	11.3	
Hauteur de la plaque	0.635							
-lauteur après compact.	61.143							
Hauteur sol humide	57.458							
		Saturation:	43.45					
					j			
Diam. de la colonne	8.215	n, air	0.29					
Surface de la colonne	53.004							
		De (m2/A)	1.0×10-6				<u></u>	
√olume de sol (cm ^ 3)	304.546							
/olume source (cm^3)	327.443	Qu 3.45×10						
/olume res. bas (cm ^ 3)	237.562							
. ,		1						
Rho hum.: gr/cm3	1.564	1						
Rho sec: gr/cm3	1.342	1		ا ر ا	{	j – – – j		
Rho eau; gr/cm3 (20°)	0.99823					ĵj		
		4	<u> </u>					

.

:

03-11-95	05-12-199	Colonne No 2		Banc d'e	mprunt	Ouest	
Prov. Echant.:	SABLE FIN]			
				DATE	HRE		J
Essai No. SABLE 2		Denité des grains	2.751	NOV 95		nb/min	
		1					
Tare No3	181.60	Tare No100	92.50	06-11	10.40	0	
Tare + sol hum.	241.50	Tare + sol hum.	501.50			0.5	
sol humide	59.90	sol humide	409.00			1	
Tare + sol sec	234.10	Tare + sol sec	457.20			2	
sol sec	52.50	sol sec (ws)	364.70			3	
eau dans le sol	7.40	eau dans le sol	44.30			5	
						12	
Wi = %	14.10	W f = %	12.15			20	
						30	
Pds colonne vide	2147.60					69	ļ
Pds colonne + sol hum.	2558.80	température °C	22.4			121	
Pds colonne + sol sec	2508.00					200	l
Pds sol hum.	411.20					261	ļ
Pds sol sec	360.40						
		indice des vides:	0.853				ļ
Hauteur totale colonne	165.240						J
Hauteur bas	44.820	porosité:	0.460				J
Hauteur restante	120.420						
Hauteur de la plaque	0.600		_				J
Hauteur après compact.	72.988						J
Hauteur sol humide	46.833						ļ
		Saturation:	45.29				Į
							ļ
Diam. de la colonne	8.131	n. air					ļ
Surface de la colonne	51.925					<u></u>	ļ
·		De(m/s)	9-3×100				ļ
Volume de sol (cm^3)	243.179	4		L		·	ļ
Volume source (cm ^ 3)	382.105						ļ
Volume res. bas (cm ^ 3)	232,729						
Rho hum.: gr/cm3	1.691						ļ
Rho sec: gr/cm3	1.482						j
Bho eau: gr/cm3 /209	0 99823	4					ľ
	0.00020	-		<u> </u>			Ì

-

-

•

· ·· ·

•

03-11-95	06-11-199	Colonne No 1		Banc d'e	emprunt	Ouest	
Prov. Echant.:	SABLE FIN	t N		<u>ר</u>			
				DATE	HRE		%оху
Essai No. SABLE 1		Denité des grains	2.751	NOV 95		nb/min	
Tare No. 105	128.80	Tare No 3	181.40	06-11	10.30		
Tare + sol hum	466.20	Tare + sol hum	652.40		10.00	0.5	20.8
sol humide	337.40	sol humide	471.00		[14.2
Tare + sol sec	454.00	Tare + sol sec	639.90	·		1.5	13.7
sol sec	325.20	sol sec (ws)	458.50		<u> </u>	2	13.2
eau dans le sol	12.20	eau dans le sol	12.50		[]	3	12.4
		1	-	[]		4	11.7
Wi = %	3.75	W1 = %	2.73			5.5	11.0
Pds colonne vide	2029.80						
Pds colonne + sol hum.	2565.90	température °C	22.4				
Pds colonne + sol sec	2546.52]					
Pds sol hum.	536.10]				·	
Pds sol sec	516.72						
		indice des vides:	0.619				
Hauteur totale colonne	164.055						
Hauteur bas	44.820	porosité:	0.382				
Hauteur restante	119.235						
Hauteur de la plaque	0,635						
Hauteur après compact.	61.143						
Hauteur sol humide	57.458						
· · · · · · · · · · · · · · · · · · ·		Saturation:	16.61				
Diam. de la colonne	8.215	n.air Da	0.319				
Surface de la colonne	53.004						
		De(m/s)	2,8×10-6				
/olume de sol (cm ^ 3)	304.546						
/olume source (cm ^ 3)	327,443						
/olume res. bas (cm ^ 3)	237.562						
Rho hum.: gr/cm3	1.760						
Rho sec: gr/cm3	1.697]		
Rho eau: gr/cm3 (20°)	0.99823				(
		5				_	

-

. .

SABLE FII	N Denité des grai		DATE	HRE		
182.30	Denité des grai		DATE	HRE	II	4 O/
182.30	Denité des grai					
182.30		2.751	NOV 95		nb/min	L
	Tare No	92.50	09-11	8.50	0	
593.60	Tare + sol hum.	501.50			1.30	·[
411.30	sol humide	409.00			2	<u> </u>
557.20	Tare + sol sec	457.20			2.50	
374.90	sol sec (ws)	364.70	()		3	
36.40	eau dans le sol	44.30		<u></u>	4.50	
					9	
9.71	Wf = %	12.15			11	
					15	
2241.10					19	
2694.60	température °C	22.2			24.50	
2654.47					31	
453.50					39	
413.37					48	\square
167.69	indice des vides	0.879			66	
153.063	,				97	
43.500	porosité:	0.468			143	
109.563						
0.650						
72.990						
50,550						
	Saturation:	30.28				
0.440		2 2 - (<u> </u>
8.440	n. air	0.326				<u> </u>
55.947	7 (21)	9 0.00-6				<u> </u>
282 811	_Je.(~ (2)	2.0xx0				-
111 993						
2/3 360			 			
			 	<u>}</u>		_
1,604			LH			
1.462						
0.99823			Î	<u> </u>		
	557.20 374.90 36.40 9.71 2241.10 2694.60 2654.47 453.50 413.37 167.69 153.063 43.500 109.563 0.650 72.990 50.550 50.550 8.440 55.947 282.811 411.993 243.369 1.604 1.462 0.99823	557.20 Tare + sol sec 374.90 sol sec (ws) 36.40 eau dans le sol 9.71 W f = % 2241.10 température °C 2694.60 température °C 2654.47 453.50 413.37 167.69 167.69 indice des vides 153.063	557.20 Tare + sol sec 457.20 374.90 sol sec (ws) 364.70 36.40 eau dans le sol 44.30 9.71 Wf = % 12.15 2241.10 2694.60 température °C 22.2 2654.47 2654.47 2000 2000 413.37 2000 2000 2000 413.37 2000 2000 2000 153.063 2000 2000 2000 43.500 porosité: 0.468 109.563 109.563 2000 2000 2000 72.990 2000 2000 2000 50.550 2000 20000 2000 8.440 n. air 0.3226 20000 282.811 20000 20000 20000 20000 243.369 243.369 243.369 20000 20000 1.604 243.369 20000 20000 20000 1.604 200000 200000 200000 200000 200000 200000 2000000000000000000000000000000000000	557.20 Tare + sol sec 457.20 374.90 sol sec (ws) 364.70 36.40 eau dans le sol 44.30 9.71 W f = % 12.15 2241.10 2694.60 température °C 22.2 2654.47 2 2 2 453.50 2 2 2 413.37 3 3 3 167.69 indice des vides 0.879 3 153.063 3 3 3 43.500 porosité: 0.468 3 109.563 3 3 3 0.650 3 3 3 72.990 3 3 3 50.550 3 3 3 8.440 n. air 0-3.2.6 3 55.947 3 3 3 282.811 3 3 3 1.604 3 3 3 3 1.604 3 3 3 3 39823 3 3 3 3	557.20 Tare + sol sec 457.20 374.90 sol sec (ws) 364.70 36.40 eau dans le sol 44.30 9.71 W f = % 12.15 2241.10 2694.60 température °C 2245.47 22554.47 22554.47 453.50 22654.47 22.2 167.69 indice des vides 0.879 153.063 25.046 25.046 109.563 20.265 20.265 0.650 20.27 20.27 2900 20.265 20.27 50.550 20.27 20.27 282.811 20.27 20.27 1.604 21.604 21.604 1.604 20.99823 20.27	557.20 Tare + sol sec 457.20 2.50 374.90 sol sec (ws) 364.70 3 36.40 eau dans le sol 44.30 4.50 9 9.71 W f = % 12.15 11 2694.60 température °C 22.2 24.50 2654.47 31 48 31 453.50 39 413.37 48 167.69 indice des vides 0.879 66 153.063 97 43.500 97 43.500 porosité: 0.468 143 109.563 9 65 143 109.563 9 9 9 50.550 9 9 9 8.440 n. air $0.32.6$ 9 8.440 n. air $0.32.6$ 9 282.811 9 9 9 1.604 9 9 9 1.604 9 9 9 1.604 9 9 9 1.604 9 9 9

.

Date: 08-12-95		С	olonne No 1]			
Prov. Echant.:	SABLE FIN	1	·					_
					DATE	HRE		%oxy
Essai No. SABLE 5		Denité	les grains	2.751			nb/min	
					déc, 95			
Tare No107	123.80	Tare No	110	126.80	14	9,05	0	0
Tare + sol hum.	533.00	Tare +	sol hum.	731.40			3	20.8
sol humide	409.20	sol hun	nide	604.60			4	20.8
Tare + sol sec	465.00	Tare +	sol sec	635.20			6	20,8
sol sec	341.20	sol sec	(ws)	508.40			10	20.8
eau dans le sol	68.00	eau dar	s le sol	96.20			26	20.0
					-		38	19.7
Wi= %	19.93	Wf=	%	18.92			77	19.3
							355	19.0
Pds colonne vide	2124.60						1350	18.8
Pds colonne + sol hum.	2739.50	tempéra	ture °C	22.2			5674	18.2
Pds colonne + sol sec	2637.32				20	8.40	7615	17.5
Pds sol hum.	614.90				21		8993	16.8
Pds sol sec	512.72	-			22	7.30	10422	16.4
		indice c	es vides:	0.703	28	8.20	20532	14.2
Hauteur totale colonne	15,344				29	8.50	21927	14.0
Hauteur bas	4.350	porosite	:	0.413	30	8.15	23377	13.7
Hauteur restante	10.994	,			31	8.25	24822	13.7
Hauteur de la plaque	0.650				1-1-96	8.30	26267	13,4
Hauteur après compact.	4.662				3	7.30	29087	13.0
Hauteur sol humide	5.682				5	14.00	32417	12.5
		Saturati	on:	77.70				
						i		
Diam, de la colonne	8,440	n, air				/		
Surface de la colonne	55,947			·			́	
		Del	~~~/A)	5.9×10-7				
Volume de sol (cm^3)	317.890							<u></u>
Volume source (cm ^ 3)	297.190					í	<u> </u>	
Volume res. bas (cm^3)	243.369				i	(
						N		
Rho hum.: gr/cm3	1.934						i	
Rho sec: gr/cm3	1.613	1						
Rho eau: gr/cm3 (20°)	0.99823					j j		
						î		

0 U

FICHIER:		GOLDER	TX\MRN-1	GOLDER\TX\MRN-1 PAGE 2								
DATE	16-11-19	95	Cellule No	. 5		MIN. RICHES	se naturelli	3				
	Lectures											
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20				
Min	lête	base	entrée	Sortie	cm	S	cm/s	cm/s				
0.00	160.0	10.0	0	0	150.5	0.00	-	-				
0.18	155.0	15.0	1.63	1.63	140.5	10.80	2.10E-04	2.00E-04				
0.39	150.0	20.0	3.25	3.25	130.5	23.40	1.93E-04	1.84E-04				
0.60	145.0	25.0	4.88	4.88	120.5	36.00	2.09E-04	1.99E-04				
0.83	140.0	30.1	6.50	6.53	110.4	49.80	2.09E-04	1.99E-04				
1.09	135.0	34.9	8,13	8.09	100.6	65.40	1.97E-04	1.87E-04				
1.37	130.0	39.9	9.75	9.72	90.6	82.20	2.06E-04	1.96E-04				
1.69	125.0	44,8	11.38	11.31	80.7	101.40	1.99E-04	1.89E-04				
2.04	120.0	49.8	13.00	12.94	70.7	122.40	2.08E-04	1.98E-04				
2.45	115.0	54.7	14.63	14.53	60,8	147.00	2.02E-04	1.92E-04				
								1				

Í

Ì

ł

FICHIER:		GOLDER	TX\MRN-1		PAGE 2				
DATE:	03-10-199	5	Cellule No.	3		MIN. RICHESS	E NATURELLE		
	lectures								
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	1 120	
Min	tête	base	entrée	Sortie	, cm	S	cm/s	· cm/s	
0.00	165.0	7.0	0	0	161.9	0,00	-	•	
0.16	160.0	12.0	1.63	1.63	151.9	9,60	1.99E-04	1.88E-04	
0.33	155.0	17.0	3.25	3,25	141.9	19.80	2.00E-04	1.89E-04	
0.52	150.0	22.0	4.88	4.88	131.9	31.20	1.92E-04	1.82E-04	
0.70	145.0	27.1	6.50	6.53	121.8	42.00	2.21E-04	2.09E-04	
0.90	140.0	32.0	8.13	8.13	111.9	54.00	2.12E-04	2.00E-04	
1.14	135.0	37.1	9.75	9.78	101.8	68.40	1.97E-04	1.86E-04	
1.39	130.0	41.8	11.38	11.31	92.1	83.40	2.00E-04	1.89E-04	
1.65	125.0	46.9	13.00	12.97	82.0	99,00	2.23E-04	2.11E-04	
1.98	120.0	51.8	14.63	14.56	72.1	118.80	1.95E-04	1.84E-04	
	х.								

-

Ĩ

Constant.

Ĩ

No.

Contraction of the local division of the loc

通行の書

S. Juxet

No. of Contraction

FICHIER:		GOLDER\	TX\MRN-1		PAGE 2					
DATE:	03-10-199	5	Cellule No.	2		MIN. RICHESS	E NATURELLE			
	Lectures									
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20		
Min	têle	base	entrée	Sortie	em	s	cm/s	cm/s		
0.00	160.0	1,8	0	0	159,6	0.00	•	-		
0.37	155,0	7.0	1.63	1,69	149.4	22.20	9.28E-05	8.77E-05		
0,78	150.0	12.1	3.25	3.35	139.3	46.80	8.87E-05	8.39E-05		
1.18	145.0	16.7	4.88	4.84	129.7	70.80	9.28E-05	8.78E-05		
1.63	140.0	21.6	6.50	6.44	119.8	97.80	9.17E-05	8.67E-05		
2.10	135.0	26.4	8,13	8.00	110.0	126.00	9.44E-05	8.93E-05		
2.64	130.0	31.3	9.75	9.59	100.1	158.40	9.08E-05	8.59E-05		
3.27	125.0	36.3	11.38	11.21	90.1	196.20	8.68E-05	8.21E-05		
3.94	120.0	41.5	13.00	12.90	79,9	236.40	9.32E-05	8.81E-05		
4.73	115.0	46.7	14.63	14.59	69.7	283.80	8.99E-05	8.50E-05		

States and

No. of Concession, Name

1

and the second

West West

A MARKET

Sec.

建立法

And a state

a fictures

Limites de consistance d'atterberg (ASTM D4318-84)

date:

Échantillon:

Π

ALC: NO

No.

a series a

(particular)

A.C. C. Strange

1 Performants

時間で

Contraction of the second

and the second

Golder ass. **Résidus MRN**

2 decembre 1995

		Lim	ite de liquid	ité		Limite de	Plasticité
Tare	3	10	25		-	12	22
Wt+t	20.82	16.35	16.04			7.51	7.53
Ws+t	17.65	14.42	14.28			7.33	7.35
Ww	3.17	1.93	1.76			0.18	0.18
t	6.40	6.37	6.48			6.41	6.42
Ws	11.25	8.05	7,80			0.92	0.93
W%	28.18	23.98	22.56			19.57	19.35
Nb. Chocs	10	13	14				

100.0-Nb de choca 10.0 12 14 15 18 20 22 24 25 28 30 32 34 36 38 40 teneur en eau (%)

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

				•			
			:		•	• •	
	ON	MINISTER		TOR	IBELLES	· ·.	
DENTFICATI	UN.	FCHANTI		19-95 PAR	L FRANCOIS	S	
		201///11	1	2	3	4	5
	COMO	ACTE	£ 800a	6161.8	6210.9	6258.5	6268.0
			4351.7	4351.7	4351.7	4351 7	4351.7
POS SOL CON	APAC.	rc	1746.6	1810.1	1859.2	1906.8	1916.3
MASSE VOL		רב רב	1854 7	1922.2	1974.3	2024 8	2034.9
MASSE VOL	SECH	F	1698.1	1715.9	1731.6	1734.3	1705.9
	02011	-	100071				
NO TARE			P24	16	17	20	P25
MASSET +SO	าาย	м	1907.0	1910.9	2021.4	2112.1	2074.7
MASSET +SO	DI SE	с.	1750.0	1717.1	1793.9	1835.2	1765.6
MASSE FAU		-	147.0	193.8	227.5	276.9	309.1
MASSE TARE			166.4	104.6	171.0	182.5	162.9
MASSE SOL S	SEC		1593.6	1612.5	1622.9	1652.7	1602.7
TENEUR EN F	AU %		9.2	12.0	14.0	16.8	19,3
INDICE DES V	IDES:		0.660	0.643	0,628	0.625	0.652
POROSITE: %	6		39.8	39.1	38.6	38.5	39.5
VOL. DU MOU	ILE:	941.7	cm^3	(opt. proctor:	•	
Gs:	2.819	teneur en	eau opt.	15.7	%	1735.0	kg\m^3
% SAT:			39.4	52.7	62,9	75.5	83,3
		Mi	Initiate due Rishesses He	lur e lie à			
	17 44 17 24 17 14 17 14 17 10 17 10 17 10 10						
DEGRE SATU	RATIC	DN;					
MASSE VOL.	Pd:	1640.0	1680.0	1720.0	1760.0	1800.0	1715.0
SAT. 100		25.50	24.05	22.67	21.34	20.08	22.84
SAT. 95		24.23	22.85	21.53	20.28	19.08	21.69
SAT. 90		22.95	21,65	20.40	19.21	18.07	20.55
SAT. 85		21.68	20.44	19.27	18.14	17.07	19.41
SAT. 80		20.40	19.24	18.13	17.08	16.07	18.27
· · · ·		-					
SAT. 75		19,13	18.04	17.00	16.01	15.06	17.13
 		1					
SAT. 70		17.85	16.84	15.87	14.94	14.06	15.98
· · · · · · · · · · · · · · · · · · ·							

the providence of the second second

· · · ·

J.

.

15.87

and the second second

(Section 2)

A DESCRIPTION OF

and the second

Part and a

A CONTRACTOR

.

ECOLE POLYTECHNIQUE, Dépt. de Génie Minéral

DENSITE RELATIVE DES GRAINS

LOCALISATION GOLDER

TROU NO...... PROFONDEUR..... MIN. RICHESSE NATURELLE SECTION......

FICHIER: GOLDER\DD\SERIE1

1.00

find her

DATE: 03-10-1995

PYCNOMETRE NO	1	3	4
PDS PYCNOMETRE + EAU + SOL GRS (M3T2	2) 730.83	718.20	720.83
TEMPERATURE D'ESSAI	22.0	21.8	21.8
PDS PYCNOMETRE + EAU GRS (M2T2)	675.82	665.79	665.09
TARE NO	11	21	30
PDS DE LA TARE + SOL SEC GRS. (MS)	253.93	250.27	181.1 1
PDS DE LA TARE	168.55	168.97	94.68
PDS DU SOL SEC GRS	85.38	81.30	86.43
:			
MASSE VOLUMIQUE DE L'EAU D'ESSAI (PWT:	2) 0.99775	0.9978	0.9978
MASSE VOLUMIQUE DE L'EAU @ 20 °C	0.99823	0.99823	0.99823
DENSITE RELATIVE (DR)	2.811	2.814	2.816
DENSITE RELATIVE CORRIGE	2.810	2.813	2.815
MOYENNE:		2.813	

ECOLE POLYTECHNIQUE, Dépt. de Génie Minéral

DENSITE RELATIVE DES GRAINS

LOCALISATION GOLDER

TROU NO.....

1

1000

and the second

Sectores.

1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -

and the

PROFONDEUR...... MIN. RICHESSE NATURELLE SECTION......

.

FICHIER: GOLDER\DD\SERIE1

DATE: 06-10-1995

 $(1+1) \in \mathbb{Z}_{p,q} \times \{1, \dots, 1\} \mapsto \mathbb{Z}_{q}$

PYCNOMETRE NO	1	3	4
PDS PYCNOMETRE + EAU + SOL GRS (M3T2)	726.77	722.67	720.22
TEMPERATURE D'ESSAI	22.2	22.2	22.5
PDS PYCNOMETRE + EAU GRS (M2T2)	675.80	665.76.	665.05
TARE NO	13	14	15
PDS DE LA TARE + SOL SEC GRS. (MS)	258.58	269.58	276.84
PDS DE LA TARE	179.77	181.44	191.4 1
PDS DU SOL SEC GRS	78.81	88.14	85.43
MASSE VOLUMIQUE DE L'EAU D'ESSAI (PWT2)	0.99771	0.99771	0.99765
MASSE VOLUMIQUE DE L'EAU @ 20 °C	0.99823	0.99823	0.99823
DENSITE RELATIVE (DR)	2.831	2.822	2.823
DENSITE RELATIVE CORRIGE	2.829	2.821	2.822
MOYENNE:		2,824	
· · · · · · · · · · · · · · · · · · ·			

APPENDIX B

8

State State

GEOTECHNICAL DATA OF THE MNR TAILINGS

(École Polytechnique)

				-			
Date: 31-01-96		Colonne No 1		J .			
Prov. Echant.:	SABLE FI	N		1			
				DATE	HRE		%oxv
Essai N° SABLE 6		Denité des grains	2.751			nb/min	
Tare No107	125.00	Tare No124	121.70	06-02-96	9.05	0	0
Tare + sol hum.	250.00	Tare + sol hum.	685.80			4	20
sol humide	125.00	sol humide	622.80			5	19.0
Tare + sol sec	225.00	Tare + sol sec	635.20		-	5	18
sol sec	100.00	sol sec (ws)	513.50			6	17.0
cau dans le sol	25.00	eau dans le sol	109.30			7	16.8
						8	16.2
Wi = %	25.00	Wf = %	21.29			15	16.2
						36	16.0
Pds colonne vide	2123.90				' ,	72	14.6
Pds colonne + sol hum.	2695.10	température °C	22.2			194	12.6
Pds colonne + sol sec	2580.86					344	12.5
Pds sol hum.	571.20						
Pds sol sec	456.96						
		indice des vides:	0.943				
Hauteur totale colonne	16.800						
Hauteur bas	4.350	porosité:	0.485				
Hauteur restante	12.450						
Hauteur de la plaque	0.650				e 121		
Hauteur après compact.	6.021		_	<u>_</u>			
Hauteur sol humide	5.779					·	
		Saturation:	72.67				
				<u> </u>			
Diam, de la colonne	8 440	n air	_			;	
Surface de la colonne	55 947						
		Do (m²/A)	7.1×10-8			i	
Volume de sol (cm^	323.317						
Volume source (cm^	373.222						
Volume res, bas (cm^3	243.369						
			-	<u></u>			
Rho hum.: a/cm3	1.767		_	<u> </u>			
Rho sec: a/cm3	1.413						
Rho eau: g/cm3 (20°)	0,99823		-				
,			-	┝━━━━╋	<i>v z w</i> .		
L		L	· · ·	ـــــــــــــــــــــــــــــــــــــ			<u></u>

The second second

No. of Street, or other

T AN

State of the second second

and the second sec

Sec. Sec.

and the second

•

GOLDER\TX\MRN-1 FRONGLER

. •

~

DATE:	03-10-19	95	Cellule No.	. 5		MIN RICHESS	SE NATURELLA	3
	Lectures							
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20
Min	tĉte	base	entrée	Sortie	cm	5	cm/s	cm/s
0.00	164.0	4.3	0	0	160.2	0.00	-	-
0.71	160.0	8.4	1.30	1.33	152.1	42.60	3.30E-05	3.12E-05
1.44	156.0	12.4	2.60	2,63	144.1	86.40	3.34E-05	3.16E-05
2.24	152.0	16.3	3.90	3.90	136.2	134.40	3.18E-05	3.01E-05
3.07	148.0	20.2	5.20	5,17	128,3	184.20	3.25E-05	3.07E-05
3.97	144.0	24.0	6.50	6.40	120.5	238.20	3.14E-05	2.97E-05
4.93	140.0	28.1	7.80	7.74	112.4	295.80	3.27E-05	3.09E-05
5.95	136.0	32.0	9.10	9.00	104.5	357.00	3.22E-05	3.05E-05
7.07	132.0	36.1	10.40	10.34	96.4	424.20	3.25E-05	3.07E-05
8.26	128.0	40.2	11.70	11.67	88.3	495.60	3.33E-05	3.15E-05

Ecole Polytechnique de Montréal, Dépt. de Génie Minéral

.

··· · -

-

MIN RICHESSE NATURELLE

		Ed	cole F	Polyt	echniq	ue de Mon	tréal, D	ápt.	de Gén	ie N	/inéral		
		Date	de m	ionta	ge		02-10	-199)\$			Cellule No.	7
		Nom	de l'	ichar	ntillon:		MIN. RI	CHE	s\$e nat	URE	TIE	Burette No.	3
		Nom	du fi	ichier	п.		GOLDER	\TX\	MRN-1				
							ASTM:	D-:	5084-9	0			
Gèom	ietr	ie									Masses (g)		
epaisse	cur	inilial	e (cm	ı.)		7.766]		masse	init	iale humide (g)		557.0
diamè	lre		(cm	.)		7.205			masse	fina	le humide (g)		630.7
surfac	e		(cm	n^2)		40.77			masse	fina	ile séche (g)		497.3
Volum	e		(cm	~3)		316.63	J		Gs	5			2.819
													-1
		Cond	litior	ns de	e l'ess	ai							
		Degro	de s	อโกร	ation fi	inal			mas, v	ol. I	hum. g/em3	1.759	
				Capl	L press	ion (%)	94.	2	mas. v	ol. s	sec. g/cm3	1.571	
				Par	séchag	e (%)	95.	1	Opt. Pi	rocl	or g/cm3	1,735	
		Tener	ur en	eau	initiale	2 (7)	12.	0	leneur	· cai	1 opt. (%)	15.7	_
		Tenci	ır en	eau	finale	(%)	26.	8	77 opt.	Pro	clor	90.5	J
									<u> </u>				
		Calib	oratio	on									<u> </u>
o/s l	êle	19	.80	bure	elle ul	ilisce	larg	е	0		section buret	Le	0.325
o/s b	ase	21	.50	<u>n</u>	ned	1	petil	e	0		lemperature		22.4
					Compunis	en délift d'eau e vs sartie					Résultat de	l'essai	
14-								1					
12-								_ _	:		Pression (psi)		50
							•	2				in anti-	45
. 10-					•		Ì		1				
(C						3	-				Indice des vid	PC-	0.795
9) 915					_								
ula.											Cond. hydraul	. cm/s.	4.96E-05
4-				•								écart type	1.07E-07
												ind. reg.	1.000
				1					·				
0		10	0	200	, 1	000 (z) agnio	400	500		×0			
					L suburne out	te 🗋 utome antie	`						
L							L						

TEST PERMEABILITE ESSAI TRIAXIAL

I

IJ

FICHIER:		GOLDER	TX\MRN-1				PAGE 2	
DATE	03-10-199	95	Cellule No	. 7		MIN. RICHES	SE NATURELLI	3
	Lectures							
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20
Min	lĉie	base	entrée	Sortie	cm	S	cm/s	cm/s
0.00	165.0	9,8	0	0	153.5	0.00	-	-
0.68	160.0	14.7	1.63	1.59	143.6	40.80	5.06E-05	4.78E-05
1.37	155.0	19.9	3.25	3.28	133.4	82.20	5.51E-05	5.21E-05
2.13	150.0	25.0	4.88	4.94	123.3	127.80	5.34E-05	5.05E-05
2.98	145.0	30.1	6.50	6.60	113.2	178.80	5.19E-05	4.91E-05
3.87	140.0	34.9	8.13	8.16	103.4	232.20	5.25E-05	4.96E-05
4.86	135.0	39.8	9.75	9.75	93.5	291.60	5.24E-05	4.96E-05
5.98	130.0	44.7	11.38	11.34	83.6	358.80	5.15E-05	4.88E-05
7.21	125.0	49.7	13.00	12.97	73.6	432.60	5.34E-05	5.05E-05
8.67	120.0	54.7	14.63	14.59	63.6	520.20	5.16E-05	4.88E-05

- -

-

Échantillon P-4	Résidus M	RN	Date mont	age	9 novem	brc '95	and the contraction which
			kPa	Montage	m.cau	TEV	Saturation
Dr	2.819		0.0000	1862.0	0.10	0.444	0.96
Volume anneau	97.94		1.3800	1860.6	1.38	0.429	0.93
Anncau+plaque	102.55		27.6000	1858.1	2.76	0.404	0.88
Masse humide initial	293.55		41.5000	1850.0	4.14	0.321	0.70
Masse humide finale	263.80		55.2000	1845.9	5.52	0.279	0.61
			70.0000	1843.2	6.90	0.252	0.55
Tarc	129.00		82.8000	1840.7	8.28	0.226	0.49
Tare+sol sec	277.70		110.6000	1835.6	11.04	0.174	0.38
			151.8000	1831.1	15.18	0,128	0.28
Indice des vides	0.86						
TEV initiale	0.43						
Saturation initiale	93.60						
TEV finale	0.1281						
Saturation finale	27.77			•			

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

1

1

1

I

Échantill P-3	Résidus M	RN	Date mont	age	9 novem	brc `95	
			kPa	Montage	m.cau	TEV	Saturation
Dr	2.819		0.0000	1851.9	0.10	0.465	0.98
Volume anneau	98.68		1.3800	1849.1	1.38	0.437	0.92
Anncau+plaque	102.85		27.6000	1848.5	2.76	0.431	0.91
Masse humide initial	295.07		41.5000	1843.8	4.14	0.383	0.81
Masse humide finale	260.46		55.2000	1833.0	5.52	0.274	0.58
			70.0000	1828.5	6.90	0.228	0.48
Tare	126.60		82.8000	1825.8	8.28	0.201	0.42
Tarc+sol scc	272.88		110.6000	1821.5	11.04	0.157	0.33
			151.8000	1817.3	15.18	0.115	0.24
Indice des vides	0.90						
TEV initiale	0.47						
Saturation initiale	98.18						
TEV finale	0.1148						
Saturation finale	24.21						

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

Échantill P-1	Résidus MRN	Date	mont	age	9 novem	brc `9 5	
		kl	Pa	Montage	m.cau	TÉV	Saturation
Dr	2.819	0.0	0000	1882.6	0.10	0.457	0.94
Volume anneau	97.63	1.3	3800	1878,8	1.38	0.418	0.86
Anncau+plaque	93.42	27.6	5000	1872.7	2.76	0.355	0.73
Masse humide initial	279.33	41.5	5000	1866.7	4.14	0,294	0.61
Masse humide finale	242.40	55.2	2000	1863.1	5.52	0.257	0.53
	·	70.0	0000	1858.6	6.90	0.211	0.44
Tarc	123.80	82.8	3000	1855.7	8.28	0.181	0.37
Tarc+sol sec	265.80	110.6	0003	1851.4	11.04	0.137	0.28
		151.8	3000	1845.0	15.18	0.0715	0.15
Indice des vides	0.94						
TEV initiale	0.45						
Saturation initiale	92.92						
TEV finale	0.0715						
Saturation finale	14.77			N			
		Carrottering					

École Polytechnique de Montréal

IJ

I

5

Laboratoire d'Hydrogéologie

Échantill P-3	Résidus M	IRN	Date mont	age	20 decem	ibre 95	
			kPa	Montage	m.cau	TEV	Saturation
Dr	2.819		0.0000	1849.0	0.10	0.478	0.99
Volume anneau	98.68		1.3800	1844.5	1.38	0,432	0.89
Anncau+plaque	102.80		27.6000	1841.4	2.76	0.401	0.83
Masse humide initial	294.07		41.4000	1836.9	4.14	0.355	0.73
Masse humide finale	256.50		55.2000	1831.3	5.52	0.298	0.62
			82.8000	1822.8	8.28	0.212	0.44
Tarc	133.00		110.4000	1819.6	11.04	0,180	0.37
Tarc+sol sec	276.76		138.0000	1816.5	13.80	0.148	0.31
			207.0000	1811.8	20.7	0.101	0.21
Indice des vides	0.94						
TEV initiale	0.48						
Saturation initiale	99.64						
TEV finale	0.1007						
Saturation finale	20.85						
			<u></u>		Sector Contraction		

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

Date:	07-11-199	Colonne No 1]			
Prov. Echant.:	Min. des R	ichesses Naturelles		1			
				DATE	HRE		%oxy
Essai No. : MRN-1		Denité des grains	2.802	NOV 95		nb/min	
Tare No109	133,90	Tare No13	167.70	09-11	8.58	0	
Tare + sol hum.	623.70	Tare + sol hum.	549.00			0.5	20.
sol humide	489.80	sol humide	381.30			1	20.
Tare + sol sec	571.90	Tare + sol sec	510.80			2	20.
sol sec	438.00	sol sec (ws)	343.10			3	19.
eau dans le sol	51.80	eau dans le sol	38.20			4	19.
						8	16.
Wi = %	11.83	Wf = %	11.13			10	16.
						17.5	14.
Pds colonne vide	2034.10					24	13.
Pds colonne + sol hum.	2565.90	température °C	22.5			32	12.
Pds colonne + sol sec	2509.66					41	12.
Pds sol hum.	531.80					59	12.
Pds sol sec	475.56					90	12.
		indice des vides:	0.631			135	12.
Hauteur totale colonne	164.055						
Hauteur bas	44.820	porosité:	0.387				
Hauteur restante	119.235						
Hauteur de la plaque	0.635						
Hauteur après compact.	66.273					· ·	
Hauteur sol humide	52.328						
		Saturation:	52.25				
Diam de la colonne	8 215	n air	-	· · ·			
Surface de la colonne	53 004	$\mathbb{D}_{a}(z^{2}/a)$	4.8+1077				
		<i>JU, CM [2]</i>	110000	·			
Volume de sol (cm^3)	277.355						
Volume source (cm ^ 3)	354.634	1					
Volume res. bas (cm ^ 3)	237.562						
Bho hum : ar/cm3	1.917						~
Rho sect arlom3	1,715	1]			
Rho eau: gr/cm3 (20°)	0.99823						
	0.00020						

.

Prov. Echant.:	MINIST. D	ES RICH. NATURE	LLES			
				DATE	HRE	
Essai No. MRN 2		Denité des grains	2.821	NOV 95		nb/mir
Tare No100	93.00	Tare No120	132.10	22	7,45	0
Tare + sol hum.	237.30	Tare + sol hum.	643.40			2
sol humide	144.30	sol humide	511.30			2.5
Tare + sol sec	216.10	Tare + sol sec	571.80			3
sol sec	123.10	sol sec (ws)	439.70			5
eau dans le sol	21.20	eau dans le sol	71.60			7
						11
Wi = %	17.22	W f = %	16.28			15
						21
Pds colonne vide	2123.80					26
Pds colonne + sol hum.	2638.70	température °C	23.4			37
Pds colonne + sol sec	2563.05					45
Pds sol hum.	514.90					56
Pds sol sec	439.25					104
		indice des vides:	0.982			130
Hauteur totale colonne	15.306					175
Hauteur bas	4.498	porosité:	0,496			333
Hauteur restante	10.808					
Hauteur de la plaque	0.650					
Hauteur après compact.	4.631					
Hauteur sol humide	5.527		-			
		Saturation:	49.28			
Diam de la celebra	0.440			ļ	l	<u> </u>
Diam, de la colonne	8.440		2			l
Surface de la colonne	55.947	ll(m/A)	7.5210 7)
Volume de sol (cm^3	309.204					 _
Volume source (cm^3	295.469					<u></u>
Volume res, bas (cm^3	251.649					
Rho hum.: gr/cm3	1.665]				
Rho sec: gr/cm3	1.421					l
Rho eau: gr/cm3 (20°)	0.99823	ļ				
	ha					L

and the second second

17-11-1995		Colonne No 2 N					
Prov. Echant.:	MINIST. D	ES RICH. NATURELI	ES	<u> </u>			
				DATE	HRE		<u>%ox</u>
Essai No. MRN#3		Denité des grains	2.821	NOV 95		nb/min	
Tare No 117	125.00	Tare No. 105	129.20	22	7 48		
Tare + sol hum	301.30	Tare + sol hum.	557.70			2	20.8
sol humide	176.30	sol humide	428.50				20.1
Tare + sol sec	275.70	Tare + sol sec	496.40			4	20.5
sol sec	150.70	sol sec (ws)	367.20			8	19.1
eau dans le sol	25.60	eau dans le sol	61.30			12	18.
						18	17.
Wi = %	16.99	Wf = %	16.69			23	17.2
						34	16.0
Pds colonne vide	2219.90		-			42	15.4
Pds colonne + sol sable s	2369.90	température °C	23.4			53	14.8
Pds colonne + sol hum.	2807.80					101	13.8
Pds sabel sec	150.00					127	13.7
Pds sol hum.	437.90	1				172	13.6
Pds sol sec	374,31	indice des vides:	0.728			207	13.9
						330	13.6
Hauteur totale colonne	13.081						
Hauteur bas	3.401	porosité:	0.421				
Hauteur restante	9.681						
Hauteur de la plaque	0.234						
Hauteur dessus du sable	2.148						
Hauteur après compact.	7.299						
Hauteur de la plaque	0.64						
Hauteur sol humide	4.106						
		Saturation:	65.53				
			-				
Diam, de la colonne	8.440	n. air	19 0,007			 	
Surface de la colonne		De(m/b)	2.0 2.10 1			<u>الــــــــــــــــــــــــــــــــــــ</u>	
Volume de sol (om 0.3)	229 718	Tare No 125	127 60				
Volume source (cm 3)	421 149	Tare + sol hum	263.10				· · · · · ·
Volume res has (cm ^ 3)	190 247	sol humide	135.50		·	,,,, 	
		Tare + sol sec	261.70				·
Bho hum.: ar/cm3	1.906	sol sec (ws)	134.10			(<u> </u>	
Rho sec: ar/cm3	1.629	eau dans le sol	1.40				
Rho eau: gr/cm3 (20°)	0.99823				<u></u>		
		W1 = %	1 04				

.

				_			
Date: 22-11-95		Colonne No 2 N]			
Prov. Echant.:	MINIST. D	ES RICH. NATURE	LLES			<u> </u>	
			· · · · ·	DATE	HRE		%оху
Essai No. MRN#4 Denité des grains 2.821						nb/min	
Tare no 119	129.40	Tare119	129.60	22	7.48	0	0
Tare + sol hum.	246.20	Tare + sol hum.	600.40			2	20.8
sol humide	116.80	sol humide	470.80			3	20.7
Tare + sol sec	229.60	Tare + sol sec	545.40			4	20.5
sol sec	100.20	sol sec (ws)	415.80			8	19.6
eau dans le sol	16.60	eau dans le sol	55.00			12	18.7
		-				18	17.6
Wi = %	16.57	W f = %	13.23			23	17.2
						34	16.0
Pds colonne vide	2224.90	-				42	15.4
Pds colonne + sol sable	2377.30	température °C	23.4			53	14.8
Pds colonne + sol hum.	2848.90	_				101	13.8
Pds sable sec	152.40					127	13.7
Pds sol hum.	471.60					172	13.6
Pds sol sec	404.57	indice des vides:	0.737			207	13.5
			_			330	13.6
Hauteur totale colonne	11.948						
Hauteur bas	3.401	porosité:	0.424				
Hauteur restante	8.547						
Hauteur de la plaque	0.640						
Hauteur dessus du sabl	9.624						
Hauteur après compact.	5.164	ĺ					
Hauteur de la plaque	0.64	<u>.</u>		[]			
Hauteur sol humide	4.461						
		Saturation:	63.14				
Diam. de la colonne	8.440	n. air					
Surface de la colonne	55.947	De (m/a)	2.5×10-7				
		teneur en eau	sable				
Volume de sol (cm^3	249.565	Tare3	181.70				
Volume source (cm-^3	324,688	Tare + sol hum.					
Volume res. bas (cm^3	190.247	sol humide	146.00				
		Tare + sol sec	324.50				
Rho hum.: gr/cm3	1.890	sol sec (ws)	142.80				

-

-

. .

	Date: 29-11-1995		Colonne No 1 N					
	Prov. Echant.:	MINIST. D	ES RICH. NATURE	ELLES	1			
					DATE	HRÉ		%0X)
	Essai No. MRN 5		Denité des grains	2.821	dec 95		nb/min	
	<u> </u>					[
	Tare No107	123.80	Tare No114	127.40	04-12-95	10.00	0	
	Tare + sol hum.	356.70	Tare + sol hum.	607.70			3	20.8
	sol humide	232.90	sol humide	480.30			4	20.8
	Tare + sol sec	308.40	Tare + sol sec	508.20			7	20.
	sol sec	184.60	sol sec (ws)	380.80			30	20.0
	eau dans le sol	48.30	eau dans le sol	99.50			65	18.
							114	18.
	Wi = %	26.16	W1 = %	26.13			151	17.
							208	17.
	Pds colonne vide	2126.30	_	· · · · · · · · · · · · · · · · · · ·			337	16.:
	Pds colonne + sol hum	2611.00	température °C	23.4		i 	487.	15.
	Pds colonne + sol sec	2510.48	_				589	14.
	Pds sol hum.	484.70					1266	13.
	Pds sol sec	384.18					1445	13.
			indice des vides:	0.842			1600	12.
	Hauteur totale colonne	15.374					1750	12.9
D	Hauteur bas	4.498	porosité:	0.457			2770	12.
	Hauteur restante	10.876						
	Hauteur de la plaque	0,650						
	Hauteur après compact	5.735						
-	Hauteur sol humide	4,492						
			Saturation:	87.33				
								<u></u>
1	Diam de la colonne	8 440	n, air	0.058				
And a	Surface de la colonne	55 947						<u>}</u>
		00.011	$De\left(\frac{2}{4}\right)$	9.46×10-9			i — i	
	Volume de sol (cm^	251 285	Je mys				(
	Volume source (cm^	357 193	4		<u></u>	[<u> </u>	
	Volume res has Icm ^	251 649	9 6 !				γ ι	
	volume les. Das (elli	201.043	(AN)		 ┦		ľ/	·
	Bho hum : ar/cm3	1 020				L	<u>/</u>	[
*	Rho sec: arlom?	1 520	TAGE			[<u>;</u>	L <u></u>
-12	Pho paus adama (200)	0.00000						
	nno eau: gr/cm3 (20°)	0.99023	-			[<u>,,</u>	<u> </u>
			_		<u> </u> _		<u></u>	<u> </u>

.

.

.

•

И

Date: 29-11-1995		Colonne No 2 N					
Prov. Echant.;	MINIST. DI	ES RICH. NATURELLES					
				DATE	HRE		%oxy
Essai No. MRN#6		Denité des grains	2.821	dec 95		nb/min	
Tare no 107	123.80	Tare No126	127.80	04-12-	10.00	0	0
Tare + sol hum.	356.70	Tare + sol hum.	552.20			1.5	20.8
sol humide	232.90	sol humide	424.40			2	20.4
Tare + sol sec	308.40	Tare + sol sec	467.50			3	20.2
sol sec	184.60	sol sec (ws)	339.70			6	19.8
eau dans le sol	48.30	eau dans le sol	84.70			30	19.5
						65	19.2
Wi = %	26.16	Wf = %	24.93			113	18.8
						150	18.5
Pds colonne vide	2225.80					208	17.6
Pds colonne + sol sable se	2475.70	température °C	23.4			337	16.6
Pds colonne + sol hum.	2918.20					487	15.9
Pds sable sec	249.90					589	13.4
Pds sol hum.	442.50					1266	12.6
Pds sol sec	350,73	indice des vides:	0.835			1445	12.4
						1750	12.4
Hauteur totale colonne	15.349					2770	11.9
Hauteur bas	3.401	porosité:	0.455				
Hauteur restante	11.949						
Hauteur de la plaque	0.650						
Hauteur dessus du sable	8.721	:					
Hauteur après compact.	4.636						
Hauteur de la plaque	0.650						
Hauteur sol humide	4.086			4			
		Saturation:	88.03				
Diam. de la colonne	8.440	n. air					
Suriace de la colonne	55.947	De(mild)	9.4x10-9				
		teneur en eau	sable				
Volume de sol (cm ^ 3)	228.571	Tare No125	127.50				
Volume source - (cm - 3)-		Tare + sol hum.	362.60				
Volume res. bas (cm^3)	190.247	sol humide	235.10				
		Tare + sol sec	360.10				
Rho hum.: gr/cm3	1.936	sol sec (ws)	232.60				
Rho sec: gr/cm3	1.534	eau dans le sol	2.50	Ì			
Rho eau: gr/cm3 (20°)	0.99823						
,,,,,		W f = %	1.07	/			

·

2 conchos (En Est + plaque)

0
J
1

Ì

Date: 08-12-1995 Colonne No 2 N				J			
Prov. Echant.:	MINIST. D	ES RICH. NATURELLE	ËS]			
				DATE	HRE		%oxy
Essai No. MRN#7		Denité des grains	2.821	dec 95		nb/min	
Tare no 107	123.80	Tare No 11	168.60	14	9.05		[
Tare + sol hum	356.70	Tare + sol hum	670.40		0.00	12	201
sol humide	232.90	sol humide	501.80			2	20
Tare + sol sec	308.40	Tare + sol sec	570.20			4	203
sol sec	184.60	sol sec (ws)	401.60			9	200
	48.30	cau dans le sol	100.20	i		25	10
	40.00		100.20			23	
	26.16	$\lambda h/f = 0/$	24.05			76	
vv = %	20.10	VV 1 = %	24.95			70	10.0
	2227.20					1254	10.0
Pde colonne vide	2261.20	L tampératura 80	004	┟ <u>└───</u> ┤			
Pas colonne + sol sable sec	2497.10		23.4			 	<u></u>
Pas colonne + sol hum.	3018.00			<u></u>		<u> </u>	
	209.90		····			[]	
Pas sol num.	520.90		0.004	<u> </u>			
Pas sol sec	412.87	indice des vides:	0.804		-===		·
	10001	1	· · ·				
Hauteur totale colonne	15,361	· · ·					
Hauteur bas	3.401	porosite:	0.446	<u></u>			
Hauteur restante	11.960						
Hauteur de la plaque	0.650			<u></u>			
Hauteur dessus du sable	8.446						
lauteur du sable	4.165						
lauteur après compact.	3.717			i			
Hauteur de la plaque	0.650						
Hauteur sol humide	4.728						
		Saturation:	91.41				
Diam. de la colonne	8.440	n. air					
Surface de la colonne	55.947	De(mild)	4,85210-9				
		teneur en eau	sable				
/olume de sol (cm^3)	264.531	Tare No9	167.30				
/olume source (cm ^ 3)	244.334	Tare + sol hum.	425.00				
/olume res. bas (cm^3)	190.247	sol humide	257.70	· .			
· · · · · · · · · · · · · · · · · · ·		Tare + sol sec	422.30				
Rho hum.: gr/cm3	1.969	sol sec (ws)	255.00				
Rho sec: gr/cm3	1.561	eau dans le sol	2.70				
Rho eau: gr/cm3 (20°)	0.99823						
		Wf = %	1.06			î	

,

APPENDIX C

GEOTECHNICAL DATA OF THE LTA TAILINGS

(École Polytechnique)

ECOLE POLYTECHNIQUE, Dépt. de Génie Minéral

DENSITE RELATIVE DES GRAINS

LOCALISATION GOLDER

.

TROU NO.....

PROFONDEUR..... RESIDU SULFUREUX

SECTION

FICHIER: GOLDER\DD\SULFURE1

DATE: 08-11-1995

.

.

PYCNOMETRE NO	1	3	4
PDS PYCNOMETRE + EAU + SOL GRS (M3T2)	750.69	740.58	746.53
TEMPERATURE D'ESSAI	23.2	23.6	22.8
PDS PYCNOMETRE + EAU GRS (M2T2)	675.68	665.65	665.03
TARE NO	7	8	12
PDS DE LA TARE + SOL SEC GRS. (MS)	287.08	287.09	294.89
PDS DE LA TARE	173.40	173.29	171.12
PDS DU SOL SEC GRS	113.68	113.80	123.77
MASSE VOLUMIQUE DE L'EAU D'ESSAI (PWT2)	0.99750	0.99742	0.99758
MASSE VOLUMIQUE DE L'EAU @ 20 °C	0.99823	0.99823	0.99823
DENSITE RELATIVE (DR)	2.940	2.928	2.928
DENSITE RELATIVE CORRIGE	2.938	2.925	2.926
MOYENN		2.930	
			· ··· ····

ECOLE POLYTECHNIQUE, Dépt. de Génie Minéral

DENSITE RELATIVE DES GRAINS

LOCALISATION GOLDER

TROU NO.....

PROFONDEUR..... RESIDU SULFUREUX

SECTION

DATE: 08-11-1995

1

Ŋ

1

PYCNOMETRE NO	1	3	4
PDS PYCNOMETRE + EAU + SOL GRS (M3T2)	754.14	741.20	740.84
TEMPERATURE D'ESSAI	22.2	23.2	22.2
PDS PYCNOMETRE + EAU GRS (M2T2)	675.80	665.68	665.07
TARE NO	9	10	11
PDS DE LA TARE + SOL SEC GRS. (MS)	290.88	290.91	285.91
PDS DE LA TARE	172.08	176.56	171.07
PDS DU SOL SEC GRS	118.80	114.35	114.84
MASSE VOLUMIQUE DE L'EAU D'ESSAI (PWT2)	0.99771	0.9975	0.99771
MASSE VOLUMIQUE DE L'EAU @ 20 °C	0.99823	0.99823	0.99823
DENSITE RELATIVE (DR)	2.936	2.945	2.939
DENSITE RELATIVE CORRIGE	2.935	2.943	2.938
MOYENN		2.938	

ESSAI PROCTOR

IDENTIFICATION: Résidu Sulfureux

ECHANTILLONNAGE	09-95	PAR J.	FRANCOIS

	LONALI		00 00 1701	0.110.1000	0		
		1	2	3	4	5	6
MOULE SOL COMP	ACTE	6143.0	6220.0	6268.7	6323.6	6323.3	6236.8
MOULE	-	4351.7	4351.7	4351.7	4351.7	4351.7	4351.7
PDS SOL COMPAC	TE	1791.3	1868.3	1917.0	1971.9	1971.6	1885.1
MASSE VOL. HUMI	DE DE	1902.2	1984.0	2035.7	2094.0	2093.7	2001.8
MASSE VOL. SECH	IE	1747.1	1769.9	1791.3	1800.0	1785.9	1657,9
NO TARE		5	4	3	9	1	4
MASSE T. + SOL HL	JM.	1977.9	2048.1	2116.1	2119.2	2176.9	2078.5
MASSE T. + SOL SE	C	1832.4	1848.6	1886.9	1845.2	1886.1	1756.0
MASSE EAU		145.5	199.5	229.2	274.0	290.8	322.5
MASSE TARE		193.8	198.7	207.0	167.5	198.3	201.1
MASSE SOL SEC		1638.6	1649.9	1679.9	1677.7	1687.8	1554.9
TENEUR EN EAU %	,	8.9	12.1	13.6	16.3	17.2	20.7
INDICE DES VIDES	<u> </u>	0.679	0.658	0.638	0.630	0.643	0.770
POROSITE: %		40.5	39.7	38.9	38.7	39.1	43.5
VOL. DU MOULE:	941.7	cm^3		opt, proctor:			
Gs: 2.934	teneur en	eau opt.	15.5	%	1810.0	kg\m^3	
<u>% SAT:</u>		38.3	53.9	62.8	, 76.1	78,6	79.1
	RESI	DU SULFUREUX]			
1960							
1824	-┼-┨╎- ┠╿	╺╊╾┼╾┼╌┼╺╋	++++				
1922	┧╿┥┨_┇╎┥	╶┼╍╞╌┼╼┼╶┼	╺┞┽┽┫┥				
- 1118	┥┥╻╴						
2010		<u>_</u> - - - - - - - - - - - - - - - - - - -					
¥ ¥	╶┼╌┥╼┝┥						
1476							
1 6 3	30 11 13 13 14 h	- 18 37 18 18 20 21 	27 25 31 36 16				
DEGRE SATURATIO	DN:						51
MASSE VOL. Pd:	1650.0	1700.0	1750.0	1800.0	1850.0	1840.0	ļ
SAT. 100	26.52	24.74	23.06	21.47	19.97	20.26	-
							1
SAT. 95	25.20	23,50	21.91	20.40	18.97	19.25	-
							-
SAT. 90	23.87	22.27	20.75	19.33	17.97	18.24	4
				[]
SAT. 85	22.54	21.03	19.60	18.25	16.98	17.22	-
SAT. 80	21.22	19.79	18.45	17.18	15.98	16.21	
SAT. 75	19.89	18.56	17.29	16.10	14.98	15.20	
SAT. 70	18.57	17.32	16.14	15.03	13.98	14.19]

-- -

. .

- - - - -----

. .

-

. .

Limites de consistance d'atterberg (ASTM D4318-84)

date:

Échantillon:

Golder ass. Résidus sulfureux 2 decembre 1995

		Lim	ite de liquid	ité		Limite de	Plasticité
Tare	2	15	20	28	29	34	35
Wt+t	13.95	14.58	13.48	13.35	13.37	7.39	6.68
Ws+t	12.11	12.66	11.90	11.82	11.89	7.13	6.54
Ww	1.84	1.92	1.58	1.53	1.48	0.26	0.14
t	6.46	6,42	6.39	6.41	6.49	5.91	5.92
Ws	5.65	6.24	5.51	5.41	5.40	1.22	0.62
W%	32.57	30.77	28.68	28.28	27.41	21.31	22.58
		•	·		•••••••••••••••••••••••••••••••••••••••		

Nb Chocs	8	10	13	16	20
iie: enéeé	Ų Ų				

LL	23.0
LP	21.9
lp	1.1
CL-ML	

100.0 9 9 10.0

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

		TEST PI	ERMEABIL	ITE ESSAI	TRIAXI	NL					
	Ecole	Polytechnic	ue de Mont	tréal, Dépt.	de Génie N	Minéral	_				
	Date de	montage		22-11-199	15		Cellule No. 2				
	Nom de	l'échantillon:		RESIDU SUL	FUREUX		Burctte No. 3				
	Nom du	fichier:		GOLDER\TX\	SULFUREUX	2					
				ASTM: D-	5084-90						
Géométr	ie					Masses (g)					
épaisseur	initiale (c	m.)	5.977		masse initiale humide (g)						
diamétre	(c:	m.)	7.210		masse finale humide (g)						
surface	(c	m^2)	40.83		masse finale seche (g)						
Volume	(cr	n^3)	244.03]	2.935						
	Conditio	ons de l'ess	ai								
	Degré de	saturation f	inal		mas. vol.	hum. g/cm3	1.942				
		CapL pres	sion (%)	93.0	mas vol :	sec. g/cm3	1.701				
		Par sechag	(%)	99.8	Opt. Proct	or g/cm3	1.810				
	Teneur e	n eau initial	c (%)	14.2	lencur eau	15.5					
	Teneur e	<u>n cau finale</u>	(%)	24.7	% opt. Pro	oclor	94.0				
	<u> </u>										
	Calibrat	ion									
o/s têle	19,80	hurette ut	ilisee	large	0	section buret	le	0.325			
o/s base	21.50	med	1	petite	0	lemperature	ł	23.3			
						Disultate de	Paggi				
l		Comparat entr	son debit d'enn' se vs sortie			Resultat de	Tessar				
•					8	D					
5				a		Pression (psi)	allula	70			
							in out:	65			
							mone				
(cm2)			*			Indice des vid	les	0.725			
Arre			A								
\$ 2				+	┥───┤ │	Cond. hydrau	l. cm/s.	9.30E-06			
		8 .					ecart type	2.93E-08			
							ind. reg.	1.000			
9	100 200	300 401	, soo a Temj≾ (s)	xou 198	909 - 9 09						
		📕 subore ro	trie () whome softe								

.

FICHIER:		GOLDER	TX\SULFUR	EUX		PAGE 2			
DATE:	26-11-199	5	Cellule No.	2		RESIDU SULFI	UREUX		
	Lectures					·			
Temps	hauteur	hauteur	Volurne	Volume	charge	diff	K	К20	
Min	lêlc	base	entrée	Sorlic	cm	S	cm/s	cm/s	
0.00	159.0	11.4	0	0	145.9	0.00			
0.98	157.0	13.3	0.65	0.62	142.0	58.80	1.10E-05	1.01E-05	
2.66	154.0	16.4	1.63	1.62	135.9	159.60	1.04E-05	9.57E-06	
3.80	152.0	18.2	2.28	2.21	132.1	228.00	9.86E-06	9.11E-06	
5.64	149.0	21.3	3.25	3.22	126.0	338.40	1.02E-05	9.41E-06	
6.91	147.0	23.5	3,90	3.93	121.8	414.60	1.06E-05	9.78E-06	
8.21	145.0	25.3	4.55	4.52	118.0	492.60	9.67E-06	8.93E-06	
9.60	143.0	27.4	5.20	5.20	113.9	576.00	1.01E-05	9.32E-06	
11.74	140,0	30.3	6,18	6.14	108.0	704.40	9.85E-06	9.10E-06	
13.97	137.0	33.2	7.15	7.09	102.1	838.20	9,99E-06	9.23E-06	

Ecole Polytechnique de Montréal, Dépt. de Génie Minéral

	Ecole I	Polytechnic	ue de Mont	réal, Dépt.	de Génie M	linéral				
	Date de m	nontage		22-11-199)5		Cellule No. 3	3		
	Nom de l'	échantillon:		RESIDU SUI	FUREUX	Burette No. 4	ţ			
	Nom du f	ichier:		GOLDER\TX\	GOLDER\TX\SULFUREUX					
				AST'M: D-	5084-90					
Géomètr	ie									
epaisseur	initiale (cm	n.)	6.236]	masse init	476.7				
diamétre	(cn	r.)	7.190		masse finale humide (g)					
surface	(cm	n^2)	40.60		masse finale sèche (g)					
Volume	(cm	~3)	253,19		Gs			2.935		
	Condition	ns de l'ess	ai							
	Degré de s	saturation f	inal		rnas. vol. i	num. g/cm3	1,883			
		Capt press	sion (%)	93.0	mas. vol. sec. g/cm3 1.602					
		Par sechag	e (%)	99.6	Opt. Proctor g/cm3 1.810					
	Teneur en	eau initial	e (%)	17.6	teneur eau	1 opt. (%)	15.5			
	Teneur en	eau finale	(%)	28.3	% opt. Pro					
	Calibratio	on			an community area in the					
o/s lêle	22.30	burctle ut	ilisée	large	0 section burette			0.325		
o/s base	20.90	med	1	petile	0	lempérature		23.3		

TEST PERMEABILITE ESSAI TRIAXIAL

					C	omprurais entre	on déhit vs sortid	d'eau' S			
	•						_				8
	e				-				5		
(ic_ma	٠ ۱			_	-			8			
i) annia	4					8	8-		···		
	•				5						
	1-		2								
	0	-	00	200		 00 T	400 cinps (s.)	500	600	760	400
				_	1	uchunu mir	i Ci vatu	ru astie			

Résultat de l'essai Pression (psi) cellule: 70 in\out: 65 Indice des vides: 0.833 Cond. hydraul. cm/s 1.85E-05 écart type 3.76E-08 ind. reg. 1.000

Û

1

FICHIER:		GOLDER	TX\SULFU	REUX	EUX PAGE 2						
DATE:	26-11-19	95	Cellule No.	. 3		RESIDU SULF	UREUX				
	Lectures			• •			** *				
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20			
Min	lĉie	base	entree	Sortie	cm	S	cm/s	cm/s			
0.00	164.0	16.7	0	0	148.7	0.00	-	-			
0.88	161.0	19.5	0.98	0.91	142.9	52.80	1.88E-05	1.74E-05			
2.02	157.0	23.4	2.28	2.18	135.0	121.20	2.08E-05	1.92E-05			
2.94	154.0	26.1	3.25	3.06	129.3	176.40	1.95E-05	1.80E-05			
3.93	151.0	29.4	4.23	4.13	123.0	235.80	2.10E-05	1.94E-05			
5.33	.33 147.0 33.3		5.53 5.40		115,1	319.80	1.97E-05	1.82E-05			
6.40	144.0	36.2	6.50	6.34	109.2	384.00	2.05E-05	1.89E-05			
8.40	139.0	41.1	8.13	7.93	99.3	504.00	1.98E-05	1.83E-05			
10.14	135.0	45.0	9.43	9.20	91.4	608.40	1.98E-05	1.83E-05			
12.53	130.0	50.0	11.05	10.82	81.4	751.80	2.02E-05	1.86E-05			

Ecole Polytechnique de Montréal, Dépt. de Génie Minéral

	TEST PERMEABILITE ESSAI TRIAXIAL											
	Ecol	e Poly	techni	que de N	lont	réal, D	Dépt. (de Génie	М	inéral		
	Date de	mont	age			13-1	1-95				Cellule No. 5	I
	Nom de	l'écha	ntillon			RESID	u sul	FUREUX			Burctte No. 4	ļ
	Nom du	i fichio	er.			GOLDER/TX/SULFUREUX						
						ASTM: D-5084-90					, 	
Géométr	ic						Masses (g)					
épaisseur	initiale (o	em.)		6.07	7			inasse ir	ili	ale humide (g)		447.4
diamètre	metre (cm.) 7.185							masse fi	nał	le humide (g)		508.5
surface	ce (cm^2) 40.55							masse fi	nal	le séche (g)		396.4
Volume	(cm^3) 246.40							Gs				2,934
	Conditi	ions d	le l'es	sai								
	Degré de	e satu	ntion	final				mas. vol	. h	um. g/cm3	1.816	
		Car	l. pres	sion (%)		95	.8	mas. vol	. se	ec. g/cm3	1.609	
		Par	sécha,	ge (%)		100	0.7	Opt. Proclor g/cm3 1.810			1.810	
	Teneur o	en eau	initia	le (%)		12	.9	teneur cau opt. (%)			15.5	
	Teneur of	en eau	finale	(~7 /0)		28	.3	% opt. Proctor 88.9				
	Calibra	lion		HEALT SHOULD			10025			janow (462) -		
o/s lêlc	19.50	bu	elte u	Lilisèe		lar	ge	0		section burct	te	0.325
o/s base	ase 19.00 mcd 1					peL	ite	0		température		22.7
		-										
			Compara entr	ison débit d'ea ée vs sortie	u	·		Résultat de l'essai				
								8		Pression (psi)		

Résultat de l'essai	
Pression (psi)	
cellule	70
in\out:	65
Indice des vides	0.824
Cond. hydraul. cm/s. écart type ind. reg.	2.39E-05 7.12E-08 1.000

(1) A start of the start of

FICHIER:		GOLDER	TX\SULFU	REUX		PAGE 2			
DATE:	22-11-19	95	Cellule No	. 5		RESIDU SULFUREUX			
	Lectures								
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20	
Min	têle	base	cntree	Sortie	cm	S	cm/s	cm/s	
0.00	168.0	22.2	0	0	146.3	0.00	<u> </u>		
0.68	165.0	25.2	0.98	0.98	140.3	40.80	2.50E-05	2.35E-05	
1.34	162.0	28.0	1.95	1.89	134.5	80.40	2.60E-05	2.44E-05	
2.08	159.0	30.9	2.93	2.83	128.6	124.80	2.46E-05	2.31E-05	
2.81	156.0	34.0	3.90	3.84	122.5	168.60	2.70E-05	2.54E-05	
3.61	153.0	37.0	4.88	4.81	116.5	216.60	2.55E-05	2.39E-05	
4.44	150.0	39.9	5.85	5,75	110.6	266.40	2.54E-05	2.39E-05	
5.33	147.0	42.8	6.83	6.70	104.7	319.80	2.50E-05	2.35E-05	
6.26	144.0	45.7	7.80	7.64	98,8	375.60	2.53E-05	2.38E-05	
7.28	141.0	48.7	8.78	8.61	92.8	436.80	2.49E-05	2.34E-05	

Ecole Polytechnique de Montréal, Dépt. de Génie Minéral

	TEST PERMEABILITE ESSAI TRIAXIAL											
	Ecole	Polytec	hnigu	ie de Mo	ntréa	al, Dépt.	de G	énie M	inéral			
	Date de n	nontage			1	3-11-95				Cellule No. 7	7	
	Nom de l	'échantil	lion:		R	esidu sui	FURE	UX		Burette No. (3	
	Nom du l	lichier:			G	OLDER\TX	SULF	JREUX]			
					Λ.	STM: D-	5084	-90				
Géomètr	ie							Masses (g)				
epaisseur	initiale (cn	n.)		6.834			mas	se inili	ale humide (g)		449.2	
diamètre	liamètre (cm.) 7.168						mas	se final	le humide (g)		528.3	
surface	nce (cm^2) 40.35						mas	se final	le séche (g)		397.3	
Volume	(cri	275,78]//			Gs			2.935			
									1			
	Conditio	l'essa	i				17.5 - 97.5 Bol 19	597.98. 997 (491)(581)(51) (51) (32)		
	Degrè de	saturati	on fi	ral			mas.	vol. h	um. g/cm3	1.629]	
		Capt	oressi	on (%)		93.0	mas.	vol. se	ec. g/cm3	1.441		
		Par sé	chage	(%)		93.3	0pt.	Opt. Proctor g/cm3				
	Teneur en	a eau in	itiale	(%)		13.1	lene	teneur ean opt (%)				
	Teneur cr	eau fir	nale (%)		33.0	% opl. Proclor 79.6					
	Calibrati	on			,							
o/s lĉle	19.80	burett	e util	isèe		large		0	section buret	le	0.325	
o/s base	pase 21.50 med 1					pelile	ļ <u>.</u>	0	température		22.7	
	Comparaison débit d'eau cotrée vs sortie								Resultat de	l'essai		
a					l							
									Procesion (nei)			

Résultat de l'essai	
Pression (psi)	
cellula	70
in\out:	65
Indice des vides	1.037
Cond. hydraul. cm/s écart type ind. reg.	3.85E-05 8.89E-08 1.000

Ð

()

0

FICHIER:		GOLDER	TX\SULFU	TX\SULFUREUX PAGE 2						
DATE:	03-10-199	95	Cellule No.	. 7		RESIDU SULF	UREUX			
	lectures									
Temps	hauteur	hauleur	Yolume	Volume	charge	diff	K	K20		
Min	tête	base	entrée	Sortie	cm	S	cm/s	cm/s		
0.00	160.0	31.1	0	0	127.2	0.00	-	-		
0.55	157.0	34.0	0.98	0.94	121.3	33.00	3.96E-05	3.72E-05		
1.11	154.0	36.9	1.95	1.88	115.4	66.60	4.08E-05	3.83E-05		
1.67	151.0	39.8	2.93	2.83	109.5	100.20	4.30E-05	4.03E-05		
2.29	148.0	42.7	3.90	3.77	103.6	137.40	4.10E-05	3.84E-05		
2.98	145.0	45.7	4.88	4.75	97.6	178.80	3.97 <u>E-05</u>	3.72E-05		
3.68	142.0	48.8	5.85	5.75	91.5	220.80	4.23E-05	3.97E-05		
4.44	139.0	51.8	6.83	6.73	85.5	266.40	4.09E-05	3.84E-05		
5.24	136.0	54.6	7.80	7.64	79.7	314.40	4.03E-05	3.78E-05		
6.12	133.0	57.6	8.78	8.61	73.7	367.20	4.08E-05	3.83E-05		

Ecole Polytechnique de Montréal, Dépt. de Génie Minéral

-- --

Échantill U-2	Résidus:	SULF	Date mont	age	9 novem	1010	
		_	kPa	Montage	m.cau	TEV	Saturation
Dr	2.934		0.0000	1851.5	0.10	0.437	0.96
Volume anneau	98.99		1.3800	1850.4	1.38	0.426	0.94
Anncau+plaque	101.00		27.6000	1850.3	2.76	0.425	0.94
Masse humide initial	302.43		41.4000	1849.9	4.14	0.421	0.93
Masse humide finale	279.15		55.2000	1846.3	5.52	0.385	0.85
		-	70.0000	1843.2	6.90	0.353	0.78
Tarc	119.86]	82.8000	1840.9	8.28	0.330	0.73
Tarc+sol sec	278.54]	110.4000	1833.0	11.04	0.250	0.55
······	<u>. </u>	•	179.4000	1827.7	20.7	0.197	0.43
Indice des vides	0.83]			_		
TEV initiale	0.43						
Saturation initiale	95.20						
TEV finale	0.1967						
Saturation finale	43.36				10 10 1100		0-10-10-10-10-10-10-10-10-10-10-10-10-10
		-	(1991)				

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

Échantill P-2	résidus: SU	JLF	Date mont	age	9 novembre `95			
			kPa	Montage	m.cau	TEV	Saturation	
Dr	2.934		0.0000	1885.3	0.10	0.502	0.97	
Volume anneau	98.32		1.3800	1881.1	1.38	0.459	0.88	
Anneau+plaque	101.54		27.6000	1879.7	2.76	0.445	0.86	
Masse humide initia	nl 289.69		41.4000	1878.3	4.14	0.431	0.83	
Masse humide final	c 248.05		55.2000	1875.6	5.52	0.403	0.78	
			70.0000	1872.7	6.90	0.374	0.72	
Tare	181.49		82.8000	1870.6	8.28	0.352	0.68	
Tare+sol sec	320.16		96.6000	1867.4	9.66	0.320	0.62	
			110.4000	1843.8	11.04	0.080	0.15	
Indice des vides	1.08							
TEV initiale	0.50							
Saturation initiale	96.91							
TEV finale	0.0797							
Saturation finale	15.36							

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

Échantill	U-1	Résidus	SULF	Date mont	age	9 novem		
				kPa	Montage	m.cau	TEV	Saturation
Dr		2.934		0.0000	1847.2	0.10	0.687	1.43
Volume anno	cau	98.99		1.3800	1786.7	1.38	0.076	0.16
Anneau+pla	Ique	102.07		27.6000	1782.2	2.76	0.031	0.06
Masse humid	le initial	297.55		41.4000	1781.3	4.14	0.022	0.04
Massc humid	le finale	254.50		55.2000	1780.9	5.52	0,017	0.04
				70.0000	1780.8	6,90	0.016	0.03
Tarc		127.80		82.8000	1780.7	8.28	0.015	0.03
Tare+sol sec	;	279.10]	110.4000	1780.5	11.04	0.013	0.03
				179,4000	1780.3	20.7	0.011	0.02
Indice des vie	des	0,92						
TEV initiale		0,45						
Saturation in	itialc	93,16					-	
TEV finale		0.0114]					
Saturation fin	nale	2.38]					
				Contraction of the second s				

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

Échantill U-3	Résidus: SUI	LF	Date mont	age	9 novcml		
			kPa	Montage	m.cau	TEV	Saturation
Dr	2.934		0.0000	1850.1	0.10	0.406	0.95
Volume anneau	98.97		1.3800	1815.3	1.38	0.055	0.13
Anneau+plaque	97.50		27.6000	1812.8	2.76	0.029	0.07
Masse humide initial	303.31		41.4000	1811.8	4.14	0.019	0.04
Masse humide finale	264.70		55.2000	1811.5	5.52	0.016	0.04
			70.0000	1811.5	6.90	0.016	0.04
Tare	127.20		82.8000	1811.3	8.28	0.014	0.03
Tarc+sol sec	293.20		110.4000	1811.3	11.04	0.014	0.03
			179.4000	1811.1	20.7	0.012	0.03
Indice des vides	0.75						
TEV initiale	0.40						
Saturation initiale	93.91						
TEV finale	0.0121						
Saturation finale	2.83			2			

Laboratoire d'Hydrogéologie

École Polytechnique de Montréal

				I	,		
						•	
Date: 22-11-95		_ Colonne No 1	· · · · ·	٦.			
Prov. Echant.:	RESIDU S	ULFUREUX ·					
				DATE	HRE		%oxy
Essai No. : S-1		Denité des grains	2.934	NOV 95		nb/min	
	-						
Tare No114	126.90	Tare No114	127.00				
Tare + sol hum.	326.00	Tare + sol hum.	598.80	27	8.24	0	0
sol humide	199.10	sol humide	471.80			3.5	20.8
Tare + sol sec	300.00	Tare + sol sec	547.90			4	20.7
sol sec	173.10	sol sec (ws)	420.90			5	20.3
eau dans le sol	26.00	eau dans le sol	50.90			6	19.8
						9	18.7
Wi = %	15.02	W1 = %	12.09			15	16.5
	•					25	14.5
Pds colonne vide	2124.80	·				45	13.1
Pds colonne + sol hum.	2607.70	température °C	22.5			75	12.7
Pds colonne + sol sec	2544.64			· · · ·		130	12.3
Pds sol hum.	482.90]				280	11.7
Pds sol sec	419.84		·	;;		360	11.4
· · · · · · · · · · · · · · · · · · ·		indice des vides:	0.892			500	11.2
Hauteur totale colonne	15.374					1800	11.2
Hauteur bas	4.498	porosité:	0.471]		
Hauteur restante	10.876						
Hauteur de la plaque	0.640					(
Hauteur après compact.	5.120						
Hauteur sol humide	5,116				j	Í	1 ²
		Saturation:	49.23		Ì		
Staar	0.045			 			
Diam. de la colonne	50.004	n, air	_		l	/L	
Surface de la colonne	53.004		1	ار ا	[l	
latuma da anti Jam AAL	071 100	De (~~/A)	6,1×10-1			,	
	2/1.180						
1000000000000000000000000000000000000	238 411				j		
rolume les. Das (CIII 3)	200.411						ا <u></u>
Rho hum.: ar/cm3	1.781		├──		¦		
Rho sec: or/cm3	1.548			<u> </u>	l		
Rho eau: gr/cm3 (20%)	0,99823			<u> </u>		<u> </u>	 {
				<u> </u>	ľ		
			·	<u> </u>	(

0

•

.

•

APPENDIX D

GEOTECHNICAL DATA OF BORROW PIT #1 SILT

(École Polytechnique and URSTM)

-- • • • • • • • •

.

ECOLE POLYTECHNIQUE, Dépt. de Génie Minéral DENSITE RELATIVE DES GRAINS GOLDER LOCALISATION TROU NO..... LTA - Silt PROFONDEUR..... SECTION FICHIER: GOLDER\LTA\DD\SERIE1 DATE: 96-10-07 PYCNOMETRE NO 1 3 4 PDS PYCNOMETRE + EAU + SOL GRS (M3T2) 735.80 741.80 725.30 733.28 TEMPERATURE D'ESSAI 23.2 23.2 23.2 PDS PYCNOMETRE +EAU GRS (M2T2) 675.68 682,63 665.03 677.67 TARE NO 1 3 4 ____ 110 00

PDS DE LA TARE + SOL SEC GRS. (MS)	299.92	305.49	305.72	259.36
PDS DE LA TARE	205.93	212.63	210.85	171.48
PDS DU SOL SEC GRS	93.99	92.86	94.87	87.88
MASSE VOLUMIQUE DE L'EAU D'ESSAI (PWT2)	0.99750	0.99750	0.9975	0.99748
MASSE VOLUMIQUE DE L'EAU @ 20 °C	0.99823	0.99823	0.99823	0.99823
DENSITE RELATIVE (DR)	2.775	2.756	2.742	2.723
DENSITE RELATIVE CORRIGE	2.773	2.754	2.740	2.721
MOYENNE:			2.747	

7

23.3

Limite de liquidité

į

ł

Golder ass	•						
Provenance	e:	LTA ~ S	silt			Limite de	Plasticité
Tare	26	21	6			13	28
Wt+t	60.46	68.69	67.46			22.48	27.70
Ws+t	54.98	61.77	60.80			19.89	24.34
Ww	5.48	6.92	6.66			2.59	3.36
tare	32.03	31.35	31.13			6.31	6.32
Ws	22.95	30.42	29.67			13.58	18.02
W%	23.88	22.75	22.45			19.07	18.65
						LL.	23.0
					ĺ	LP	18.9
Nb. Choc	17	27	34			lp	4.1
				-			

_

.

TEST PERMEABILITE PERMEAMETRE A CHARGE VARIABLE

	Date de m	ontage		96-10-07			SANS CONCELATION	
	Nom de l'e	chantillon:		LTA ~ 3	silt	_	ETAPE 1	
	Nom du fi	chie r.		GOLDER \LTA	CONGEL\SE	ERIEI		
Géomètri	ie		moule # 7			Masses	g	
épaisseur i	initiale cr	n	10.760	16.506	masse ini	Liale humide		1081.2
diamét re	cr	n	8.255	5.016	016 masse finale humide			
surface (cr	n^2)		53.521		masse fina	ale seche		960.9
Volume (ci	m^3)		575.87		Cs			2.780
	Conditior	ns de l'ess	ai					
	Degré de s	aturation			mas. vol.	hum. (g/cm3)	1.877	
		Par séchag	e (%) init	52.3	mas. vol.	sec. (g/cm3)	1.669	
	1.5	Par séchag	e (%) fin.	91.3	Opl. Proct	cor (g/cm3)	1.942	
	Teneur en	eau initiale	3	12.5	Leneur eas	13.2		
	Teneur en	eau finale		21.9	% opt. Pro	octor	85.9	
	Calibratio	n						
o/s lêle	128.20	burette ut	ilisée	large	0	section bure	elte	0.294
o/s base	/s base 23.30 med 0				1	température	5	22.8
		Compar	wan wi d'ann			Résultat d	e l'essai	
		entr	ce vs surtie					
					-			
0.9						charge varia	ble	
8.0		i i			- e			
0.7								
<u></u>				·	-	Indice des v	ides:	0.666
÷0.5				<u>P</u>				
						Perméabilité	e (cm/s)	1.05E-06
0.3-							écart type	1.31E-08
0.2					+		ind. reg.	0.998
0.1-						COMMENTAI	RES	
0.								
0	200 4	00 800	800 1000 Temps s	1200 1	400 1600			
		1	64 m 14 1 1 14	1				
			now 🖵 ngane tarba			┙		

96-10-1	0	LTA		ETAPE 1			page 2	
	Lectures							<u></u>
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	К20
Min	tête	base	entrée	Sortie	cm	s	cm/s	cm/s
0.00	0.00	0.00	0.00	0	104.9	0.00	-	-
1.71	-0.25	0.25	0.07	0.07	104.4	102.60	1.38E-06	1.29E-06
3.47	-0.50	0.48	0.15	0.14	103.9	208.20	1.28E-06	1.19E-06
5.30	-0.75	0.75	0.22	0.22	103.4	318.00	1.36E-06	1.28E-06
7.15	-1.00	0.93	0.29	0.27	103.0	429.00	1.10E-06	1.03E-06
9.07	-1.25	1.15	0.37	0.34	102.5	544.20	1.19E-06	1.11E-06
10.92	-1.50	1.35	0.44	0.40	102.0	655.20	1.17E-06	1.10E-06
12.93	-1.75	1.60	0.51	0.47	101.5	775,80	1.20E-06	1.13E-06
14.99	-2.00	1.85	0.59	0.54	101.0	899.40	1.18E-06	1.10E-06
17.04	-2.25	2.08	0.66	0.61	100.6	1022.40	1.13E-06	1.06E-06
19.08	-2.50	2.30	0.74	0,68	100.1	1144.80	1.14E-06	1.07E-06
21.28	2.75	2.55	0.81	0.75	99.6	1276.80	1.12E-06	1.05E-06
23.49	-3.00	2.78	0.88	0.82	99.1	1409.40	1.07E-06	9.98E-07
25.78	-3.25	3.00	0.96	0.88	98.7	1546.80	1.03E-06	9.67E-07
37,93	-4.50	4.20	1.32	1.24	96.2	2275.80	1.02E-06	9.55E-07

the second se

0

J

0

]

TEST PERMEABILITE PERMEAMETRE A CHARGE VARIABLE

<u>.</u> .

	Date de m	onlage		96-10-07			SANS CONG	ELATION
	Nom de l'a	chantillon:		LTA ~	silt		ETAPE 1	
	Nom du fi	chier .		GOLDERVLTA	\CONGEL\SE	RIE1		
				•				
Gèomèt.	rie		moule # 2			Masses	g	
épaisseur	· initiale cr	n	12,466	17.378	masse init	iale humide		1084.7
diametre	cr	n	8.255	4.182	masse fina	ale humide		1174.0
surface (cm^2)		53,521		masse fina	ale sèche		966.4
Yolume ((cm^3)		667.19		Cs			2.780
	Condition	ns de l'ess	ai					
	Degré de s	nturation			mas vol.	hum. (g/cm3)	1.626	
		Par séchag	e (%) init	37.0	mas. vol. s	sec. (g/cm3)	1.448]
		Par séchag	e (%) fin.	65.0	Opt_ Proct	or (g/cm3)	1.942	
	Teneur en	cau initial	2	12.2	tencur eau	1 opt. (%)	13.2	
	Teneur en	eau finale		21.5	% opt. Pro	ctor	74.6]
	Calibratio	n						
o/s lêlu	128.50	burette ut	ilisée	large	0	section bure	ette	0.294
o/s base	24.80	med	0	petite	1	températur	3	23.5
		Compar	uent la autor] Résultat d	e l'essai	
12-		enti	nie vs sortic					
								** * * * * *
1+					0	charge varia	able	
0.B								
0,46			ū			Indice des v	ides	0.919
- a.o Č			E					
3						Perméabilite	ė (cm/s)	7.63E-07
0.4		11					écart type	8.78E-09
0.2							ind. reg.	0.998
	H					COMMENTAI	RES	
- o	•							
0	500	1000	Temps s	2000 2366	3000			
		M schame e	nimle 🔾 unhame sortie)			<u> </u>	
				_				

96-10-1	0	LTA		ETAPE 1		page 2				
	Lectures									
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20		
Min	tête	base	entrée	Sortie	cm	S	cm/s	cm/s		
0.00	0.00	-9.50	0.00	0	113.2	0.00	-	-		
3.15	-0.25	-9.20	0.07	0.09	112.7	189.00	8.83E-07	8,11E-07		
5.20	-0.50	-9.03	0.15	0.14	112.2	312.00	1.05E-06	9.67E-07		
7.97	-0,75	-8.78	0.22	0.21	111.7	478.20	9,20E-07	8.46E-07		
11.32	-1.05	-8.48	0.31	0.30	111.1	679.20	9.18E-07	8.43E-07		
13.66	-1.25	-8.28	0.37	0.36	110.7	819.60	8.80E-07	8.08E-07		
17.61	-1.60	-7.95	0.47	0.46	110.1	1056.60	8.84E-07	8.12E-07		
19.90	-1.80	-7.75	0,53	0.51	109.7	1194.00	9.08E-07	8.34E-07		
22.31	-2.00	-7,58	0.59	0.57	109.3	1338.60	8.12E-07	7.46E-07		
28.42	-2.50	-7.10	0.74	0.71	108.3	1705.20	8.37E-07	7.69E-07		
31.78	-2,75	-6.88	0.81	0.77	107.8	1906.80	7.47E-07	6.86E-07		
35,10	-3.00	-6.63	0.88	0.85	107.3	2106.00	7,99E-07	7.34E-07		
41,63	-3.50	- 6.15	1.03	0.99	106.4	2497.80	7.98E-07	7.33E-07		
45.13	-3.75	-5.95	1.10	1.04	105.9	2707.80	6.92E-07	6.35E-07		
48.69	-4.00	-5.70	1.18	1.12	105.4	2921.40	7.59E-07	6.97E-07		

.

TEST PERMEABILITE ESSAI TRIAXIAL Ecole Polytechnique de Montréal, Dépt, de Génie Minéral

	Ecole i olyrechnique de monitedi, ocpri de denie minista								
	Date de m	ontage		1996-10-0	8		Cellule No.	6	
	Nom de l'é	chantillon:		LTA - Si	15		Burette No.	1	
	Nom du fi	chier:		GOLDERALTAY	GOLDER/LTA/TX/série1				
				ASTM: D-5	6084-90		-		
Géométrie					Masses (g)				
épaisseur i	initiale (cm	.)	5.910		masse initi	iale humide (g))	462.6	
diamètre	(cm	.)	7.165		masse fina	le humide (g)		499.8	
surface	(cm	(^2)	40.32		masse fina	le sèche (g)		413.7	
Volume	(cm	~3)	238.29		Gs			2.747	
								_	
	Conditions de l'essai								
	Degré de saturation final			ay	imas. vol. ł	num. g/cm3	1.941]	
		Capt. pression (%) 95.6			mas. vol. sec. g/cm3 1.736]	
		Par sèchag	e (%)	98.2	Opt. Procto	or g/cm3	1.942		
	Teneur en	cau initiale	e (%)	11.8	leneur eau	opt (%)	13.2		
	Teneur en	cau finale	(%)	20.8	% opt Pro	ctor	89.4]	
	Calibratic	n							
o/s tête	22.30	burette ut	ilisée	large	0	section burei	ite	0.325	
o/s base	20.90	med	ĺ	petite	0	température		22.2	
			_						
		Comprimi	son débit d'eau			Résultat de	e l'essai		
14			ie is sin lie		<u> </u>				

-

-

... . .

Pression (psi)	-
cellule:	50
in\out:	45
Indice des vides	0.582
Cond. hydraul. cm/s. écart type	2.91E-06 5.09E-09
ind. reg.	1.000
ind. reg.	1.000

FICHIER:		GOLDER	\LTA\TX\séi	rie1	PAGE 2				
DATE:	96-10-16		Cellule No.	. 6		LTA			
	Lectures								
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20	
Min	tête	base	entrée	Sortie	cm	s	cm/s	cm/s	
0,00	164.0	7,3	0	0	158.1	0.00	-	~	
2.75	162.5	9,0	0.49	0.55	154.9	165.00	2.95E-06	2.81E-06	
6.75	160.0	11.5	1,30	1.37	149.9	405.00	3.26E-06	3.10E-06	
11.00	157.8	13.7	2.01	2.08	145.5	660.00	2,78E-06	2.65E-06	
14.99	155.4	16.0	2.79	2.83	140.8	899.40	3.27E-06	3.11E-06	
21.75	152.0	19.3	3.90	3.90	134.1	1305.00	2.86E-06	2.72E-06	
25.33	150.0	21.2	4.55	4.52	130.2	1519.80	3.27E-06	3.11E-06	
28.83	148.2	23.0	5.14	5.10	126.6	1729.80	3.18E-06	3.02E-06	
31.06	147.0	24.1	5,53	5.46	124.3	1863.60	3.26E-06	3.10E-06	
42.26	141.8	29.0	7.21	7.05	114.2	2535.60	3.00E-06	2.86E-06	
50.54	138.1	32.6	8.42	8.22	106.9	3032.40	3.17E-06	3.01E-06	
56.95	135.5	35.2	9.26	9.07	101.7	3417.00	3.09E-06	2.94E-06	
60.76	134.0	36,5	9.75	9.49	98.9	3645.60	2.91E-06	2.77E-06	
92.80	123.4	47.5	13.20	13.07	77.3	5568.00	3.05E-06	2.90E-06	
126.10	114.8	56.2	15.99	15.89	60.0	7566.00	3.02E-06	2.87E-06	

Ecole Polytechnique de Montréal, Dépt. de Génie Minéral

100

U

		Ec	cole P	olyt	echniq	ue de Mon	tréal, Dépt.	de Génie	Minéral	_	
		Date	de m	onta	lge		1996-10-08			Cellule No. 5)
		Nom	de l'é	ichai	ntillon:		LTA - SI	LŦ		Burette No.	1
		Nom	du fi	chie	r.		GOLDER\LT	\\TX\serie1			
							ASTM: D-	5084-90			
Géon	nétri	e			_				Masses (g)		
épaiss	seur initiale (cm.) 6.158			6.158]	masse in	itiale humide (g	g)	452.6		
diamė	etre	-	(cm	.)		7.165		masse fi	nale humide (g)		498.9
surfac	e		(cm	(^2)		40.32		masse fi	nale sèche (<u>g)</u>		405.1
Volum	ne		(cm´	<u>~3)</u>		248.29]	<u> </u>			2.747
).
		Cond	litior	ns d	e l'ess	ai					
		Degre	è de s	atur	ation f	ínal		mas. vol	. hum. g/cm3	1.823	
				Cap	t. press	sion (%)	91.2	mas vol	. sec. g/cm3	1.632	
				Par	séchag	e (%)	93.0	Opt. Proc	ctor g/cm3	1.942	
		Tene	ur en	eau	initial	e (%)	11.7	teneur e	au opt. (%)	13.2	
		Tene	ur en	eau	finale	(%)	23.2	2 % opt. Proctor		84.0	J
					<u></u>						
		Calil	oratio	n							
o/s	lêle	21	.80	bur	ette ut	ilisèe	large	0	section bure	ette	0.325
o/s l	base	17	.90	1	med	1	pelite	0	température	2	22.9
								_			
					ເພາກການ ເບັນເມີຍ	ison débit d'eau i ie va sortie			Resultat d	e Tessai	
, ,-										· · · · · · · · · · · · · · · · · · ·	
6-								i	Pression (ps	1)	50
										cenule:	50
-ه						o	<u> </u>				
() () ()									Indian dog u	idan	0.684
<u>ן</u> פ					9	-			indice des v		0.004
- and International					5				Cand budm	ul am/a	1 465-06
2-	 			â						deart type	3.61E-09
			2							ind reg	1 000
۰.		8	<u>× </u>		i —					mu. reg.	1,000
	ļ §		<u> </u>		· · ·		· · · · ·				
	٥	10	909	20	000	0000 Temps (2)	4000 600) 60 00			
				Г	a uture a	ubria 🗋 udume aartie	- -				
				Ļ	و المحديد ال			_			

TEST PERMEABILITE ESSAI TRIAXIAL

· · · · · · · · ·

FICHIER:		GOLDER\I	_TA\TX\série	et	PAGE 2				
DATE:	96-10-16		Cellule No.	5		LTA			
	Lectures								
Temps	hauteur	hauleur	Volume	Volume	charge	diff	K	K20	
Min	têle	base	entrée	Sortie	cm	5	cm/s	cm/s	
0.00	161.0	4,0	0	0	160.9	0.00	-	-	
7.05	159.0	6.4	0.65	0.78	156.5	423.00	1.63E-06	1.52E-06	
12.24	157.3	7.8	1.20	1.24	153.4	734.40	1.59E-06	1.49E-06	
16.92	156.0	9.2	1.63	1.69	150.7	1015.20	1.57E-06	1.47E-06	
23.67	154.2	11.2	2.21	2.34	146.9	1420.20	1.57E-06	1.46E-06	
31.13	152.2	13.1	2.86	2.96	143.0	1867.80	1.49E-06	1.39E-06	
38.01	150.4	15.2	3.44	3.64	139.1	2280.60	1.66E-06	1.55E-06	
43.94	148.8	16.5	3.96	4.06	136.2	2636.40	1.47E-06	1.37E-06	
51.84	146.7	18.7	4.65	4.78	131.9	3110.40	1.68E-06	1.57E-06	
59.60	144.8	20.5	5,26	5.36	128.2	3576.00	1.52E-06	1.42E-06	
67.38	143.0	22.3	5.85	5.95	124.6	4042.80	1.51E-06	1.41E-06	
73.64	141.5	23.7	6.34	6.40	121.7	4418.40	1.56E-06	1.45E-06	
84.92	139.0	26.5	7.15	7.31	116.4	5095.20	1.63E-06	1.52E-06	
	·					_			
			_						

Ecole Polytechnique de Montréal, Dépt. de Génie Minéral

Échantillon:	Échantillon: LTA - Sr 1 Date: 16 octobre 1996						
Numero de moule:	P-6	6 HP	Projet:	Golder			
	No Control Station		Sagar Charles Ma		in the state	NG2X - 11 21	10 No.
Dr	2.747	Psi	<u>kPa</u>	Montage	m. cau	TEV	Sr
Vol. anneau	104.65	0	0,00	3151.9	0.10	0,367	0.9988
Anncau + plaque	100.67	2	13.79	3151.5	1.41	0.363	0.99
Mh initial	320.90	4	27.58	3149.2	2.81	0.341	0.93
Mh final	283.68	: 6	41.37	3148.1	4.22	0.331	0.90
		8	55.16	31 46.1	5.63	0.312	0.85
Tare	126.55	10	68.95	3142.7	7.03	0.279	0.76
Tare + sol see	308.33	12	82,74	3139.7	8.44	0.251	0.68
e State Grand Line - e	میں ایک	14	96.53	3133.8	9.84	0.194	0.53
Indice des vides	0.58	16	110.32	3129.3	11.25	0,151	0.41
TEV initiale	0.37	20	137.90	3126.0	14.06	0.120	0.33
Sr initiale	99.93	25	172.38	3122.0	17.58	0.082	0.22
TEV finald	0.012	30	206.85	3118.4	21.10	0.047	0.13
Sr finalc	3.20	<u>36</u>	248.22	3116.9	25.31	0.033	0.09
	and the second	: 42	289.59	3115.4	29.53	0.018	0.05
NOTES:		50	344.75	3114.7	35.16	0.012	0.03
		70	482.65	3114.7	49.22	0.012	0.03
		ž					
						-	
						and the second	903 X 49
	Essai	de ré	tention ca	millaire			
	Pressio	n nocit	ive (ASTM	D-3152)			
10.**	1103310	n bosu		D-3132)			
						 	I
0,9							1
0.8	╾┼╁┟┼╬┼		╺┼╍┼╌╲╬┼┤	-			
0.7						Π	
		┝──┝╸				<u>++</u>	
				¥		H	
0.5	━╁╌┼╌╎┼╎╎			<u>T</u>		Η	
0.4				× –			
	═┧╌┼┼┼╎┼╌╌╋╌╾╸						
		\square			┝╺┠╶┠╴┠╴┠	-+-	
0.2						Ш	j
0.1			╾╞╌┠═┠┨╂┦			$\left[+ \right]$	
	1			10		100	
	Pres	sion d	Peau (m)				
		51011 U	au (111)				
	• T	value - 4		aturation I			
		volumet	nque X 5	aturauun			

.

U

ESSAI DE RÉTENTION CAPILLAIRE Pression positive (ASTM D-3152)

· .,

<u>ن</u>

		·						
Echantillon:	LTA			Date:	28 janvie	er 1997		
Numero de mou	e:	P-1 ⁻		Projet:	Golder			
Company of the second		a series	13.08		4.0		6	
							2 . C. S. C. S. (2)	
Dr	2,747		Psi	kPa	Montage	m. eau	TEV	Sr
Vol. anneau	97.12		0	0.00	1928.2	0.10	0.351	0.976
Anneau + plaque	100.00		2	13,79	1926.5	1.41	0.333	0.93
Mh initial	305.01		4	27.58	1925.4	2.81	0.322	0.90
Mh final Contract State	289.01		6	41.37	1924.6	4.22	0.314	0.87
1 9 3 1 2 MARINE STATE		SEM ALT IN	· 8	55.16	1924.4	5.63	0.311	0.87
Tare	315,58	All and a second second	12	82.74	1923.9	8.44	0.306	0.85
Tare + sol sec	486.54	1.1.2.3.3.8.	16	110.32	1922.0	11.25	0.287	0.80
		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	20	137.90	1919.8	14.06	0.264	0.74
Indice des vides	.0.56	10.5746-754	24	165.48	1916.6	16.88	0.231	0.64
TEV initiale	.0.35		30	206.85	1914.8	21.10	0.213	0.59
Sr initiale	97.62		36	248.22	1913.9	25.31	0.203	0.57
TEV finale	0.186		42	289.59	1913.0	29.53	0.194	0.54
Sr finale	· 51.75		50	344.75	1912.2	35.16	0.186	0.52
1.0	F	Essai de ré ression positiv	tenti e (AS	on capil	laire 2)		Ŧ	
	┝╴┟╴╎╴┝╶╎╄		*	*			-11	
0.8	┢╼╊╼╉┊╏╎╎╴			╺┼┼┼╎┞╳			ti	
0.7			+ -				\mathbb{R}^{-1}	
0.6				╺╋╍╊╛┠╋╎			1	
0.5	┝╼╋╸┼╶┼╶┝╺		╶┼╃	╺┥┝┥┥		╺┝╌┝╶┝		
0.4	┝╸┠╶┼┥┿┥			╶┼╎┦╎┦╸		╶┼╌┼╌┞┤	Ť	
0.3				<u>╺</u> ┽┊┊╎╿╿╴ <u>┩╶┥╺</u> ┥┍╸			甘	
0,2	╎╌┼╌┝┥┥┤							
	┠╼┞╶<u>┟</u>┊╎╞			╾┼┼┼┼┼╍╸			Ш	1
						┊┥┥┥	+{	
0.0	┢╼╺╉╾╎╶┢╶╡╏┧	<u> </u>	+	╶╻╻╻	 *	· ↓ · ↓ · ↓ · ↓ ·	++	
0.1	1.	Pression o	i'eau	. 10.0 I (m)		·	100.0	
	Ten	eur en eau volumét	ique -	-X- Saturatio	20			

л А

RAPPORT FINAL

Essais de laboratoire sur des matériaux provenant d'un banc d'emprunt près du site minier LTA

Pour :

Golder et Associés ltée

M. Jean-François Ricard, ing., M.Sc.A.

Par :

Bruno Bussière, ing., M.Sc.A.

URSTIN

Unité de recherche et de service en technologie minérale 445: boul: de l'Université, Rouyn-Noranda (Québec) J9X-5E4 Téléphone : (819) 762-0971 Télécopieur : (819) 797-4727

ф

ð

LE 18 MARS 1997

TABLE DES MATIÈRES

1. MANDAT ET PORTÉE DE L'ÉTUDE	
2. NATURE DES TRAVAUXl	
3. Teneurs en eau naturelles, Analyses granulométriques et densité relative1	
4. LIMITES DE CONSISTANCE	•
5. DÉTERMINATION DES COURBES CARACTÉRISTIQUES DE SUCCION	•
7. CONCLUSION	i
Références4	ŀ
ANNEXE	;

1. MANDAT ET PORTÉE DE L'ÉTUDE

Le mandat consiste à réaliser des essais géotechniques sur des matériaux d'origine naturelle utilisés lors de la construction d'une couverture multicouche sur le site LTA. Les essais à réaliser ont été déterminés lors d'une rencontre entre M. Jean-François Ricard de Golder et Associés ltée et l'auteur de ce document, à l'automne 96. Les résultats obtenus et présentés dans ce rapport sont valables pour les échantillons de matériaux amenés à l'UQAT par Golder et Associés ltée.

2. NATURE DES TRAVAUX

Les travaux réalisés dans ce projet sont les suivants :

- 1. détermination des teneurs en eau naturelles (5) et sélection de deux échantillons ;
- réalisation d'analyses granulométriques et d'essais de densité relative sur les échantillons LTA-2 et LTA-4 provenant des bancs d'emprunts situés près du site minier LTA ;
- 3. détermination des limites de consistance des deux échantillons sélectionnés ;
- 4. réalisation d'essais de succion (2) sur les matériaux sélectionnés.
- 5. rédaction du rapport.

3. TENEURS EN EAU NATURELLES, ANALYSES GRANULOMÉTRIQUES ET DENSITÉ RELATIVE

Dans un premier temps, des teneurs en eau ont été réalisées sur les échantillons amenés par Golder et Associés ltée, soit les échantillons LTA-1, LTA-2, LTA-3, LTA-4 et LTA-5. À partir des teneurs en eau et des caractéristiques visuelles des matériaux, la sélection des échantillons LTA-2 et LTA-4 a été faite conjointement par l'URSTM et Golder et Associés ltée. Des analyses granulométriques ont été réalisées par la suite sur les deux échantillons sélectionnés. La méthodologie utilisée pour l'analyse granulométrique est celle proposée par la norme ASTM D422, soit du tamisage pour la fraction du sol dont le diamètre des grains est supérieur à 74 μ m et par l'utilisation de la sédimentométrie pour la fraction plus petite que 74 μ m. Pour réaliser des essais de sédimentométrie, on doit connaître la densité relative des grains solides D_r du matériau. Dans ce projet, deux essais pour la détermination de D_r ont été réalisés selon les standards établis dans la norme NQ 2501-070. Les principaux résultats obtenus en terme de granulométrie, de

URSTM

densité relative et des teneurs en eau naturelles sont présentés au tableau 1. On présente également la courbe granulométrique complète des deux matériaux en annexe.

Tableau 1 :	Principaux résultats des essais de teneurs en eau naturelles, de densité
	relative et des analyses granulométriques.

	LTA-1	LTA-2	LTA-3	LTA-4	LTA-5
D _r		2,72		2,72	
% passant au tamis #200		100		100	
Teneur en eau naturelle	36,4	23,86	34,93	35,89	38,83

4. LIMITES DE CONSISTANCE

Les limites de consistance ont été déterminées au laboratoire sur les matériaux LTA-2 et LTA-4 à l'aide de l'appareil de Casagrande. La norme suivie pour la réalisation de cet essai est ASTM D4318. Les résultats obtenus sont présentés au tableau 2. Les résultats détaillés de l'essai sont présentés en annexe.

Tableau 2 : Principaux résultats des limites de consistance

Échantillon	WL	WP	I _P
LTA-2	. 21,90	17,96	3,94
LTA-4	30,45	20,33	10,12

5. DÉTERMINATION DES COURBES CARACTÉRISTIQUES DE SUCCION

La procédure d'essai utilisée pour l'obtention des courbes caractéristiques de succion est définie par la norme ASTM D3152. L'échantillon de sol est placé sur une plaque céramique poreuse (qui retient l'eau jusqu'à une pression de 5 bars) dans une cellule pressurisée (appelée communément Tempe Cell) où l'échantillon est soumis à une pression d'air positive tandis que l'eau de sortie subit une pression équivalente à la pression atmosphérique. La pression dans la cellule devient en équilibre avec le sol qui se draine jusqu'à équilibre. En procédant par pallier de pression et en mesurant chaque fois la quantité d'eau évacuée, on peut déterminer la courbe caractéristique de

ԱԱշև

succion qui consiste en un graphique de la teneur en eau (ou la saturation) versus la pression appliquée. Dans ce projet, la valeur du AEV (Air Entry Value) est évaluée en utilisant la méthode des deux droites proposée par Fredlund et Xing (1994).

Deux essais de succion ont été réalisés dans cette étude, soit un essai sur le matériau LTA-2 et un essai sur la matériau LTA-4. Les résultats obtenus sont résumés au tableau 3, tandis que les résultats détaillés sont présentés en annexe.

Tableau 3 : Principaux résultats des essais de succion

	LTA-2	LTA-4
AEV (m d'eau)	13,5	>45
Indice des vides	0,70	0,80

6. CONCLUSION

En ce qui concerne les matériaux LTA-2 et LTA-4 provenant d'un banc d'emprunt situé près du parc à résidus miniers LTA, les analyses granulométriques ont montré que l'on est en présence de matériaux fins ayant 100 % passant au tamis 200 et un pourcentage élevé de particules < 2µm (environ 25 % pour LTA-2 et environ 50 % pour LTA-4). Les limites de consistance effectuées sur ces matériaux ont donné des résultats différents, avec une limite de liquidité et un indice de plasticité plus élevés pour l'échantillon LTA-4. En ce qui concerne les caractéristiques de rétention d'eau, la pression à l'entrée d'air (AEV) de l'échantillon LTA-2 a été mesurée à environ 13,5 m d'eau. La courbe mesurée a été comparée avec celle prédite par le modèle de Kovacs modifié (Aubertin et al., 1997) et les résultats ont montré une excellente corrélation (voir annexe). Quant aux caractéristiques de rétention d'eau du matériau LTA-4, il a été impossible d'atteindre la pression à l'entrée d'air du matériau avec la TEMPE Cell. En effet, à des pressions inférieures à 45 m d'eau (limite de l'appareil), le matériau ne se draine pas. D'ailleurs, à partir des caractéristiques du matériau LTA-4, le modèle de Kovacs modifié prédit une pression à l'entrée d'air d'environ 100 m d'eau (voir figure en annexe). La seule conclusion que l'on peut tirer de l'essai de succion réalisé sur LTA-4 est que la pression à l'entrée d'air est supérieure à 45 m d'eau.

URSTM

<u>Références</u>

- AUBERTIN, M., RICARD, J.F. et CHAPUIS, R.P. 1996. A predictive model for the water retention curve : application to tailings from hard rock mines. Submitted to the Canadian Geotechnical Journal.
- FREDLUND, D.G. et XING, A. 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31: 521-532.

Δ

-
<u>Annexe</u>

URIT

- ~

- --

DETERMINATION DE LA TENEUR EN EAU NQ 2501-170

Projet:	Golder	Effectuée par:	Darcy Jolette
Date:	96-08-28	Provenance:	Terrain Aurifère

Echantillon:	LTA-1	LTA-2	LTA-3	LTA-4	LTA-5
Pds de la tare:	12.3	12.1	12.0	12.1	12.3
Pds de la tare + sol humide:	231.5	299.7	484.8	235.1	301.2
Pds de la tare + sol sec:	173.0	244.3	362.4	176.2	220.4
Pds du sol sec:	160.7	232.2	350.4	164.1	208.1
Pds de l'eau:	58.5	55.4	122.4	58.9	80.8
Teneur en eau naturelle (W%):	36.40	23.86	34.93	35.89	38.83

Observation:

La date de prélèvement est inconnue.

17 17

Contraction of the

Week-

and the second

DENSITE RELATIVE DES GRAINS

LOCALISATION	Terrain Aurifère
DATE	4 sept. 1996
ECHANTILLON	LTA-2

DR	-	1
----	---	---

PYNOMETRE NO	l	2
PDS PYCNOMETRE + EAU + SOL GRS (M3T2)	720,3	724,98
TEMPERATURE D'ESSAI	23,3	23,3
PDS PYCNOMETRE +EAU GRS (M2T2)	681,32	687,18
TARE NO		
PDS DE LA TARE + SOL SEC GRS. (MS)	285,19	281,54
PDS DE LA TARE	223,52	221,88
PDS DU SOL SEC GRS	61,67	59,66

MASSE	VOLUMIQUE	DΞ	L'EAU	ים	ESSAI	(PWT2)	0,99702	0,99699
MASSE	VOLUMIQUE	DE	L'EAU	@	20 C		0,99823	0,99823

DENSITE RELATIVE (DR)	2,718	2,729
DENSITE RELATIVE CORRIGE	2,715	2,725

MOYENNE

2,72

~~ .

DENSITE RELATIVE DES GRAINS

.

LOCALISATION	Terrain Aurifère
DATE	13-03-97
ECHANTILLON	LTA 4

PYNOMETRE NO	1	2
PDS PYCNOMETRE + EAU + SOL GRS (M3T2)	718.98	725.14
TEMPERATURE D'ESSAI	23.8	24.1
PDS PYCNOMETRE +EAU GRS (M2T2)	681.26	687.10
TARE NO	1	2
PDS DE LA TARE + SOL SEC GRS. (MS)	283.78	283.56
PDS DE LA TARE	224.16	223.52
PDS DU SOL SEC GRS	59.62	60.04
MASSE VOLUMIQUE DE L'EAU D'ESSAI (PWT2)	0.99702	0.99699
MASSE VOLUMIQUE DE L'EAU @ 20 C	0.99823	0.99823

DENSITE	RELATIVE	(DR)	2.723	2.729
DENSTER	RELATIVE	CORRIGE	2.719	2.726

MOYENNE

2.72

ľ

5

16/01/97

Page 1

URSTM

ESSAI DE RÉTENTION CAPILLAIRE

Nom de l'échantillon:	LTA-2
Numéro du moule:	U1
Date du montage:	18/11/1996

0.18

44.4%

Caractéristiques de l'essai

TEV finale:

Saturation finale:

Dr	2.72
Volume de l'anneau:	98.97
Volume du sol final	94.28
Anneau + plaque:	365.7
Masse humide initiale:	192.58
Masse humide finale:	181.69
Teneur en eau initiale	27.5%
Tare:	86.22
Tare + sol sec	237.27
Masse sec finale	151.05
Indice des vides final:	0.70
Indice des vides initial:	0.78
TEV initiale:	0.42
Saturation initiale:	95.6%

Résultats					
Psi	kPa	m H2O	Montage (g)	TEV	% saturation
0	0.07	0.01	1846.8	0.42	95.6%
2	13.79	1.41	1843.9	0.39	88.6%
4	27.58	2.81	1842.5	0,37	85.2%
6	41.37	4.22	1842,1	0.37	84.3%
8	55.16	5.62	1841.5	0.36	82.8%
10	68.95	7.03	1841.1	0.36	81.8%
12	82.74	8.44	1840.8	0.36	81.1%
14	96.53	9.84	1840.5	0.35	80.4%
16	110.32	11.25	1840.4	0.35	80.1%
18	124.11	12.66	1840.3	0.35	79.9%
20	137.90	14.06	1840.0	0.35	79.2%
22	151.69	15.47	1837.2	0.32	72.4%
24	165.48	16.87	1835.8	0.30	69.0%
26	179.27	18.28	1833.9	0.28	64.4%
30	206.85	21.09	1829	0.23	52.6%
35	241.33	24.61	1827.8	0.22	49.7%
40	275.80	28,12	1826.7	0.21	47.0%
50	344.75	35.15	1825.6	0.19	44.4%

LTASWCCreel.xls

Participation of the second

16/01/1997

SATURATION AU PERMEAMETRE			
GEOMETRIE			
Echantillon:	LTA-2		
Diamètre:	8.258 cm		
Hauteur :	7.20 cm		
Surface:	53.634 cm ²		
Volume :	386.163 cm ³		
Masse initial	755.5 g.		
W%	15%		

MASSE			
Tare (Perméamètre sec)	1524.90 g.		
Tare + sol sec	2133.60 g.		
Sol sec	608.70 g.		
Tare + eau	2219.00 g.		
Tare + eau + sol	2588.60 g.		
Sol humide	755,76 g.		
Eau dans le sol	147.06 g.		

DEGRE DE SATURATION		
Densité des solides	2.72	
Volume des vides	162.376 cm ³	
Degré de saturation	0.906	
Indice des vides	0.73	
Masse volumique hum.	1.957 g/cm ³	
Masse volumique sec.	1.576 g/cm ³	

saturationLta2.xls

10.00

_

ESSAI DE RÉTENTION CAPILLAIRE

Nom de l'échantillon:	LTA-4
Numéro du moule:	U1
Date du montage:	97-02-06

Caractéristiques de l'essai

98.99 98.99
98.99
365.67
186.80
184.15
24.7%
84.97
234.77
149.80

Indice des vides final:	0.80
Indice des vides initial:	0.80
TEV initiale:	0.37
Saturation initiale:	84.3%
TEV finale:	0.36
Saturation finale:	82.2%

•	Résultats					
Psi	kPa	m H2O	Montage (g)	TEV	% saturation	
0	0.07	0.01	1842.3	0.37	84.3%	
5	34.48	3.52	1842.2	0.37	84.0%	
8	55.16	5.62	1842.2	0.37	84.0%	
10	68.95	7.03	1842.3	0.37	84.3%	
13	89.64	9.14	1842.3	0.37	84.3%	
16	110.32	11.25	1842.3	0.37	84.3%	
20	137.90	14.06	1842.3	0.37	84.3%	
25	172.38	17.58	1842.2	0.37	84.0%	
28	193.06	19.69	1842.3	0.37	84.3%	
32	220.64	22.50	1842.1	0.37	83.8%	
36	248.22	25.31	1842.1	0.37	83.8%	
40	275.80	28.12	1842.1	0.37	83.8%	
44	303.38	30.94	1842	0.37	83.6%	
48	330.96	33.75	1841.9	0.37	83.3%	
52	358.54	36.56	1841.8	0.37	83.1%	
56	386.12	39.37	1841.7	0.37	82.9%	
60	413.70	42.18	1841.5	0.37	82.4%	
65	448.18	45.70	1841.4	0.36	82.2%	

LTA4SWCCreel.xls

Í

97-03-17

SATURATION AU PERMEAMETRE			
GEOMETRIE			
Echantillon:	LTA-4		
Diamètre:	8.258 cm		
Hauteur :	8.15 cm		
Surface:	53.634 cm ²		
Volume :	437.115 cm ³		
Masse initial	812.8 g.		
W%	15%		

MASSE		
Tare (Perméamètre sec)	1432.20 g.	
Tare + sol sec	2138.98 g.	
Sol sec	706.78 g.	
Tare + eau	2229.00 g.	
Tare + eau + sol	2670.10 g.	
Sol humide	878.22 g.	
Eau dans le sol	171.43 g.	

DEGRE DE SATURATION		
Densité des solides	2.72	
Volume des vides	177.269 cm ³	
Degré de saturation	0.967	
Indice des vides	0.68	
Masse volumique hum.	2.009 g/cm ³	
Masse volumique sec.	1.617 g/cm ³	

saturationLta4.xls _ _ _.

.

LIMITES DE CONSISTANCE D'ATTERBERG

NQ 2501-090					
PROJET:	Golder	Effectué par:	Darcy Jolette		
Echantillon:	LTA-2	Date de l'essai:	10-01-1997		

	Lin	nites de lic	quidité W _L	-	
Capsule #	1	2	3	4	
W _T + tare (g)	36.70	36.90	33.80	31.70	
W _s + tare (g)	32.30	32.70	30.10	28.50	
W _w (g)	4.40	4.20	3.70	3.20	
Tare(g)	13.50	13.40	13.40	13.50	
W _s (g)	18.80	19.30	16.70	15.00	
W %	23.40	21.76	22.16	21.33	
Nb. de chocs	15	25	27	31	

Limites de pl	asticité WP
5	6
25.00	27,80
23.20	25.70
1.80	2.10
13.50	13.60
9.70	12.10
18.56	17.36

TENEUF Á LA RÉ	EN EAU CEPTION
Capsule #	Х
W _T + tare (g)	299.70
Ws + tare (g)	244.30
W _w (g)	55.40
Tare(g)	12.10
W _s (g)	232.20
W %	23.86

RÉSU	LTATS
W _L %	21.90
W _P %	17.96
I _P %	3.94
W _N %	23.86

OBSERVATION:

L'échantillon a été préparé selon la méthode de l'article 5.1. La réalisation de l'essai a été effectuée par assèchement. L'article 5.1.1 de la norme 2501-90 a été modifié car l'échantillon a été séché préalablement.

Ita-2berg.xls

LIMITES DE CONSISTANCE D'ATTERBERG

	NQ	250	1-090
--	----	-----	-------

PROJET:	Golder	Effectué par:	Darcy Jolette
Échantillon:	LTA-4	Date de l'essai:	13-03-1997

	Lir	nites de lic	quidité W _l	_	
Capsule #	1	2	3		
W _T + tare (g)	31.14	35.64	38.19		
Ws + tare (g)	27.04	30,37	32.48		
W _w (g)	4.10	5.27	5.71		
Tare(g)	13.47	13.42	13.49		
W _s (g)	13.57	16.95	18.99		
W %	30.21	31.09	30.07		
Nb. de chocs	17	24	32		

Limites de pl	lasticité W _P
4	5
27.30	27.37
24.96	25.04
2.34	2.33
13.48	13.55
11.48	11.49
20.38	20.28

TENEUR À LA RÉ	EN EAU
Capsule #	Х
W _τ + tare (g)	235.10
Ws + tare (g)	176.20
W _w (g)	58.90
Tare(g)	12.10
W _s (g)	164.10
W %	35.89

RÉSU	LTATS
W _L %	30.45
W _P %	20.33
Ip %	10,12
W _N %	35.89

OBSERVATION:

L'échantillon a été préparé selon la méthode de l'article 5.1. La réalisation de l'essai a été effectuée par assèchement. L'article 5.1.1 de la norme 2501-90 a été modifié car l'échantillon a été séché préalablement.

View Graphique 47

Page 1

Î

ľ

Ũ

View Graphique 36

Page 1

APPENDIX E

PARTICLE MIGRATION TESTS RESULTS

(École Polytechnique)

.

. .

-

Pds filtre init.		24.7	24.7	date	heure	min.	OTE eau	hare + eau	adu net	OTE ceu	OTE MAN	Diff. entre
Pds filtre linale						total	cc Ajouté			cc Sortie	cc Entree	eeu in/out
				27-11-95	10:30	0	1300	321	0	0	1300	1300
HAUTEUR INIT. SABLE	48.7	Gs	2.819		11:30	60	1000	421	110	110	2300	2190
DIAM. DE LA COLONNE	15.2				12:42	132	1000	1407	986	1096	00000	2204
	1	keneur en eau auxil.			16:30	99C	1000	2424	1017	2113	4300	2187
Pds des couches de sabl	858	[lí àre	121	28-11-95	14:20	2690	000	3642	1218	3331	\$300	1969
	666	Pds sol hum. + tare	631.6		8:00 8	3030	1000	1285	964	4295	6300	2005
	1002	Pds sol sec + lare	615.8	29-11-95	7:30	3030		OUBLIE VALVE F	ERMEE	4295	6300	2005
	1000	Pds lare	123.0		10:00	3030	1000	2083	798	5093	7300	2207
	1004				17:30	3630	1000	3378	1295	6368	8300	1912
	1000	hencur en eau	3.2	30-11-95	7:45	4485	1000	1384	1063	7451	0066	1849
	1005				13:35	4835	1000	2282	1219	8670	00001	1630
	1008			01-12-95	8:00	5940	1000	3358	1078	B74G	00011	1554
	1001			02-12-95	8:20	7400	1000	1355	1034	10780	12300	1520
	540				12:20	7640	1000	2308	953	11733	13300	1567
				03-12-95	8:20	8840	1000	3476	1168	12901	14300	1399
Total du sable humide	9557	Total du seble sec	9138.5		10:40	8980	1000	1 202	831	13782	15300	1518
	۰	teneur en eau init.	4.6	04-12-95	7:30	10230	1000	2292	1090	14872	16300	1428
Hauteur finale	19.5				11,05	10445	1000	3111	819	16951	17300	1609
Hauteur du sable	30.2	Total du sable hum.			18,00	10850	1000	C/E1	1052	16743	18300	1557
Volume	5480.1	linal	10273.0		20.00	10980	1000	2260	907	17650	19300	1650
Pds Unit. hum.	1.744	kencur en eau linale	12.4	05-12-95	7,00	11640	1000	3474	1194	18844	20300	1456
Pds unitaire sec	1.668			06-12-95	8.15	11715	1000	1230	909	05261	21300	1547
Indice dos vides	0.687				14.45	12105	1000	2222	992	20745	22300	1555
Porosité	0.407			07-12-95	9.30	13230	2000	3308	1086	21831	24300	2469
					13.45	13485	2000	2265	1944	23775	26300	2525
				08-12-95	7.30	14550	2000	1602	2070	25845	28300	2455
		teneur en eau auxil.			10.00	14700	2000	4084	1693	27538	30300	2762
Pds des couches de résid	1014	Tare	101		14.10	14830	2000	2412	2091	29629	32300	2671
	968	Pds sol hum. + tare	476.3	11-12-95	8.00	19180	2000	4608	2196	31825	34300	2475
	1D16	Pds sol sec + tare	421.6		14.50	18590	2000	2232	1911	33736	36300	2584
	5	Pds lare	128.0	12-12-95	8.40	20580	2000	4260	2028	35764	38300	2536
		heneur en eau	18.6		14.50	20950	2000	2106	1785	37549	40300	2751
	_			13-12-95	7.20	21940	2000	A273	2167	39716	42300	2584
Total du résidu humide	3527	fotal du résidu sec	2962.1		11.05	22165	2000	2000	1679	41395	44300	2905
		keneur en eau init.	19.1		13.30	22310	2000	3995	1995	43390	46300	2910
Hauteur linale	7.3	fotal du residu hum.		14-12-95	9 .00	23480	2000	2733	2412	45832	48300	2498
Heuteur des residus	12.2	linal	3752.1		11.30	23630	2000	4475	1742	47544	\$0300	2756
Volume	2213.8	teneur en eau linale	26.7		15.05	23845	2000	2315	1994	49538	52300	2762
Pds Unit, hum.	1(593			15-12-95	9.15	24935	4000	4318	1995	53535	56300	2765
Pds unitaire sec	1.338			18-12-95	8.00	29180	4000	4268	3947	57482	60300	2818
Indice des vides	1.103				10.20	29320	4000	3735	3414	\$6803	000179	3-104
Porosité	0.525				14.30	29570	4000	4865	4544	65440	68.300	2860
		-		19-12-95	7.30	30590	4000	4333	4012	69452	00022	2848
					11.35	30635	4000	4321	4000	73452	76.300	2848
	stans * c			20-12-95	8.30	32090	4000	4314	3993	77445	80300	2855
				03-01-96	0 .0	32090	10000			77445	80300	
				04-01-96	8,00	33470		8819	8819	B6264	00006	4036

S PARTICULES COLONNE no. 1

GOLDER & ASS.	ESSAI DE PERCOLATION
COLONNE no. 1	
TENEUR EN EAU	SABLE

13 et 14 CONJOINT INTERFACE

A PARTIR DU FOND

HAUTEUR ESTIME									
TARE no.	P25	P58	20	16	111	122	30	14	13
PDS HUM. + TARE	2548.6	1697.0	1496.8	1139.8	1265.1	958.7	879.2	741.9	884.4
PDS SEC + TARE	2208.5	1474.9	1318.0	1003.4	1161.7	911,6	839.8	712.3	846.6
PDS TARE	162.7	213.5	182.6	104.6	120.8	120.2	94.9	171.1	167.9
PDS SOL SEC	2045.8	1261.4	1135.4	898.8	1040,9	791.4	744.9	541.2	678.7
TENEUR EN EAU (%)	16.6	17.6	15.7	15.2	<u>6</u> .6	6.0	5.3	5.5	5.6
HAUTEUR EN cm.	6.76	10.93	14.68	17,65	21.09	23.71	26,17	27.96	30.20

DIGT DIV

2 Ĩ T

The second second

COLOR ST

÷., .

-

L

. .

	Diff. entre	eeu in/out	1300	2200	2199	2197	2209	2193	2193	2238	2224	2090	2247	2128	1943	2314	2018	5323	2041	2345	2252	2250	2060	1934	1117	1782	2211	1988	2304	2482	2491	2462	2412	2443	2594	2444	2780	2453	2913	2724	2435	2467	3858	2949	2624	2002	3050	5668	3853	3676
	OTË BAU	cc Entrèe	1300	2300	3300	4300	5300	6300	6300	1300	6300	00006	10300	000011	12300	13300	14300	15300	16300	17300	18300	00051	20300	21300	22300	24300	26300	28300	30300	32300	34300	36300	36300	€0300	42300	44300	46300	48300	50300	22300	56300	60300	64300	68300	72300	76300	DOEOS	B4300	94300	94300
	OTE eau	cc Softe	0	õ	1011	2103	1606	4107	4107	5062	6076	7210	805.3	9172	10357	10986	12282	12977	14259	14955	16048	17050	18240	99061	21183	22518	24089	26312	27996	29318	31809	33838	35868	37857	39706	41856	43520	45847	47487	49576	53865	57833	60442	65351	69576	690022	17250	81532	90447	90624
	eau net				1101	1002	838	1016	5	955	1014	134	843	1119	1185	629	1296	695	1282	69ê	1093	1002	1190	1126	1817	1335	1571	2223	1684	1822	1991	2029	2050	1969	1849	2150	1664	2327	1640	2089	4289	3968	2609	4909	4325	3692	3682	4382	6815	177
	tare + eau				1422	2424	3412	1337	UBLIE VALVE FERME	2292	3306	1455	2293	3417	1506	2135	3431	1016	2298	2994	1414	2416	3606	1447	2138	3473	1892	2544	4228	2143	4134	2350	4400	2290	4139	247.1	4135	2548	4283	2410	4610	4289	2930	5230	4646	4013	4203	4703	6864	177
	OTE eeu	cc Aloute	1300	801	8	8	8	1000	Ŷ	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	5000	2000	2000	2000	2000	\$000	2000	2000	2000	2000	2000	2000 2000	2000	2000	2000	4000	4000	4000	4000	4000	4000	4000	4000	1000	-
	, Ċ	lotal	0	3	132	360	2690	3030	3030	3180	3630	4485	4835	5940	7400	7640	8840	8980	10230	10445	10660	10980	11640	11715	12105	13230	13485	14550	14700	14830	19180	19590	20580	20950	21940	22165	22310	23480	23630	23845	24935	29160	29320	29570	30590	30835	30835	32090	32090	33470
	heure		10:30	11:30	12:42	16:30	14:20	8	7,30	10:00	17:30	7:45	13:35	8:00	8:20	12:20	B:20	10:40	7:30	11.05	18.00	20,00	7.00	8.15	14.45	9.30	13.45	06.7	10.00	14.10	8.00	14.50	8.40	14.50	7.20	11.05	13.30	9.00	11.30	15.05	9.15	8.00	10.20	14.30	7.30	11.35	11.35	8.30	9.0	8.0
20. 20.	date		27-11-35				28-11-95		25-11-25			30-11-95		01-12-95	02-12-95		03-12-95		04-12-95		-	-	05-12-95	06-12-95		07-12-95		03-12-95			11-12-95		12-12-95	-	13-12-95			14-12-95			15-12-95	18-12-95		-	19-12-95			20-12-95	03-01-96	04-01-96
COLONNE	26.1			2.819			104	710.7	695,2	124.6		2.7						\$0\$7.0	5.6			9655.2	6.5							103	653.4	569.8	123.9		18.7		3020.9	16.6	ſ	4068.3	34.7							ال <i>ي</i> م ا		_
	26.1			ŝ		teneur en eau	lare	Pds sol hum. + tare	Pds sol sec + tare	Pds tare		teneur en eau						l õiai du sable sec	teneur en eau init.		Total du sable hum.	finat	teneur en eau linale						teneur en eau	TARE	Pds sol hum. + lare	Pds sol sec + lare	Pds tare		teneur en eau		Total du rèsidu sec	teneur en eau init.	Total du residu hum.	finet	teneur en eau linate									
				49.4	15.2		88	1002	1001	1001	1002	666	1003	1002	1004	560	-	9573		19.9	29.5	\$353.0	1.786	1.741	0.616	0.381				1005	1004	1006	508			3523		7.7	12.2	2213.8	1.591	1,340	1.100	0.524						
	eds filtre init.	Pds filtre linale		HAUTEUR INIT. SABLE	DIAM. DE LA COLONNE		PUS UES COUCHES	DE SABLE										TOTAL DU SABLE		Hauteur linate	Hauteur du sable	. Volume	Pds Unit. hum.	Pds unitaire sec	Indice des vides	Parasité				PDS DES COUCHES	DE RESIDU			1		TOTAL DU RESIDU		Hauteur finale	Hauteur des résidus	Volume	Pds Unit. hum.	Pds unitaire sec	Indice des vices	Porosite						

GOLDER ET ASS. ESSAI DE MIGRATION DES PARTICULES

Territor

Manager Street S

Ì

A COLUMN TO A COLUMN

4.

ιj

(~Ĵ

APPENDIX F

PERMEABILITY TESTS RESULTS WITH FREEZE-THAW CYCLES FOR MNR TAILINGS AND SILT

(École Polytechnique)

— ·

-

--- -

--- .

TEST PERMEABILITE PERMEAMETRE A CHARGE VARIABLE

Date de montage		26-02-96		· · · · · ·		
Nom de l'échantillon:		GOLDER M	IIN. RICHESSE	S NATURELLE	ter essai avan	t congélation
Nom du fichier:		GOLDER\PEF	MEA\CONGEL	1110N3		
		1	· · · · · · · · · · · · · · · · · · ·			
Géométrie	(moule #1)			Masses	g	
èpaisseur initiale em	6.989	15.997	masse initia	le humide		809.4
diamètre em	8.440	8,288	masse finale	humide		846.0
surface (cm^2)	55.947		masse finale	sèche		705.2
Volume (cm^3)	391.03	J	Gs			2.819
						1
Conditions de l'ess	ai					
Degré de saturation			mas. vol. ht	ım. (g/cm3)	2.070	
Par sechag	e (%) init.	74.0	mas, vol. sec	e. (g/cm3)	1.803	
Par sechag	ce (%) fin.	100.0	Opt. Proctor	(g/cm3)	1.735	
Teneur en eau initial	e	14.8	teneur eau o	opt. (%)	15.7	
Teneur en eau finale		20.0	% opt. Proct	or	103.9	
Calibration						
o/s tête 89.20 hurdte ut	ilisėe	large	0	section bure	elte	0.294
o/s base 17.80 med	1	petite	0	Itempérature	2	24.5
Compu	raison vol d'eau nie vs sortie			Résultat d	e l'essai	
				charge varia	ble	
(; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	<u> </u>			Indice des v	ides:	0.563
				Perméabilite	é (cm/s) écart type ind. reg. RES	1.33E-06 3.44E-08 0.995
0 200 400 500	800 1000 Tempis S	0 1200				

27-02-19	96	GOLDER	MIN. RICH	ESSES NAT	TURELLES		page 2	
	lectures							
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20
Min	lêlc	base	entrée	Sortie	cm -	5	cm/s	cm/s
0.00	0.0	-9.90	0	0	81.3	0.00	-	-
1.91	-0.5	-9,36	0.15	0.16	80.3	114.60	2.06E-06	1.85E-06
4.03	-1.0	-8.85	0.29	0.31	79.3	241.80	1.94E-06	1.74E-06
6.23	-1.5	-8.35	0.44	0.46	78.3	373.80	1.88E-06	1.68E-06
8.63	-2.0	-7.82	0.59	0.61	77.2	517.80	1.83E-06	1.63E-06
11.33	-2.5	-7.35	0.74	0.75	76.3	679.80	1.73E-06	1.55E-06
13.97	-3.0	-6.78	0.88	0.92	75.2	838.20	1.72E-06	1.53E-06
16.93	-3.5	-6.27	1.03	1.07	74.2	1015.80	1.66E-06	1.48E-06
20.91	-4.1	-5,66	1.21	1.25	73.0	1254.60	1.58E-06	1.42E-06
23.77	-4.5	-5.25	1,32	1.37	72.2	1426.20	1.54E-06	1.38E-06
	l							

• •

-

-

-

-

-

~--

			TEST	PERMEAE	BILITE			
	r	PE	RMEAMETR	E A CHARG	E VARIABI	LE		
	Date de m	ionlage		26-02-96				
	Nom de l'a	échantillon:		GOLDER M	IIN. RICHESS	SES NATURELLE		
	Nom du fi	ichier.	an a	GOLDER\PEF	MEA\CONG!	LATION3		
Géomèle	ie		(moule #1)	1		Masses	σ	
épaisseur	initiale cr	Υı	6.989	15.997	- masse init	iale humide	<u> </u>	809.4
diametre	CI	n	8,440	8.288	masse fina	nle humide		846.0
surface (ci	m^2)	•	55,947		masse fina	ile sèche		705.2
Volume (c	m^3)		391.03		Gs			2.819
				1	<u> </u>			
	Condition	ns de l'ess	ล์				An 1,]:
	Degré de s	aturation			mas vol.	hum. (g/cm3)	2.070	•
		Par séchag	e (%) init.	74.0	mas. vol. :	sec. (g/cm3)	1.803	1
	1	Par sèchag	e (%) fin.	100.0	Opt. Proct.	or (g/cm3)	1.735	
	Teneur en	eau initial	3	14.8	teneur eau	1 opL (%)	15.7	1
	Teneur en	eau finale		20.0	% opt. Pro	clor	103.9]
								-
	Calibratic	on						
o/s lêle	70.40	burette ut	ilisée	large	0	section bure	lle	0.294
o/s base	19.00	med	0	pelite	1	température		23.5
		Comm	nina wi d'em] Résultat d	e l'essai	
1.4		ent.	rée vs sortie					
		Ì						
1.2		<u> </u>				charge varia	ble	
							_	
С 0.0-						Indice des v	ides:	0.563
ue (c								
\$ 0.0 -						Perméabilité	e (cm/s)	3.08E-0

0.4-

0.2-

Terrips

🔳 utvine entré 🖸 utilise arte

5

Résultat de l'essai	
charge variable	
Indice des vides:	0.563
Perméabilité (cm/s) écart type ind. reg.	3.08E-06 1.17E-07 0.990
COMMENTAIRES	

Û

U

18-04-96		GOLDER	MIN. RICH	ESSES NAT	TURELLES		page 2	
	lectures		2ième essa	i de perméa	abilité après 5	; cycles de (congélation	
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20
Min	têle	base	entrée	Sortie	cm	s	cm/s	cm/s
0.00	0.0	-9.80	0	0	61.2	0.00	-	-
1.09	-0.5	-9.28	0.15	0.15	60.2	65.40	4.72E-06	4.34E-06
2.21	-1.0	-8.76	0.29	0.31	59.2	132.60	4.70E-06	4.32E-06
3.42	-1.5	-8.30	0.44	0.44	58.2	205.20	4.50E-06	4.13E-06
4.78	-2.0	-7.80	0.59	0.59	57.2	286.80	4.33E-06	3.98E-06
6.24	-2.5	-7.30	0.74	0.74	56.2	374.40	4.18E-06	3.84E-06
7.90	-3.0	-6.80	0.88	0.88	55.2	474.00	4.00E-06	3.67E-06
9.70	-3.5	-6.30	1.03	1.03	54.2	582.00	3.83E-06	3.52E-06
11.80	-4.1	-5.80	1.21	1.18	53.1	708.00	3.68E-06	3.38E-06
14.18	-4.5	-5.30	1.32	1.32	52.2	850.80	3.43E-06	3.16E-06

·

- · ·

• • •

- -

-

		ÞFF	TEST	PERMEAB		F		
	Date de m	ontage		26-02-96			[
	Nom de l'	ionange Schanfillon:		COLDER M	IN RICHIESS	SPS NATURFUF		
	Nom du fi	chier-		COLDER/PER	MFA\CONCE	ATION3		
			in an ini				1	
Géomóti	ie	999,	(moule #1)	1	<u> </u>	Massos	σ	
ensisseur	initiale cr	n	6 989	15 997	masse init	iale humide	<u>.</u>	809.4
diamétre	er	r)	8 4 4 0	8 288	masse fina	le humide		846.0
surface le		11	55 947	1	mase fina			705.2
Volume (c	(~ m^?)		391.03		Ce			2 819
		in in the	001.00]			e verse istimution	2.013
	Conditior	ns de l'ess	ai					1
	Degrè de s	aturation			mas. vol. 1	num. (g/cm3)	2.070	
		Par sechag	e (%) init.	74.0	rnas. vol. s	sec. (g/cm3)	1.803	
		Par sechag	e (%) fin.	100.0	Opt. Procto	or (g/em3)	1.735	
	Tencur en	eau initial	<u>)</u>	14.8	teneur eau	1 opt (%)	15.7	
	feneur en	eau finale	_	20.0	% opt. Pro	clor	103.9	
	Calibratic	n						
o/s lête	75.10	burette ut	ilisée	large	0	section bure	ette	0.294
o/s base	15.90	med	0	pelite	1	température	<u>}</u>	24
		Comparent	nison we d'eau			Résultat d	e l'essai	
1.4					P	charge varia	ble	
(c.u.3)						Indice des v	ides:	0.563
0.6-		8 8				Perméabilité	é (cm/s) écart type ind. reg	4.03E-06 1.21E-07 0.994
0 e	100	200	JOO Ternys s	400 500	600			
	_			d		┙ ┝────		

Ũ Û

10-05-96	\$	GOLDER	MIN. RICH	ESSES NA	TURELLES		page 2	
	Iectures		3ième essa	i de perméa	abilité après 1	0 cycles de	congélation	
Temps	hauteur	hauleur	Volume	Volume	charge	diff	K K	K20
Min	têle	base	entrée	Sortie	cm	s	cm/s	cm/s
0.00	0.0	-10.00	0	0	66.8	0.00	-	-
0.77	-0.5	-9.50	0.15	0.15	65.8	46.20	6.00E-06	5.44E-06
1.56	-1.0	-9.01	0.29	0.29	64.8	93.60	5.94E-06	5.38E-06
2.41	-1.5	-8.52	0.44	0.44	63.8	144.60	5.80E-06	5.26E-06
3.34	-2.0	-8.02	0.59	0.58	62.8	200.40	5.63E-06	5.11E-06
4.32	-2.5	-7.53	0.74	0.73	61.8	259.20	5.48E-06	4.97E-06
5.44	-3.0	-7.01	0.88	0.88	60,8	326.40	5.29E-06	4.79E-06
6.62	-3.5	-6.52	1.03	1.02	59.8	397.20	5.10E-06	4.63E-06
7.92	-4.1	-6.03	1.21	1.17	58.7	475.20	4.98E-06	4.51E-06
9,37	-4.5	-5.53	1.32	1.31	57.8	562.20	4.71E-06	4.27E-06

_

- -

- -

-- -

• •

		PEF	TEST	PERMEAB e a charg	ILITE e variabl	E		
	Date de m	iontage		26-02-96			[
	Nom de l'	echantillon:	• · · · ·	GOLDER M	IN. RICHESS	ES NATURELLE		
	Nom du f	ichier .		GOLDERVPER	MEA\CONGEI	ATION3		
		ani eni		u				
Géomètri	e		(moule #1)	1		Masses	g	
èpaisseur	initiale ci	m	6.989	15.997	masse initi	ale humide	<u></u>	809.4
diamètre	Cl	m	8.440	8.288	masse final	e humide		846.0
surface (ci	m^2)		55.947	1	masse final	e séche		705.2
Volume (c	m^3)		391.03		Gs			2.819
		oldi metilik	ani ani a	•	E. S. Million (S.).	as og ditte		
	Condition	ns de l'ess	ai]
	Degrè de s	aturation			mas, vol. h	um. (g/em3)	2.070	
		Par sèchag	e (%) init.	74.0	mas. vol. s	ec. (g/cm3)	1.803	1
		Par sechag	e (%) fin.	100.0	Opt. Procto	r (g/cm3)	1.735	
	Teneur en	cau initial	3	14.8	teneur eau	opt. (%)	15.7	1
	Tencur cn	eau finale		20.0	Z opt. Proc	lor	103.9	1
	L			L				•
	Calibratio	on						
o/s lête	74.90	burette ut	ilisèe	large	0	section bure	lte	0.294
o/s base	18.10	med	0	pclite	1	température	3	24
1.47		Comparents	aison vol d'eau re vs sortie			Rėsultat d	e l'essai	
1.2						charge varia	able	
ອີ 0.8		5	M			Indice des v	ides:	0.563
0.4 0.2	E N 100	200		400 500	600	Perméabilite COMMENTAI	é (cm/s) écart type ind. reg. NES	4.16E-06 1.35E-07 0.993
		ja učine o	ultin 🗋 u <i>tune</i> astie	<u>)</u>				

D
29-05-96		GOLDER	MIN. RICH	ESSES NA	TURELLES		page 2			
	Loctures 4ième essai de perméabilité après 15 cycles de congélatio									
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	620		
Min	lête	base	entrèe	Sortie	cm	s	cm/s	cm/s		
0.00	0.0	-9.90	0	0	66.7	0.00	-	-		
0.73	-0.5	-9.42	0.15	0.14	65.7	43,80	6.21E-06	5.63E-06		
1.52	-1.0	-8.93	0.29	0.29	64.7	91.20	6.04E-06	5.47E-06		
2.38	-1.5	-8.45	0.44	0.43	63.8	142.80	5.82E-06	5.28E-06		
3.27	-2.0	-7.95	0.59	0.57	62.8	196.20	5.72E-06	5.18E-06		
4.26	-2.5	-7.46	0.74	0.72	61.8	255.60	5.53E-06	5.01E-06		
5.39	-3.0	-6.94	0,88	0.87	60.7	323.40	5.32E-06	4.82E-06		
6.58	-3.5	-6.44	1.03	1.02	59.7	394.80	5.13E-06	4.65E-06		
7.94	-4.1	-5.93	1.21	1.17	58.6	476.40	4.97E-06	4.51E-06		
9,45	-4.5	-5.43	1.32	1.31	57.7	567.00	4.68E-06	4.24E-06		

• -

~

PER		PERMEAB	ILITE E VABIABI	F			
Date de montage		26-02-96					
Nom de l'échantillon:		GOLDER MIN. RICHESSES NATURELLE					
Nom du fichier.		GOLDER\PER	MEA\CONGEI	ATION2			
La construction of the second se							
Géomètrie	(moule #4)			Masses	g		
epaisseur initiale cm	8,154	16.591	masse initi	ale humide	••••	836.6	
diamét.re em	8.440	7.707	masse final	e humide		951.4	
surface (cm^2)	55.947		masse final	e seche		766.4	
Yolume (cm^3)	456.16		Gs			2.819	
						1	
Conditions de l'ess	ai						
Degré de saturation			mas, vol. h	um. (g/cm3)	1.834		
Par sichag	e (%) init.	38.1	mas, yol, s	ec. (g/cm3)	1.680		
Par sechag	e (%) fin.	100.4	Opt. Procto	r (g/cm3)	1.735		
<u>Teneur en cau initial</u>	2	9.2	lencur eau	opt. (%)	15.7		
Teneur en eau finale		24.1	73 opt Proc	lor	96.8		
		<u></u>					
Calibration						0.00.4	
o/s têle 76.00 burelle ut	ilisee	large	0	section burg	lte	0.294	
o/s base 20.60 med	U	petite	<u> </u>	temperature	temperature		
·				- 12: 11 - 1			
Company Compan	raison vot d'eau me vs sortie			Resultat d	e l'essai		
1.2				charge varia	ble		
ç E E U	8			Indice des v	ides:	0.678	
9 0.8 7 0.4 8				Perméabilité	é (cm/s) écart type ind. reg.	8.71E-06 3.05E-07 0.991	
0.2				COMMENTAL	RES		
0		750	250				
0 50 100 10	มี 200 โคเกุธ s	200 30	JU 350				
in the second	mine C unime anti-	3					
				┘			

.

27-02-9	27-02-96 GOLDER MIN. RICHESSES NATURELLES page 2										
	lectures 1er essai de perméabilité: avant congélation										
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20			
Min	lêle	base	entrée	Sortie	cm	s	cm/s	cm/s			
0.00	0.0	0.3	0	0	66.0	0.00	-	-			
2.50	-2.0	2.3	2.00	2.00	62.0	150.00	3.04E-05	2.72E-05			
5.24	-4.0	4.2	4.00	3.90	58.1	314.40	2.95E-05	2.64E-05			
8,20	-6.0	6.2	6.00	5.90	54.1	492.00	2.94E-05	2.63E-05			
11.32	-8.0	8.1	8.00	7.80	50.2	679.20	2.94E-05	2.63E-05			
14.75	-10.0	10.1	10.00	9.80	46.2	885.00	2.94E-05	2.63E-05			
18.44	-12.0	12.1	12.00	11.80	42.2	1106.40	2.95E-05	2.63E-05			
22.53	-14.0	14.0	14.00	13.70	38.3	1351.80	2.93E-05	2.62E-05			
27.00	-16.0	15.9	16.00	15.60	34.4	1620.00	2.93E-05	2.62E-05			
32.09	-18.0	17.9	18.00	17.60	30.4	1925.40	2.93E-05	2.62E-05			

.

TEST PERMEABILITE	
PERMEAMETRE A CHARGE VARIABLI	Ε

Date de montage		26-02-96	· · ·			
Nom de l'échantillo	n:	GOLDER M	IN. RICHESSI	S NATURELLE		
Nom du fichier.		GOLDERVPER	RMEALCONGEI	ATION2		
Géomètrie	(moule #4)			Masses	g	
épaisseur initiale cm	8.154	16.591	masse initia	ale humide		836.6
diamètre cm	8.440	7.707	masse final	e humide		951.4
surface (cm^2)	55.947		masse final	e séche		766.4
Volume (cm^3)	456.16		Gs			2.819
Conditions de l'e	ssai					
Degrè de saturation			mas, vol. h	um. (g/cm3)	1.834	
Par sòch	age (%) init.	38.1	mas. vol. se	ec. (g/cm3)	1.680	
Par seeh	nge (%) fin	100.4	Opt. Procto	r (g/cm3)	1.735	
Teneur en eau initi	nle	9.2	teneur eau	opt. (%)	15.7	
Teneur en cau final	e	24.1	% opt_ Proc	lor	96.8	
	9.C.C.S. 5.C.M.S.					
Calibration						
o/s têle 76.20 burette	atilisée	large	0	section bure	ette	0.294
o/s base 17.60 med	0	petite	1	lempérature	3	23.5
Con	tomison vol d'eau			Resultat d	e l'essai	
1.4	ntrie is sorth					
			ā	The second s	200 <u>-</u> 125 -	
1.2		5		charge varia	ble	
ີ ຍູ 0.8				Indice des vi	ides:	0.678
10.6				Permèabilité	e (cm/s)	8.28E-06
0.4-					ècart type	2.95E -07
p p					ind. reg.	0,991
0.2				COMMENTAIR	XES	
0						
0 50 100	150 200 ໂຕກຸສ ເ	250 30	מנ 320			
		٦				
	ne waanne 🦲 waanne kantoo					

18-04-96 GOLDER MIN. RICHESSES NATURELLES page 2									
Lectures 2ième essai de perméab, après 5 cycles de congélation									
Temps	hauteur	hauteur	Volume	Volume	charge	diff	К	K20	
Min	lêle	base	entrée	Sortie	cm	Š	cm/s	cm/s	
0.00	0.0	-9.60	0	0	68.2	0.00	-	-	
0.50	-0.5	-9.10	0.15	0,15	67.2	30.00	1.06E-05	9.70E-06	
1.04	-1.0	-8.50	0.29	0.32	66.1	62.40	1.07E-05	9.87E-06	
1.61	-1.5	-8,00	0.44	0.47	65.1	96.60	1.03E-05	9.48E-06	
2.22	-2.0	-7.50	0.59	0.62	64,1	133.20	9.98E-06	9.17E-06	
2.89	-2.5	-7.02	0.74	0.76	63.1	173.40	9.57E-06	8.79E-06	
3.65	-3.0	-6.52	0.88	0.91	62.1	219.00	9.14E-06	8.40E-06	
4.43	-3.5	-6.04	1.03	1.05	61.1	265.80	8.81E-06	8.10E-06	
5.31	-4.0	-5,55	1.18	1.19	60.2	318.60	8.45E-06	7.76E-06	
6.30	-4.5	-5.06	1.32	1.34	59.2	378.00	8.06E-06	7.41E-06	

.....

- - -

-

			TEST	PERMEAB	ILITE			
		PEF	MEAMETR	E A CHARG	E VARIABLE		1	
	Date de n	nontage		26-02-96				
	Nom de l'	cchantillon:		GOLDER M	IN. RICHESSE			
	Nom du f	ichier.	000000000	GOLDER\PER	MEA\CONGEL	ATION2		
				1	r			<u></u>
<u>Gèomètri</u>	e		(moule #4)			Masses	Ĕ	
èpaisseur i	nitiale_c	m	8.154	16.591	masse initia	de humide		836.6
diamétre	c	m	8,440	7,707	masse final	e humide		951.4
surface (er	<u>n^2)</u>		55.947		masse final	e sèche		766.4
Volume (ci	m^3)		456 16		Gs			2.819
		<i>to de la com</i> ercia						
	Conditio	ns de l'ess	ai					
	Degrè de :	saturation			mas, vol. h	.um. (g/cm3)	1.834	1
		Par sechag	e (%) init.	38.1	mas. vol. se	e. (g/em3)	1.680	1
		Par sechag	e (%) fin.	100.4	Opt. Proctor	(y/cm3)	1.735	1
	feneur er	eau initiale))	9,2	leneur eau	opt. (%)	15.7	
	Teneur er	can finale		24.1	Z opt. Proc	lor	96.8	1
					100/100			1
**************************************	Calibrati	<u></u>	1999 9 000000000000000000000000000000000					
<u> </u>	76.20	burdle ut	Histop	10000	Λ	- level ion hur		0.204
o/s tete	17.60	purecte ut	0 0	nalita		topperature		23.5
0/3 0450	17.00		0	petite	1	Temperature	-	20.0
					ι,			
						Distict	a Pasini	
		Сонцка	aison vol d'eau re vs sortie			Resultat d	le Tessai	
1.4					1			
1.2						charge varia	able	
1-				2				
1								
<u>ب</u> 0.8-						Indice des v	ides:	0.678
ξ _{0.6}		- <u> </u>						
ie -						Perméabilito	é (cm/s)	7.17E-06
0.4-							écart lype	2.44E-07
							ind. reg.	0.992
0.2	¢۲					COMMENTAI	RES	
0		100 150	200 250	- 100	150 400			
, v	50	100 ,50	Temps s		350 405			
		I votavia -	nhà C plana acto	3				
								·····
								•

Î

.

10-05-96 GOLDER MIN. RICHESSES NATURELLES page 2								
Lectures 3ième essai de perméab, après 10 cycles de congélation								
Ternps	hauleur	hauteur	Volume	Yolume	charge	diff	K	K20
Min	têle	base	entrée	Sortie	cm	s	cm/s	cm/s
0.00	0.0	-9.63	0	0	65.0	0.00	-	-
0.40	-0.5	-9.18	0.15	0.13	64.1	24.00	1.31E-05	1,19E-05
0.85	-1.0	-8,66	0.29	0.29	63.1	51.00	1.29E-05	1.17E-05
1.35	-1.5	-8.17	0.44	0.43	62.1	81.00	1.23E-05	1.12E-05
1.88	-2.0	-7.66	0.59	0.58	61.1	112.80	1.20E-05	1.08E-05
2.39	-2.5	-7.07	0.74	0.75	60.0	143.40	1.21E-05	1.10E-05
3.08	-3.0	-6.66	0.88	0.87	59.1	184.80	1.12E-05	1.01E-05
3.77	-3.5	-6.15	1.03	1.02	58.1	226.20	1.08E-05	9.75E-06
4.53	-4.0	-5.64	1.18	1.17	57.0	271.80	1.03E-05	9.37E-06
5.37	-4.5	-5.15	1.32	1.32	56.1	322.20	9.88E-06	8,96E-06
_								

_

-- -

-

- -

* -

TEST PERMEABILITE PERMEAMETRE A CHARGE VARIABLE

Date de montage		26-02-96]		
Nom de l'échantillor	1.	GOLDER M	IN. RICHESSE	S NATURELLE	2 2 ieme essai sans congelation	
Nom du fichier:		GOLDER\PER	MEA\CONGEL/	ATION2		
Géomètrie	(moule #4)			Masses	g	
epaisseur initiale cm	8.154	16.591	masse initia	le humide		836,6
diamètre cm	8.440	7,707	masse finale	humide		951.4
surface (cm ²)	55.947		masse finale	séche		766.4
Volume (cm^3)	456.16		Gs			2.819
				ð: sur king		
Conditions de l'es	sai					
Degré de saturation			mas vol hu	.m. (g/cm3)	1.834	
Par sècha	ge (%) init.	38.1	mas. vol. sec	2 (g/cm3)	1.680	
Par sècha	ge (%) fin.	100.4	Opt. Proctor	(g/cm3)	1.735	
Teneur en cau initia	le	9.2	teneur eau o	opt. (%)	15.7	
Teneur en cau finale)	24,1	% opt. Procl	01	96.8	
Calibration						
o/s lêle 93.20 Innelle i	tilisée	large	0	section bure	tle	1.00
o/s base 26.90 med	1	petite	0	temperature	2	24.5
				Resultat d	e l'essai	
	araison vol d'eau drée vs sortie			ivestitue d	C TCSSAT	
16		0		charge varia	ıble	
14-		-8-				
				Indice des v	ides	0.678
				Permeabilité	e (cm/s)	2.62E-05
6					ècart type	2.75E-08
4					ind. reg.	1.000
2				COMMENTAL	RES	
0 200 400 600 800	1000 1200 Tenus s	1400 1600	1800 2000			
		_				
มี นรับพ	entrie 🗋 utune artie					
						<u>.</u>

0 0 0

18-04-96 GOLDER MIN. RICHESSES NATURELLES page 2								
lectures 4ième essai de perméab. après 15 cycles de congélation								
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	К20
Min	têle	base	entrée	Sortie	cm	s	cm/s	cm/s
0.00	0.0	-9.70	0	0	68.3	0.00	-	-
0.48	-0.5	-9.20	0.15	0.15	67.3	28.80	1.10E-05	1.01E-05
0.87 ·	-1.0	-8.74	0.29	0.28	66.3	52.20	1.20E-05	1.10E-05
1.36	-1.5	-8.24	0.44	0.43	65.3	81.60	1.16E-05	1.07E-05
1.89	-2.0	-7.75	0,59	0.57	64.4	113.40	1.13E-05	1.03E-05
2.45	-2.5	-7.26	0.74	0.72	63.4	147.00	1.09E-05	1.01E-05
3.09	-3.0	-6.76	0.88	0.86	62.4	185.40	1.05E-05	9.66E-06
3.78	-3.5	-6.26	1.03	1.01	61.4	226.80	1.01E-05	9.30E-06
4.57	-4.0	-5.76	1.18	1.16	60.4	274.20	9.66E-06	8.87E-06
5.43	-4.5	-5.27	1,32	1.30	59.4	325.80	9.22E-06	8.47E-06

				TEST	PERMEAB	BILITE			
			PE	RMEAMETR	E A CHARG	E VARIABL	E	• Analos das subsections	19 an
		Date de 1	montage		30-01-199	16			
		Nom de	l'échantillon:		GOLDER M	IN. RICHESS	ler essai sa	ns congelat.	
		Nom du	fichier .		COLDER\PER	MEA\CONGE			
Gẻomé	ètri	e		(moute #4)			o.		
epaisse	ur i	nitiale	em	7.357	15.815	masse init	iale humide		668.8
diamèt	re		cm	8.440	7.738	masse fina	le humide		807.4
surface	(cr	n^2)		55.947		masse fina	le seche		614.7
Volume	e (cr	n^3)		411.60		Gs			2.819
									-
		Conditíc	ons de l'ess	sai			_		
		Degre de	saturation			mas. vol. ł	num. (g/cm3)	1.625	
			Par sèchag	ye (۳) init.	28.0	rnas, vol. s	ee. (g/cm3)	1.493	
X			Par séchag	ge (%) fin.	99.6	Opt. Procto	or (g/em3)	1.735	
		Teneur e	n eau initial	e	8.8	leneur cau	i opt. (2)	15.7	an the
	Teneur en cau finale					Sopt. Pro	ctor	86,1	
		Calibrat	ion						
o/s tê	ète	84.00	burette ut	ilisée	large	0	section burg	elle	1.00
o/s ba	ise	20.80	med	1	pelile	υ	températuro	<u>j</u>	21
25-			Comparent	mison vol d'eau réc vs sortie			Résultat d	e l'essai	
20					8		charge varia	ble	
(c. 15-							Indice des v	ides:	0.888
am 10 5							Perméabilité	e (cm/s) écart type ind. reg.	1.04E-04 1.91E-07 1.000
							COMMENTAR	NES	
00		100	200 30	0 400 Tenuts s	500 60	700			
				tanila a					
			utine i	nitrie S whow bothe]		」 ├────		

30-01-96		GOLDER	MIN. RICH	ESSES NAT	URELLES	page 2			
	Iectures								
Temps	hauleur	hauleur	Yolume	Volume	charge	diff	K	K20	
Min	têle	base	entrée	Sortie	cm	s	cm/s	cm/s	
0.00	0.0	1.0	0	0	62.2	0.00	_	-	
0.93	-3.0	4.0	3.00	3.00	56.2	56.00	1.19E-04	1.08 E-04	
2.00	-6.0	7.0	6.00	6.00	50.2	120.00	1.17E-04	1.06E-04	
3.45	-9.5	10.5	9.50	9.50	43.2	207.00	1.16E-04	1.05E-04	
4.12	-11.0	11.9	11.00	10.90	40.3	247.00	1.16E-04	1.05E-04	
5.12	-13.0	13.8	13.00	12.80	36.4	307.00	1.15E-04	1.04E-04	
6.20	-15.0	15.8	15.00	14.80	32.4	372.00	1.15E-04	1.04E-04	
7.45	-17.0	17.8	17.00	16.80	. 28.4	447.00	1.15E-04	1.05E-04	
8.88	-19.0	19.7	19.00	18.70	24.5	533.00	1.15E-04	1.04E-04	
10.55	-21.0	21.7	21.00	20.70	20.5	633.00	1.15E-04	1.05E-04	

-

TEST	PERMEABII	ITE
PERMEAMETRE	E A CHARGE	VARIABLE

Date de montage		30-01-199	16			
Nom de l'échantillon:		GOLDER M	IIN. RICHESSE	S NATURELLE	2ième cyclo	de congélat
Nom du fichier.		GOIDER \PER	MEA/CONGEL/	TION]	
		т	r			
Géométrie	(moule #4)			Masses	g	
epaisseur initiale cm	7.357	15.815	masse initia	le humide		668.8
diamètre cm	8.440	7,738	masse finale	humide		807.4
surface (cm ²)	55.947		masse finale		614.7	
Volume (cm^3)	411.60]	<u> </u>		2.819	
						1
<u>Conditions de l'ess</u>	ai		1			
Degré de saturation			mas. vol. hu	im. (g/cm3)	1.625	Versionen en
Par séchag	<u>e (%) init.</u>	28.0	mas. vol. sec	e. (g/em3)	1,493	
Par séchag	e (%) fin.	99.6	Opt. Proclor	(g/cm3)	1.735	
Teneur en eau initial	2	8.8	teneur eau d	opt. (%)	15.7	
leneur en eau finale	all Marine and All States	31.3	% opt. Proct	or	86.1	
Caliburting		<u> </u>				
	·)·. :	· · · · · · · · · · · · · · · · · · ·	0			1.00
o/s tete 84.00 Surette ut	insce	large	0	section bure	ette	1.00
075 base 17.40 meo		perre		liemperaturo	<u>. </u>	20.9
~~~						
Consta enti	nison vol d'eau' rée vs sortie	Résultat d			e l'essai	
16				charge variable		
14~						
				Indice des v	ides	0.888
2 9 8					· · · · · · · · · · · · · · · · · · ·	
		_)		Permeabilite	e (cm/s)	1.14E-04
					écart type	4.12E-07
A					ind. reg.	1.000
2			1 1	COMMENTAL	RES	
	00 250	300 350	400 450			
	Temps s					
	ntie 🖸 utone sotu	ì				

.

05-02-96		GOLDER	MIN. RICH	ESSES NAT	URELLES	page 2		
	Lectures						_	
Temps	hauteur	hauleur	Volume	Volume	charge	diff	K	K20
Min	têle	base	entrée	Sortic	cm	s	cm/s	cm/s
0.00	0.0	-0.4	0	0	67.0	0.00	-	-
0.53	-2.0	1.7	2.00	2.10	62.9	32.00	1.30E-04	1.19E-04
1.10	-4.0	3.7	4.00	4.10	58.9	66.00	1.28E-04	1.17E-04
1.70	-6.0	5.7	6.00	6.10	54.9	102.00	1.28E-04	1.17E-04
2.38	-8.0	7.7	8.00	8.10	50.9	143.00	1.26E-04	1.15E-04
3.08	-10.0	9.7	10.00	10.10	46.9	185.00	1.27E-04	1.16E-04
3.88	-12.0	11.7	12.00	12.10	42.9	233.00	1.26E-04	1.15E-04
4.72	-14.0	13.7	14.00	14.10	38.9	283.00	1.26E-04	1.15E-04
6.25	-17.0	16.6	17.00	17.00	33.0	375.00	1.24E-04	1.13E-04
8.13	-20.0	19.6	20.00	20.00	27.0	488.00	1.22E-04	1.12E-04



			PE	ILSI			c		
		Date de m	nontage		<u>  30-01-199</u>			]:	
		Nom de l'	échantillon:		GOLDER M	IN. RICHESS	SES NATURELLE	4 ième cyclo	de conociat
		Nom du f	ichier <del>.</del>		GOLDER\PER	MEALCONGE	LATION		
								1	
Gẻom	étr	ie		(moule #4)	1		Masses	Q	
épaisse	eur	initiale ci	m	7.357	15.815	masse initi	iale hurnide		668.8
diamel	re	CI	m	8.440	7,738	masse fina	le humide		807.4
surface	e (ci	m^2)		55,947		masse fina	le sèche		614.7
Volum	e (c	m^3)		411.60		Gs			2.819
				72 ···					
		Condition	ns de l'ess	ai					
		Degré de s	aturation		······································	mas. vol. t	num. (g/cm3)	1.625	
			Par sechag	e (%) init.	28.0	mas. vol. s	sec. (g/cm3)	1.493	
			Par sèchag	e (%) fin.	99.6	Opl. Procle	or (g/cm3)	1,735	
		Teneur en	eau initial	2	8.8	teneur cau	opt. (%)	15.7	
	Teneur en eau finale				31.3	31.3 🛛 opt. Proctor			
		Calibratio	on	·					
o/s ti	ête	84.00	burette ut	ilisèe	large	0	section bure	lle	1.00
0/s b	ase	17.80	med	1	petite	0	lempérature	• •	23.7
<u></u>				-					
			Companient	nison vol d'enu ^t rée vs sortie			Kesunat d	e Tessai	
20-									
18					_		charge varia	ble	
16-	1								
14	۱ <u></u>				i				
ີຕີ 12- ເ							Indice des v	ides:	0.888
9 10-								•	
- B-			<b>S</b>				Perméabilité	e (cm/s)	1.27E-04
6						<u> </u>		ccart type	5.01E-07
4						ind. reg.	1.000		
2							COMMENTAL	₹FS	
0	<u> </u>								
	0	1 00	00 150	202 250 Ĵenya s	300	JOV 900			
			🔳 uture a	noù 🖸 ptou este	ł				
L							J		

TROP DEDMENDINE

Û Mon Oak 

 $\prod$ 

05-02-96		GOLDER	MIN, RICH	ESSES NA	TURELLES		page 2		
	lectures		ı						
Temps	hauteur	hauteur	Volurne	Yolume	charge	diff	К	K20	
Min	têle	base	entrée	Sortie	cm	5	cm/s	cm/s	
0.00	0.0	-0.4	0	0	67.0	0.00	-		
0.53	-2.0	1.7	2.00	2.10	62.9	32.00	1,30E-04	1.19E-04	
1.10	-4.0	3.7	4.00	4.10	58.9	66.00	1.28E-04	1.17E-04	
1.70	-6.0	5.7	6.00	6,10	54.9	102.00	1.28E-04	1.17E-04	
2.38	-8.0	7.7	8.00	8.10	50.9	143.00	1.26E-04	1.15E-04	
3.08	-10,0	9.7	10.00	10.10	46.9	185.00	1.27E-04	1.16E-04	
3.88	-12.0	11.7	12.00	12.10	42.9	233.00	1.26E-04	1.15E-04	
4.72	-14.0	13.7	14.00	14.10	38.9	283.00	1.26E-04	1.15E-04	
6.25	-17.0	16.6	17.00	17.00	33.0	375.00	1.24E-04	1.13E-04	
8.13	-20.0	19.6	20.00	20.00	27.0	488.00	1.22E-04	1.12E-04	
			_						



-

## TEST PERMEABILITE PERMEAMETRE A CHARGE VARIABLE

Date de montage		30-01-199	6			
Nom de l'échantillon:		GOLDER M	IN. RICHESSE	<u>S NATURELLE</u>	3 ième cyclo	e de congela
Nom du fichier		GOLDER\PER	MEA\CONGEL	ATION		
<u>Géométrie</u> (	(moule #4)			Masses	<u>ç</u>	
epaisseur initiale cm	7.357	15.815	masse initiale humide			668.8
diamétre cm	8.440	7,738	masse finale	humide		807.4
surface (cm ² )	55.947		masse finale sèche			614.7
Volume (cm^3)	411.60			2.819		
Conditions de l'essai	1					
Degré de saturation		<u>.</u>	mas vol. hi	im. (g/cm3)	1.625	
Par séchage	(%) init_	28,0	mas, vol. se	<u>c (g/cm3)</u>	1,493	
Par sechage	<u>(</u> %) fin.	99.6	Opt. Proclor	(g/cm3)	1.735	
Teneur en eau initiale		8.8	leneur eau	opt. (%)	15.7	
Teneur en eau finale		31.3	% opt. Proct	or	86.1	
			<u></u>			
Calibration			<u> </u>			
o/s tête 84.00 burette utili	isee	large	00	section bure	elle	1.00
o/s base 17.40 med	1	petite	0	temperature		23.7
			: 11:40 - 11:40 - 11:40 - 11: - 11:40 - 14:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40 - 11:40			
Congranis	son vol d'eau e vs sortie		_	Résultat d	e l'essai	
				charge varia	ble	
				Indice des vi	ides	0.888
				Perméabilité	e (cm/s) ècart type ind. reg.	1.12E-04 7.49E-07 1.000
2			COMMENTAIR	ES		
	260 200	250 400	450 500			
Te	tinie v					
🔳 whow entri	i () union avtic	•				
L						

07-02-96	07-02-96 GOLDER MIN. RICHESSES NATURELLES page 2							
	lectures							
Temps	hauleur	hauteur	Volume	Volume	charge	diff	K	K20
Min	lôle	base	entrée	Sorlie	cm	S	ċm/s	cm/s
0.00	0.0	-0,2	0	0	66.4	0.00	-	-
0.52	-2.0	1.9	2.00	2.10	62.3	31.00	1.35E-04	1.24E-04
1.00	-4.0	4.0	4.00	4.20	58.2	60.00	1.44E-04	1.32E-04
1.55	-6.0	6.0	6.00	6.20	54.2	93.00	1.44E-04	1.31E-04
2.17	-8.0	8.0	8,00	8.20	50.2	130.00	1.41E-04	1.29E-04
2.82	-10.0	10.0	10.00	10.20	46.2	169.00	1.41E-04	1.29E-04
3.53	-12.0	12.0	12.00	12.20	42.2	212.00	1.41E-04	1.28E-04
4.32	-14.0	14.0	14.00	14.20	38.2	259.00	1.40E-04	1.28E-04
5.20	-16.0	16.0	16.00	16.20	34.2	312.00	1.40E-04	1.28E-04
6.20	-18.0	18.0	18.00	18.20	30.2	372.00	1.39E-04	1.27E-04



~

. .

IESI PERMEABILII	Ľ.
PERMEAMETRE A CHARGE VAL	RIABLE

Date de montage		30-01-199	16	]		
Nom de l'échantillor:		GOLDER M	IIN. RICHESSE	S NATURELLE	jõiėme cycle	de congélat
Nom du fichier.		GOLDERVPER	MEA\CONGEL	ATION	]	
		1	r			
Géométrie	(moule $\#1$ )			Masses	¢	
épaisseur initiale cm	7.357	15.815	masse initia	le humide		668.8
diamètre <u>cm</u>	8.440	7,738	masse finale		807.4	
surface (cm^2)	55.947		masse finale		614.7	
Yolume (cm^3)	411.60		Gs			2.819
			er en de la c	States South		
Conditions de l'essa	ai					
Degré de saturation			mas. vol. ht	1m. (g/em3)	1.625	
Par sechag	Par sechage (%) init.			c. (g/cm3)	1.493	MACANTANA Salaharan Ka
Par sèchag	e (%) fin.	99,6	Opt. Proclor	· (g/cm3)	1.735	
<u>Teneur en cau iniliale</u>		8.8	teneur eau	opt. (%)	15.7	
Teneur en eau finale	31.3	% opt. Proct	.or	86.1		
Calibration						
o/s tête 84.00 burelle uli	lisée	large	0	section bure	elle	1.00
o/s base 17.80 med	]	petile	0	llempérature	2	23.7
Compar- entr	isan mi d'eau de vs sertie			Résultat d	e l'essai	
				charge varia	ıble	
				Indice des v	ides	0.888
	200 250 Runo 6	300	250 400	Perméabilité (cm/s) 1.28E-04 écart type 2.88E-07 ind. reg. 1.000 COMMENTAIRES 5iéme cycle de congèlation		
🔳 ນໃຫະ ຕ	bè 🗋 urane pete	]				

U 

.

·

12-02-96		GOLDER	MIN. RICH	N. RICHESSES NATURELLES page 2					
	Lectures			·					
Temps	hauleur	hauteur	Volume	Yolume	charge	diff	К	K20	
Min	têtc	base	entrie	Sortic	cm	s	cm/s	cm/s	
0.00	0.0	0.0	0	0	66.2	0.00	-	-	
0.50	-2.0	2.2	2.00	2.20	62.0	30.00	1.44E-04	1.31E-04	
1.00	-4.0	4.2	4.00	4.20	58.0	60.00	1.45E-04	1.32E-04	
1.57	-6.0	6.2	6.00	6.20	54.0	94.00	1.42E-04	1.30E-04	
2.15	-8.0	8.2	8.00	8.20	50.0	129.00	1.43E-04	1.31E-04	
2.82	-10.0	10.2	10.00	10.20	46.0	169.00	1.42E-04	1.29E-04	
3.53	-12.0	12.3	12.00	12,30	41.9	212.00	1.42E-04	1.30E-04	
4.32	-14.0	14.3	14.00	14.30	37.9	259.00	1.42E-04	1.29E-04	
5.22	-16.0	16.3	16.00	16.30	33.9	313.00	1.41E-04	1.28E-04	
6.18	-18.0	18.3	18.00	18.30	29.9	371.00	1.41E-04	1.29E-04	



_

- -

•

				TEST	PERMEAB	ILITE			
			PEI	RMEAMETR	E A CHARG	E VARIABLE	-	,	
		Date de	montage		96-10-07			ETAPE 2	
		Nom de	l'échantillon:			Silt		après 5 cyc	les de gel
		Nom du	hemer:		GOLDERALIA	CONCEL/SER	161	et degel	
Cian		~		maula # 2	1		Maccoc	<u>а</u>	
divuisea		nitiale		12 466	17 378	masse initia	le humide	<u> </u>	
diamét	ro	пциис	cm	8,255	4 182	masse finale	humide		1174.0
SULACO		n^2)		53.521		masse finale	séche		966.4
Volume	- (ci	<u></u>		667.19		Gs			2.780
					1				U
		Conditi	ons de l'ess	sai				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Degrè de	saturation			mas vol hi	1m. (g/cm3)	1.626	
	Par séchage (%) init.			37.0	nnas. vol. se	c. (g/cm3)	1.448		
			Par séchag	ge (%) fin.	65.0	Opt. Proclos	- (g/cm3)	1.942	
		Teneur e	en eau initial	е	12.2	teneur cau	opt. (%)	13.2	
	Teneur en eau finale			21.5	% opt. Proctor		74.6		
		Calibrat	lion						0.001
o/s li	ele	247.00	burchte ut	Chisee	large	0	section bure	ette	0.294
0/S D	nse	_ 27.ວບ	<u> </u>	U	perice	1	Temperature	: 	
							Résultat d	e l'essai	
			Compa ent	raison vol d'enu) née vs sorlie			Nesultat a		
16-							·········		
14-			I	I			charge varia	ble	
12-									
					ā				
(E - U							Indice des v	ides:	0.919
2 9. 2 1.									
\$ 6.			··				Perméabilite	e (cm/s)	8.56E-07
4		1						écart type	7.22E-09
	1	8 8						ind. reg.	0.999
2.	_						COMMENTAL	(ES	
0	0 0	5	10	15	20	25			
				Terrije s (Thousands)					
				autria 🛛 yetuan autin					
Ļ									<u> </u>

96-10-2	5	LTA		ETAPE 2			page 2	
	Lectures							
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	К20
Min	lĉte	base	entrée	Sortie	cm	S	cm/s	cm/s
0.00	0.00	4.00	0.00	0	215.5	0.00	-	-
10.09	-1.80	5.70	0.53	0.50	212.0	605.40	9.26E-07	8.51E-07
20.05	-3.60	7.40	1.06	1,00	208.5	1203.00	9.54E-07	8.77E-07
39.80	-7.00	10.70	2.06	1.97	201.8	2388.00	9.44E-07	8,67E-07
57.80	-10.00	13.40	2.94	2.76	196.1	3468.00	9.09E-07	8.35E-07
72.32	-12.30	15.70	3.62	3.44	191.5	4339.20	9.33E-07	8.57E-07
88.90	-15.00	18.20	4.41	4.18	186.3	5334.00	9.48E-07	8.71E-07
105.54	-17.40	20,60	5.12	4.88	181.5	6332.40	8.96E-07	8.23E-07
231.00	-34.40	37.00	10.12	9.71	148.1	13860.00	9.25E-07	8.50E-07
248.75	-36.50	39.00	10.74	10.29	144.0	14925.00	9.03E-07	8.30E-07
276.80	-39.80	42.10	11.71	11.21	137.6	16608.00	9.25E-07	8.50E-07
302.10	· -42.50	47.80	12.50	12.88	129.2	18126.00	1.42Ē-06	1.31E-06
330.66	-45.50	47.80	13.38	12.88	126.2	19839.60	4.70E-07	4.31E-07
352.30	-47.80	49.90	14.06	13.50	121.8	21138.00	9.36E-07	8.60E-07



.

		PE	TEST rmeametr	PERMEAE E A CHARG	ILITE E VARIABL	E		
	Date de m	ontage		96-10-07			IETAPE 3	
	Nom de l'	chantillon:		LTA - <	silt	· · · · ·	après 10 cycles de gel	
	Nom du f	ichier.	15 - M12-	GOLDER\LTA	\CONGEL\SEI	RIE1	let dégel	
	·						1	
Géométr	rie		moule # 2	1		Masses	g	
épaisseur	initiale c	n	12.466	17.378	masse initi	ale humide		1084.7
diamètre	Cl	n	8.255	4,182	masse final	e humide		1174.0
surface (c	m^2)		53.521		masse final	e sèche		966.4
Volume (c	2m^3)		667,19		Gs	_		2.780
			#	1	L			1
	Condition	ns de l'ess	ai					1
	Degré de s	aturation			mas vol h	un (g/cm3)	1.626	1
	incero de t	Par sechae	re (%) init	37.0	mas vol se	$\frac{\alpha \alpha}{\alpha}$ (g/cm3)	1 448	
		Par sechae	ve (%) fin	65.0	Ont Procto	r (q/cpn3)	1.942	
	Teneur en	eau initial	p	12.2	teneur eau	ont (%)	13.2	
	Teneur en eau finale				% opt. Proctor 74.6			
	L				<u>II -                                  </u>		1	1
	Calibratio	)n	194.2989					
o/s tête	133.20	burette ut	ilisee	large	0	section bure	ette	0.294
o/s base	24.80	med	0	pelite	1	température	e	23.5
8		Compan ent	aison vol d'enu rée vs sortie	·····		Résultat d	le l'essai	
6						charge varia	ıble	
(c. 11)						Indice des v	ides	0.919
		•				Perméabilité	é (cm/s) écart type ind. reg.	2.66E-06 4.06E-09 1.000
1+	<u>u</u>					COMMENTAIF	RES	
0								
0	1000 2000	3000 40	00 5000 6 Тепира в	000 7000	0002 0008	CONGELATION	N SANS RESS	SORT
				L				
		L M solume n	une Li urane serve	i				

96-11-1	1	LTA		ETAPE 3		page 2			
_	Lectures								
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20	
Min	têle	base	entrée	Sortie	cm	s	cm/s	cm/s	
0.00	0.00	2.70	0.00	0	105.7	0.00	-	-	
7.29	-2.00	4.80	0.59	0.62	101.6	437.40	3.10E-06	2.85E-06	
15.20	-4.00	6.80	1.18	1.21	97.6	912.00	2.90E-06	2.66E-06	
23.26	-6.00	8.70	1.76	1.76	93.7	1395.60	2.89E-06	2.65E-06	
31.55	-8.00	10.70	2.35	2.35	89.7	1893.00	3.00E-06	2.76E-06	
41.00	-10.00	12.70	2.94	2.94	85.7	2460.00	2.76E-06	2.53E-06	
50.12	-12.00	14.60	3.53	3.50	81.8	3007.20	2.92E-06	2.68E-06	
62.47	-14.50	17.20	4.26	4.26	76.7	3748.20	2.98E-06	2.73E-06	
70.40	-16.00	18.70	4.71	4.71	73.7	4224.00	2.87E-06	2.64E-06	
84.35	-18.50	21.20	5.44	5.44	68.7	5061.00	2.87E-06	2.64E-06	
93.22	-20.00	22.70	5.88	5.88	65.7	5593.20	2.87E-06	2.64E-06	
105.30	· <b>-22.00</b>	24.60	6.47	6.44	61.8	6318.00	2.89E-06	2.66E-06	
119.43	-24.00	26.70	7.06	7.06	57.7	7165.80	2.77E-06	2.55E-06	
133.41	-26.00	28.80	7.65	7.68	53.6	8004.60	3.01E-06	2.77E-06	



. .

- . .

				TEST	PER	MEAE	ILITE				
Northware North Mar			PER	RMEAMET	REAC	HARG	E VARIA	BLE		éTAPE 2	
	Date d	e mon	tage		96-1	0-07				2 ième essa	ai après 5
÷	Nom d	le l'ech	antillon:		_   1	.ΠΛ ~ 5	silt		····	cycles de ge	el et dégel
	Nom d	lu fichi	er:		GOID	ERVLTA	CONGEL	SERIE1			
[					-		·				
Géomét	rie			(moule # '	7			Ma	sses	g	
epaisseur	initiale	cm		10.760		6.506	masse in	itiale hu	imide		1081.2
diamètre		cm		8.255	_	5.018	masse fi	nale hun	nide		1171.1
surface (	cm^2)			53.521	_		masse fi	nale séch	ie		960.9
Volume (	<u>cm^3)</u>			575.87	]		Gs				2.780
	r	<u>.</u>									7
	Condi	tions	de l'ess	ai						Ter ver	
	Degré (	de satu	ration				mas. vol.	hum. (	g/cm3)	1.877	
		Pa	r séchag	e (%) init.	5	2.3	mas. vol. sec. (g/cm3) 1.0			1.669	
	<u> </u>	Pa	r séchag	e (%) fin.	9	1.3	Opt. Proctor (g/cm3)			1.942	
	Teneur	en cau	<u>i initialo</u>	2	1	2.5	Loneur eau opt. (%)			13.2	
	Teneur	en eau	<u>ı finale</u>		2	1.9	Z opt Proctor 85.9			]	
<u> </u>					<u> </u>						
	Calibr	ation		P							
o/s lĉie	o/s tête 249.10 burette utilisée			la	rge	0	sect	ion bure	ette	1.000	
0/s base	<u>o/s base</u> 32.50 med 0					tite	1	tem	ipérature	<u>}</u>	22.8
			Conten	aison vol d'eau l				- Rés	ultat d	e l'essai	
40			entr	ée vs sortie							
35			ł				<u>е</u> Ч	cha	rge varia	ble	
30											
€ 25					0						
5-0-0 				- 3				Indi	ce des vi	ides.	0,666
20			8								
\$ 15								Peri	néabilité	: (cm/s)	2.56E-06
10-										écart type	1.85E-09
	2									ind. reg.	1.000
5								COV	MENTAIR	ES	
	·					7					
Ū	*	-1		Tenger s Tenger s Thousands)	1	•	17 10				
			utumi m	hrát 🗋 uctum sort-	7						
			L								

Į

3

96-10-2	3	SILT ARC	SILEUX				page 2	
-	Lectures			-				
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20
Min	lĉte	base	entrée	Sortie	cm	s	cm/s	cm/s
0.00	0.00	1.40	0.00	0	215.2	0.00	-	-
5.35	-1.00	2.50	1.00	1.10	213.1	321.00	3.07E-06	2.87E-06
11.00	-2.00	3.50	2.00	2.10	211.1	660.00	2.80E-06	2.62E-06
16.61	-3.00	4.40	3.00	3.00	209.2	996.60	2.70E-06	2.53E-06
22.47	-4.00	5.40	4.00	4.00	207.2	1348.20	2.75E-06	2.57E-06
35.07	-6.20	7.40	6.20	6.00	203.0	2104.20	2.72E-06	2.55E-06
46.75	-8.20	9.40	8.20	8.00	199.0	2805.00	2.85E-06	2.67E-06
113.20	-18.70	19.30	18.70	17.90	178.6	6792.00	2.73E-06	2.55E-06
129.50	-21.50	21.10	21.50	19.70	174.0	7770.00	2.68E-06	2.51E-06
138.60	-22.20	22.90	22.20	21.50	171.5	8316.00	2.66E-06	2.49E-06
173.20	-27,20	27.40	27.20	26.00	162.0	10392.00	2.76E-0ô	2.58E-06
184.89	: <b>-</b> 28.70	29.00	28.70	27.60	158.9	11093.40	2.77E-06	2.59E-06
219.80	-33.20	33.30	33.20	31.90	150.1	13188.00	2.73E-06	2.56E-06
235.40	-35.20	35.20	35.20	33.80	146.2	14124.00	2.83E-06	2.65E-06
248.44	-36.70	36.70	36.70	35.30	143.2	14906.40	2.66E-06	2.49E-06



---

-

-

			PF	TEST	PERMEAE		F	ትዋለውሮ 3	
		Date de 1	montage		96-10-07			3 ième essa	u après 5
		Nom de	l'échantillon:		LTA - :	Si 🕇		cycles de gel et dégel	
		Nom du	fichier:		GOLDERVLTA	CONCEL/SEI	REI	sans ressor	
					_				
Gcoi	<u>mètr</u>	ie		(moule # 7			Masses	g	
épais	scur	initiale d	cm	10.760	16.506	masse initi	ale humide		1081.2
diam	ietre (	(	em	8.255	5:016	masse fina	le humide		1171.1
surfa	ice (c	m^2)		53.521	masse finale seche				960.9
Volu	me (c	:m^3)		575.87	]	<u> </u>			2.780
			1 11	•					1
			ons de l'ess	Sai		<del>ار</del>			
		Degre de	saturation	(07) ' '1	50.0	mas vol. h	um. (g/cm3)	1.877	
		2	Par secha	<u>30 (%) init.</u>	52.3	mas. vol. s	ec. (g/cm3)	1.669	
		Tonoun o	Par sechag	<u>ze (%) fin.</u>	91,3	tonoun acu	r(g/cm3)	1.942	
		Tonour or	1 eau miciar	e	21.0	teneur cau opt. (%) 13.2			
		<u>Licticut</u> et			21.5			00.0	1
		Calibrati	ion			· · · · · · · · · · · · · · · · · · ·			
o/s	lête	249.10	burette ut	llisée	large	0	section burg	ette	1.000
o/s	base	19.90	med	0	pctite	1	température	2	23.5
	·s		Compa ent	raison wL d'eau rée vs sortie			Résultat d	e l'essai	
	10						charge varia	ble	
ein-3)	25-				<u>.</u>		Indice des v	ides	0.666
va)tinte	15-						Perméabilité	é (cm/s) écart type	2.38E-06 1.91E-09
	5	2 4	à	B 10 Tomps s (Thousends)	12 14	18 18	COMMENTAL	RES	1.000
			E volume e	mbrile 🗘 whome portie	]				
L				ter personal di anti di terra di			·		

96-10-2	4	SILT ARC	SILEUX		page 2				
	Lectures								
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20	
Min	tête	base	entrée	Sortie	cm	S	cm/s	cm/s	
0.00	0.00	1.70	0.00	0	227.5	0.00	•	-	
9.62	-1.80	3.40	1.80	1.70	224.0	577.20	2.70E-06	2.48E-06	
19.50	-3.50	5.10	3.50	3.40	220.6	1170.00	2.59E-06	2.38E-06	
34.89	-6.20	7.60	6.20	5.90	215.4	2093.40	2.60E-06	2.39E-06	
42.70	-7.60	8.90	7.60	7.20	212.7	2562.00	2.71E-06	2.49E-06	
54.80	-9.50	10.80	9.50	9.10	208.9	3288.00	2.50E-06	2.29E-06	
66.20	-11.50	12.60	11.50	10.90	205.1	3972.00	2.70E-06	2.48E-06	
79.20	-13.50	14.60	13,50	12.90	201.1	4752.00	2.54E-06	2.33E-06	
89.00	-15.00	16.10	15.00	14.40	198.1	5340.00	2.57E-06	2.36E-06	
104.20	-17.40	18.40	17.40	16.70	193.4	6252.00	2.65E-06	2.43E-06	
128.00	-21.00	21.80	21.00	20.10	186.4	7680.00	2.60E-06	2,38E-06	
139.50	, -22.60	23.40	22.60	21.70	183.2	8370.00	2.52E-06	2.32E-06	
206.30	-31.80	32.30	31.80	30.60	165.1	12378.00	2.61E-06	2.40E-06	
299.20	-43.00	43.10	43.00	41.40	143.1	17952.00	2.58E-06	2.37E-06	
332.35	-46.60	46.50	46.60	44.80	136.1	19941.00	2.53E-06	2.33E-06	



- -

Date de montage96-10-074 ième essai après 10Nom de l'échantillon:LTA ~ $S_i'$ (†Nom du fichier:COLDERUTACONCELSERIEIGéomètrie(moule # 7)tipaisseur initiale10.760tiamètrecm8.2555.016surface (cm^2)53.521Volume (cm^3)575.87Conditions de l'essaiDegré de saturationmass vol. hum. (g/cm3)1.877Par séchage (%) init.52.3mass vol. sec. (g/cm3)1.942Teneur en eau initiale12.5teneur en eau finale21.9% opt. Proctor85.9Calibrationo/s tête0/s tête13.30burette utilisée1arge0section0/s tête13.30burette utilisée1arge0section burette1.000o/s base29.30ned0petite1température23.3
Nom de l'échantillon:       LTA ~ Sr ( $+$ cycles de gel et dégel         Nom du fichier:       GOIDERUTACONCEUSERIEI       cycles de gel et dégel         Géomètrie       (moule # 7 epaisseur initiale cm       10.760       masse initiale humide       1081.2         Masses       g       masse finale humide       1071.1       masse finale humide       1071.1         surface (cm^2)       53.521       5016       masse finale humide       1171.1         Volume (cm^3)       575.87       South finale sèche       960.9         Conditions de l'essai       g       g       2.780         Conditions de l'essai       mas vol. hum. (g/cm3)       1.877         Par sèchage (%) init       52.3       mas vol. sec. (g/cm3)       1.942         Teneur en eau finale       12.5       teneur eau opt. (%)       13.2         Teneur en eau finale       21.9       opt. Proctor       85.9         Calibration       0       petite       1       température       23.3         o/s tête       133.30       bureite utilisée       large       0       section burette       1.000         o/s base       29.30       med       0       petite       1       température       23.3
Nom du fichier:       COLDERUTAVCONCEUSER(E)         Géoniétrie       (moule # 7)         épaisseur initiale cm       10.760         liamètre       cm         surface (cm^2)       53.521         Volume (cm^3)       575.87         Conditions de l'essai       mass vol. hum. (g/cm3)       1.877         Par séchage (%) init.       52.3         Par séchage (%) init.       52.3         Par séchage (%) fin.       91.3         Opt. Proctor (g/cm3)       1.942         Teneur en eau initiale       12.5         Calibration       0         o/s têle       133.30         bureite utilisée       large         0       section burette       1.000         o/s têle       133.30       bureite utilisée       large         0       petite       1       température       23.3
Geometrie       (moule # 7)         tpaisseur initiale       10.760         tiamètre       cm         surface (cm^2)       53.521         Volume (cm^3)       575.87         Conditions de l'essai       gs         Degré de saturation       mass vol. hum. (g/cm3)       1.877         Par séchage (%) init.       52.3         Par séchage (%) fin.       91.3       0pt. Proctor (g/cm3)       1.942         Teneur en eau initiale       12.5       tencur eau opt. (%)       13.2         Teneur en eau finale       21.9       % opt. Proctor       85.9         Calibration       ned       0       petite       1         o/s tête       133.30       bureite utilisée       large       0       section burette       1.000         o/s base       29.30       med       0       petite       1       température       23.3
Géométrie       (moule # 7 épaisseur initiale cm       10.760       16.506       Masses g         diamètre       cm       8.255       5.016       masse finale humide       1171.1         surface (cm^2)       53.521       53.521       masse finale humide       1171.1         Volume (cm^3)       575.87       Gs       2.780         Conditions de l'essai       mass vol. hum. (g/cm3)       1.877         Par sèchage (%) init.       52.3       mass vol. sec. (g/cm3)       1.669         .       Par sèchage (%) fin.       91.3       Opt. Proctor (g/cm3)       1.942         Teneur en eau initiale       12.5       teneur eau opt. (%)       13.2         Teneur en eau finale       21.9       % opt. Proctor       85.9         Calibration       0       petite       1       température       23.3
cpaisseur initiale cm       10.760       16.506       masse initiale humide       1081.2         diamètre       cm       8.255       5.016       masse finale humide       1171.1         surface (cm^2)       53.521       5.016       masse finale sèche       960.9         Volume (cm^3)       575.87       Cs       2.780         Conditions de l'essai
diamètre       cm       8.255       5.016       masse finale humide       1171.1         surface (cm^2)       53.521       masse finale sèche       960.9         Volume (cm^3)       575.87       Cs       2.780         Conditions de l'essai
surface (em^2)       53.521       masse finale sèche       960.9         Volume (cm^3)       575.87       Gs       2.780         Conditions de l'essai
Volume (cm^3)       575.87       Gs       2.780         Conditions de l'essai       Degrè de saturation       mas vol. hum. (g/cm3)       1.877         Par sèchage (%) init.       52.3       mas vol. sec. (g/cm3)       1.669         Par sèchage (%) fin.       91.3       Opt. Proctor (g/cm3)       1.942         Teneur en eau initiale       12.5       teneur eau opt. (%)       13.2         Teneur en eau finale       21.9       % opt. Proctor       85.9         Calibration       0       petite       1       tempèrature       23.3         Résultat de l'essai       Résultat de l'essai       Résultat de l'essai       Résultat de l'essai
Conditions de l'essai         Degré de saturation       mas vol. hum. (g/cm3)       1.877         Par sèchage (%) init.       52.3       mas vol. sec. (g/cm3)       1.669         Par sèchage (%) fin.       91.3       Opt. Proctor (g/cm3)       1.942         Teneur en eau initiale       12.5       tencur eau opt. (%)       13.2         Teneur en eau finale       21.9       % opt. Proctor       85.9         Calibration       0/s tête       133.30       bureite utilisée       large       0         o/s base       29.30       med       0       petite       1       température       23.3
Conditions de l'essai         Degrè de saturation       mas. vol. hum. (g/cm3)       1.877         Par sèchage (%) init.       52.3       mas. vol. sec. (g/cm3)       1.669         Par sèchage (%) fin.       91.3       Opt. Proctor (g/cm3)       1.942         Teneur en eau initiale       12.5       tencur eau opt. (%)       13.2         Teneur en eau finale       21.9       % opt. Proctor       85.9         Calibration       o/s tête       133.30       bureite utilisée       large       0       section burette       1.000         o/s base       29.30       med       0       petite       1       température       23.3
Degre de saturation       mas vol. hum. (g/cm3)       1.877         Par séchage (%) init.       52.3       mas vol. sec. (g/cm3)       1.669         Par séchage (%) fin.       91.3       Opt. Proctor (g/cm3)       1.942         Teneur en eau initiale       12.5       teneur eau opt. (%)       13.2         Teneur en eau finale       21.9       % opt. Proctor       85.9         Calibration         o/s têle       133.30       bureite utilisée       large       0       section burette       1.000         o/s base       29.30       med       0       petite       1       température       23.3
Par sechage (%) init.       52.3       mas. vol. sec. (g/cm3)       1.669         Par séchage (%) fin.       91.3       Opt. Proctor (g/cm3)       1.942         Teneur en eau initiale       12.5       teneur eau opt. (%)       13.2         Teneur en eau finale       21.9       % opt. Proctor       85.9         Calibration         o/s tôle       133.30       bureite utilisée       large       0       section burette       1.000         o/s base       29.30       med       0       petite       1       température       23.3
Par sechage (2) In.     91.3     Opt_Proctor (g/cm3)     1.942       Teneur en eau initiale     12.5     teneur eau opt. (%)     13.2       Teneur en eau finale     21.9     % opt. Proctor     85.9         Calibration       o/s tête     13.30     burette utilisée     large     0       section burette     1.000       o/s base     29.30     mvd     0         Résultat de l'essai
Teneur en eau finale       12.3       teneur eau opt. (%)       13.2         Teneur en eau finale       21.9       % opt. Proctor       85.9         Calibration       O/s tête       133.30       bureite utilisée       large       O       section burette       1.000         o/s tête       133.30       bureite utilisée       large       0       section burette       1.000         o/s base       29.30       mcd       0       petite       1       température       23.3
Calibration     21.3     x opt. Froctor     23.9       O/s têle     133.30     bureite utilisée     large     0     section burette     1.000       o/s base     29.30     nucl     0     petite     1     température     23.3
Calibration         o/s têle       133.30       bureite utilisée       large       0       section burette       1.000         o/s base       29.30       med       0       petite       1       température       23.3
o/s têle     133.30     burette utilisée     large     0     section burette     1.000       o/s base     29.30     med     0     petite     1     température     23.3
o/s base 29.30 med 0 petite 1 température 23.3
Résultat de l'essai
an entrée vs sortie
25- charge variable
20
Indice des vides 0.666
\$   Perméabilité (cm/s)   8.51E-06
écart type 3.76E-08
s ind. reg. 1.000
- COMMENTAIRES
ients s Sans ressort durant la congelation
📕 solume mitrie 💭 utune artice

Ì 

.

96-11-1	1	LTA		étape 4		page 2			
	Lectures		-						
Temps	hauteur	hauteur	Volume	Volume	charge	diff	K	K20	
Min	têle	base	entrée	Sortie	cm	S	cm/s	cm/s	
0.00	0.00	7.10	0.00	0	96.9	0.00	-	-	
7.24	-2.00	9.10	2.00	2.00	92.9	434.40	9.75E-06	9.01E-06	
15.10	-4.00	11.00	4.00	3.90	89.0	906.00	9.14E-06	8.44E-06	
24.10	-6.10	13.00	6.10	5.90	84.9	1446.00	8.78E-06	8.11E-06	
32.18	-8.00	15.00	8.00	7.90	81.0	1930.80	9.75E-06	9.01E-06	
41.18	-10.00	17.00	10.00	9.90	77.0	2470.80	9.43E-06	8.71E-06	
55.05	-12.80	19.70	12.80	12.60	71.5	3303.00	8.95E-06	8.27E-06	
70.02	-15.70	22.50	15.70	15.40	65.8	4201.20	9.30E-06	8.59E-06	
112.15	-22.60	29.50	22.60	22.40	51.9	6729.00	9.44E-06	8.72E-06	
123.02	-24.00	31.00	24.00	23.90	49.0	7381.20	8.86E-06	8.19E-06	
140.23	-26.40	33.30	26.40	26.20	44.3	8413.80	9.82E-06	9.07E-06	
160.44	-28.20	35.70	28.20	28.60	40.1	9626.40	8.26E-06	7.63E-06	
175.45	-30.00	36.80	30.00	29.70	37.2	10527.00	8.38E-06	7.74E-06	



- - -

### **APPENDIX G**

## IN SITU COMPACTION MONITORING RESULTS (FALL 95- WINTER 96)

(Golder Associés)

-

-

5

6

7

8

9

10

0,5

0,5

0,5

0,5

0,5

0,5

0,5

1905

1880

1799

1876

1901

1615

1**879** 

TABLEAU A - 1 Rapport dcs essais de calcul de densité - Sable et gravier

Projet Description Personnel	Barrick - Fina Sable et gravi Eric Bouchard	lisation - LTA er - site LTA i (Golder)	no. projet Compacteur	951-7156 rouleau			
Gs	2,751	Résultats du P Densité optima Teneur en eau	roctor standar ile (Mg/m3) optimale	d 1,958 6,5	Résultats du Proctor modifié 1,958 Densité optimale (Mg/m3) 6,5 Teneur en eau optimale		
Test no.	Couche m	Ya kg/m3	w %	% du Proctor standard	Indice vides	notes de te	errain
1	0,5	1920	3,2	98,1%	0,433	12 décembre 1996	5
2	0,5	1928	5,9	98,5%	0,427		
3	0,5	1554	3,1	79,4%	0,770		

97,3%

96,0%

91,9%

95,8%

97,1%

82,5%

96,0%

-- -

0,444

0,463

0,529

0,466

0,447

0,703

0,464

4,1

3,4

3,2

5,1

4,3

4,1

6,1

- -

.

<u>TABLEAU A - 1</u>
Rapport des essais de calcul de densité - Sable et gravier

Projet Description Personnel	Barrick - Fina Sable et gravi Eric Bouchar	alisation - LTA er - site LTA d (Golder)				no. projet Compacteur	951-7156 rouleau
Gs	2,751	Résultats du F Densité optim Teneur en eau	Proctor standard ale (Mg/m3) 1 optimale	1,958 6,5	Résultats du Proctor modifié Densité optimale (Mg/m3) Teneur en eau optimale		
Test no.	Couche m	γ _d kg/m3	w %	% du Proctor standard	Indice vides	notes de ter	rain
1	0,5	1920	3,2	98,1%	0,433	12 décembre 1996	
2	0,5	1928	5,9	98,5%	0,427		
3	0,5	1554	3,1	79,4%	0,770		
4	0,5	1905	4,1	97,3%	0,444		
5	0,5	1880	3,4	96,0%	0,463		
6	0,5	1799	3,2	91,9%	0,529		
7	0,5	1876	5,1	95,8%	0,466		
8	0,5	1901	4,3	97,1%	0,447		
9	0,5	1615	4,1	82,5%	0,703		
10	0,5	1879	6,1	96,0%	0,464		

Projet Description	Barrick - Fina Sable et grav	no. projet	951-7156		
Personnel	Eric Bouchar	d (Golder)	Compacteur	rouleau	
Gs	2,751	Résultats du Proctor standard Densité optimale (Mg/m3) Teneur en eau optimale	2,05 6,5	Résultats du Proctor modifié Densité optimale (Mg/m3) Teneur en eau optimale	

Rapport des essais de calcul de densité - Sable et gravier

Test no.	Couche	Ya	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
11	0,5	1887	4,2	92,0%	0,458	8 janvier 1996
12	0,5	1975	3,5	96,3%	0,393	
13	` 0 <b>,</b> 5	2031	2,9	99,1%	0,355	
14	0,5	1857	5,4	90,6%	0,481	
15	0,5	1971	3,1	96,1%	0,396	
16	0,5	1898	3,5	92,6%	0,449	
17	0,5	2010	3,8	98,0%	0,369	
18	0,5	1857	4,1	90,6%	0,481	
19	Û,5	1888	2,8	92,1%	0,457	
20	0,5	1910	4,5	93,2%	0,440	
21	0,5	1925	3,8	93,9%	0,429	
22	0,5	1979	4	96,5%	0,390	
23	0,5	2013	4,1	98,2%	0,367	
24	0,5	1920	3,2	93,7%	0,433	
25	0,5	1905	4,1	92,9%	0,444	
26	0,5	2006	4,2	97,9%	0,371	
27	0,5	2020	3,8	98,5%	0,362	
28	0,5	1989	3,4	97,0%	0,383	
29	0,5	1990	3,8	97,1%	0,382	
30	0,5	2015	3,3	98,3%	0,365	
47	0,5	1879	4	91,7%	0,464	9 janvier 1996
48	0,5	1820	4,1	88,8%	0,512	
49	0,5	1966	3,8	95,9%	0,399	
50	0,5	1975	3,2	96,3%	0,393	
51	0,5	1864	6,1	90,9%	0,476	
52	0,5	1960	3,8	95,6%	0,404	
53	0,5	1879	5,4	91,7%	0,464	
54	0,5	1910	6,1	93,2%	0,440	
55	0,5	1 <b>918</b>	3,2	93,6%	0,434	
56	0,5	1898	4	92,6%	0,449	
57	0,5	1357	6,7	66,2%	1,027	1
58	0,5	1690	6,1	82,4%	0,628	
59	0,5	1606	5,2	78,3%	0,713	
60	0,5	1570	5,6	76,6%	0,752	
61	0,5	1473	4,6	.71,9%		
62	0,5	1713	5,7	83,6%	0,606	

Test no.	Couche	Ya	W	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
63	0,5	1795	5,8	87,6%	0,533	
<b>6</b> 4	0,5	1651	5	80,5%	0,666	10 janvier 1996
65	0,5	1773	2,2	86,5%	0,552	
66	0,5	2017	5,5	98,4%	0,364	
67	0,5	2021	4,8	98,6%	0,361	
68	0,5	2005	2,5	97,8%	0,372	
69	0,5	1993	3,9	97,2%	0,380	11 janvier 1996
70	0,5	1927	3,4	94,0%	0,428	
71	0,5	1928	3	94,0%	0,427	
72	0,5	2055	5,3	100,2%	0,339	
73	0,5	2052	5,1	100,1%	0,341	
74	0,5	2097	2,9	102,3%	0,312	
75	0,5	2045	5,3	99,8%	0,345	
76	0,5	2061	3,7	100,5%	0,335	
77	0,5	2030	3,2	99,0%	0,355	
78	-					
79	0,5	1998	3,8	97,5%	0,377	
80	0,5	1993	3,9	97,2%	0,380	
81	0,5	1959	3,3	95,6%	0,404	
82	0,5	1986	2,6	96,9%	0,385	
83	0,5	1898	3,3	92,6%	0,449	
84	0,5	1964	3	95,8%	0,401	
85	0,5	1996	2,2	97,4%	0,378	
86	0,5	2072	1,8	101,1%	0,328	12 janvier 1996
87	0.5	2030	4,3	99,0%	0,355	
88	0.5	2022	2.5	98.6%	0,361	
89	0.5	2234	3.6	109.0%	0,231	
90	0.5	2027	2.3	98.9%	0,357	
91	0.5	2091	4.8	102.0%	0,316	
92	0.5	2081	3.2	101.5%	0.322	
93	0,5	2020	3.2	98.5%	0.362	
94	0,5	2035	43	99.3%	0.352	
95		2070	21	101.0%	0.329	
95	0,5	2055	2,1	100.2%	0.339	
90 07		2000	28	102.3%	0.312	
08	0,5	2045	2,0	99.8%	0.345	
70 00	0,5	2013	2,2	101.6%	0.321	
<u>,,</u>		2002				

Projet Description Personnel	Barrick - Fina Cellules d'ess Eric Bouchard	lisation - LTA ai de compaction - d (Golder)	matériaux M	IRN - site LTA		no. projet Compacteur	951-7150 roulear	
Gs 2,819		Résultats du Pr Densité optima Teneur en eau	roctor standa le (Mg/m3) optimale	ard 1,714 15,5	Résultats du Proctor modifié Densité optimale (Mg/m3) Teneur en eau optimale			
Test no.	Couche	γ _d kg/m3	<b>w</b> %	% du Proctor standard	Indice vides	notes de te	rrain	
1	0,8	1572	23,5	91,7%	0,793	6 décembre - Cellule	:1	
2	0,8	1505	33,2	87,8%	0,873	Couche de 0.8 m d'é	paisseur	
3	0,8	1549	23,3	90,4%	0,820	5 passage du rouleau	1	
4	0,8	1476	22,5	86,1%	0,910			
5	0,8	1560	23,8	91,0%	0,807			
б	0,8	1525	25,2	89,0%	0,849			
7	0,8	1480	23,5	86,3%	0,905			
8	0,8	1551	17,1	90,5%	0,818			
9	0,8	1562	17,5	91,1%	0,805			
10	0,8	1486	21,3	86,7%	0,897			
lla	0,8	1563	19,7	91,2%	0,804	même place - 4 passa	ages	
12a	0,8	1593	19,8	92,9%	0,770	même place - 5 passa	ages	
13a	0,8	1511	22,5	88,2%	0,866	même place - 6 passa	ages	
14	0,4	1463	27,6	85,4%	0,927	6 décembre - Cellule	2	
15	0,4	1453	28,6	84,8%	0,940	Couche de 0.4 m d'é	paisseur	
16	0,4	1515	27,5	88,4%	0,861	Après le 4 ^{eme} passage	e, l'eau	
17	0,4	1465	27,8	85,5%	0,924	remonte, compaction bonne	n moins	
18	0,8	1385	24,9	80,8%	1,035	7 décembre - Cellule	1	
19	0,8	1445	22,8	84,3%	0,951	0.05 m de gel, comp	action	
20	0,8	1384	21,5	80,7%	1,037	moins bonne	n ni ni ni mana persana senan centera, con	
21	0,4	1437	22	83,8%	0,962	7 décembre - Cellule	2	
22	0,4	1397	26	81,5%	1,018	0.05 m de gel, comp	action	
23	0,4	1391	25,1	81,2%	1,027			

#### TABLEAU B - 1 Rapport des essais de calcul de densité - Résidus MRN

يوجد ويروب ويوجون والمرجون -----.

-

- -

951-7156

Projet	Barrick - Fina	lisation - LTA				no. projet	951-715	
Description	Zone sud -est	- matériaux MRN	V - síte LTA					
Personnel	Eric Bouchard	l (Golder)				Compacteur	rouleau	
<b>Gs</b> 2,819		Résultats du Proctor standardDensité optimale (Mg/m3)1,714Teneur en eau optimale15,5			Résultats du Proctor modifié Densité optimale (Mg/m3) Teneur en eau optimale			
	1	· · · · · · · · · · · · · · · · · · ·			1			
Test no.	Couche m	γ₀ kg/m3	w %	% du Proctor standard	Indice vides	notes de te	errain	
15a	0,8	1524	18,5	88,9%	0,850	13 décembre 1996	 F	
16a	0,8	1548	15,4	90,3%	0,821			
17a	0,8	1492	20	87,0%	0,889	ļ	Ĭ	
18a	0,8	1600	15,3	93,3%	0,762		ļ	
19a	0,8	1435	21,4	83,7%	0,964			
20a	0,8	1490	18,1	86,9%	0,892		· Ť	
21a	0,8	1535	19,1	89,6%	0,836		Ļ	
22a	0,8	1601	16,1	93,4%	0,761			
23a	0,8	1590	14,1	92,8%	0,773		Ĭ	
24	0,8	1505	18,4	87,8%	0,873			
25	0,8	1499	15,4	87,5%	0,881			
26	0,8	1475	17,1	86,1%	0,911		٦	
27	0,8	1456	24,1	84,9%	0,936		5	
28	0,8	1490	17,6	86,9%	0,892			
29	0,8	1253	20	73,1%	1,250		T	
30	0,8	1426	24,9	83,2%	0,977		r.	
31	0,8	1435	16	83,7%	0,964			
32	0,8	1495	17,5	87,2%	0,886		Ĩ	
33	0,8	1481	16,2	86,4%	0,903		ل	
34	Û,8	1505	20	87,8%	0,873		E.	
35	0,8	1422	18,7	83,0%	0,982		ី	
36	0,8	1439	24,1	84,0%	0,959		Ļ	
37	0,8	1597	15,6	93,2%	0,765			
38	0,8	1542	19,9	90,0%	0,828		Ĩ	
39	0,8	1505	19,8	87,8%	0,873		E	
39a	0,8	1583	17,7	92,4%	0,781			
40	0,8	1528	27,8	89,1%	0,845	15 décembre 1996	1	
41	0,8	1605	20,2	93,6%	0,756		ļ	
42	0,8	1646	19,8	96,0%	0,713			
43	0,8	1416	33,3	82,6%	0,991			
44	0,8	1625	21,1	94,8%	0,735	Ī	j	
45	0,8	1576	21,5	91,9%	0,789			
46	0,8	1586	22,1	92,5%	0,777			

# TABLEAU B - 2 Rapport des essais de calcul de densité - Résidus MRN

20

0
# TABLEAU B - 3

951-7156

# Rapport des essais de calcul de densité - Résidus MRN

Projet	Barrick - Fina	lisation - LTA	no. projet	951-7156			
Description	Matériaux MF	N - site LTA					
Personnel	Eric Bouchard	(Golder)	iolder)				
G	2 819	Résultats du Proctor standard Densité ontimale (Mg/m3)	1.65	Résultats du Proctor modifié Densité ontimale (Mg/m3)			
0.5	2,017	Teneur en eau optimale	20 %	Teneur en eau optimale			

				_		
Test no.	Couche	Yd	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
100	0,15	1514	15,6	91,8%	0,862	15 janvier 1996
101	0,15	1412	18,4	85,6%	0,996	
102	0,15	1562	16,2	94,7%	0,805	
103	0,15	1573	18,8	95,3%	0,792	
104	0,15	1596	15,8	96,7%	0,766	
105	0,15	1472	17,1	89,2%	0,915	
106	0,15	1596	14,8	96,7%	0,766	
107	0,15	1509	13,1	91,5%	0,868	
108	0,15	1534	15,8	93,0%	0,838	
109	0,15	1451	13,4	87,9%	0,943	
110	0,15	1550	17	93,9%	0,819	16 janvier 1996
111	0,15	1537	22,7	93,2%	0,834	
112	0,15	1536	19,4	93,1%	0,835	
113	0,15	1552	17,1	94,1%	0,816	
114	0,15	1481	19,3	89,8%	0,903	
115	0,15	1487	17,1	90,1%	0,896	
116	0,15	1530	13,1	92,7%	0,842	
117	0,15	1480	12,6	89,7%	0,905	
118	0,15	1555	13,1	94,2%	0,813	
119	0,15	1543	19,8	93,5%	0,827	
120	0,15	1580	18,8	95,8%	0,784	
121	0,15	1527	17,5	92,5%	0,846	
122	0,15	1539	14,5	93,3%	0,832	
123	0,15	1528	16,3	92,6%	0,845	
124	0,15	1401	30,2	84,9%	1,012	16 janvier 1996
125	0,15	1376	21,5	83,4%	1,049	Taux d'humidité très haut
126	0,15	1499	22	90,8%	0,881	Compaction moins bonne
127	0,15	- 1359	20,2	82,4%	1,074	
128	0,15	1525	18,9	92,4%	0,849	
129	0,15	1522	15,4	92,2%	0,852	
130	0,15	1317	28,8	79,8%	1,140	
131	0,15	1472	19,8	89,2%	0,915	
132	0,15	1546	17,6	93,7%	0,823	17 janvier 1996
133	0,15	1593	16,2	96,5%	0,770	
134	0,15	1535	18,6	93,0%	0,836	
135	0,15	1506	17,8	91,3%	0,872	

.....

# TABLEAU B - 3

Test no.	Couche	γ.	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
230	0.15	1597	14.7	96.8%	0.765	<u></u>
231	0,15	1556	16.3	94 3%	0,705	
232	0,15	1602	13 3	97.1%	0,012	
233	0.15	1656	16.6	100.4%	0,700	
233	0,15	1621	10,0	08.2%	0,702	
234	0,15	1400	23.5	90,2%	0,733	
235	0,15	1430	12 5	90,5%	0,392	
230	0,15	1514	11.9	99,070	0,715	30 janvier 1996
237	0,15	1581	16.9	91,876	0,802	So Janvier 1990
230	0,15	1/26	10,8	93,870	0,765	
239	0,15	1450	12.1	87,0%	0,963	
240	0,15	1470	13,1	89,3%	0,910	
241	0,15	1554	8,61	74,2%	0,814	
242	0,15	154/	9	93,8%	0,822	
243	0,15	1580	11,5	96,1%	0,777	
244	0,15	1465	16,4	88,8%	0,924	
245	0,15	1609	11,9	97,5%	0,752	21 (
246	0,15	1589	13,2	96,3%	0,774	31 janvier 1996
247	0,15	1508	17,4	91,4%	0,869	
248	0,15	1554	13,3	94,2%	0,814	
249	0,15	1490	21,5	90,3%	0,892	
250	0,15	1489	17,8	90,2%	0,893	
251	0,15	1515	16,9	91,8%	0,861	
252	0,15	1473	18,3	89,3%	0,914	2 février 1996
253	0,15	1579	17,2	95,7%	0,785	
254	0,15	1521	19,1	92,2%	0,853	
255	0,15	1587	17,3	96,2%	0,776	
256	0,15	1435	17,1	87,0%	0,964	
257	0,15	1508	20,3	91,4%	0,869	
258	0,15	1492	25,5	90,4%	0,889	5 février 1996
259	0,15	1422	29,4	86,2%	0,982	
260	0.15	1602	18,7	97,1%	0,760	
261	0,15	1524	23.3	92,4%	0,850	
262	0.15	1482	23.9	89.8%	0.902	
263	0.15	1490	26.6	90.3%	0.892	
264	0.15	1364	29.1	82.7%	1.067	
265	0.15	1592	20.5	96.5%	0.771	
266	0.15	1596	19.8	96.7%	0.766	·
267	0.15	1562	16.8	94 7%	0 805	
268	0.15	1572	20	95 30%	0 793	6 février 1996
200	0,15	15/2	170	91.2%	0,725 0 873	
209	0,15	1/66	210	88 80/	0,073	
270	0,15	1/10/	21,7 7A	80.0%	0,023	
271	0,15	1404	24 10 1	07,770	0,200	
2/2	0,15	1303	10,1	91,270	0,073	
2/3	0,15	1000	19	94,2%	0,813	
274	0,15	1570	17	95,2%	0,790	
275	0,15	1569	16,2	95,1%	0,797	

## TABLEAU B - 3

951-7156

Test no.	Couche	Ya	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
183	0,15	1619	16,5	98,1%	0,741	
184	0,15	1490	18,3	90,3%	0,892	
185	0,15	1518	17,7	92,0%	0,857	
186	0,15	1516	18,6	91,9%	0,859	
187	0,15	1600	13,2	97,0%	0,762	
188	0,15	1616	20	97,9%	0,744	
18 <del>9</del>	0,15	1610	13,8	97,6%	0,751	
190	0,15	1622	18,1	98,3%	0,738	
191	0,15	1585	14,6	96,1%	0,779	
192	nđ	nđ	nd			
193	0,15	1605	14,1	97,3%	0,756	
194	0,15	1568	10,3	95,0%	0,798	
195	0,15	1587	10,5	96,2%	0,776	
196	0,15	1447	16,6	87,7%	0,948	
197	0,15	1571	12,6	95,2%	0,794	
198	0,15	1521	19,6	92,2%	0,853	
199	0,15	1468	14,5	89,0%	0,920	24 janvier 1996
200	0,15	1541	17,9	93,4%	0,829	
201	0,15	1520	15,9	92,1%	0,855	
202	0,15	1417	18,1	85,9%	0,989	
203	0,15	1417	18,3	85,9%	0,989	
204	0,15	1553	14,3	94,1%	0,815	
205	0,15	1590	9,2	96,4%	0,773	
206	0,15	· 1523	1 <b>6,4</b>	92,3%	0,851	
207	0,15	1538	24	93,2%	0,833	25 janvier 1996
208	0,15	1456	11,4	88,2%	0,936	
209	0,15	1559	15,6	94,5%	0,808	
210	0,15	1527	10,5	92,5%	0,846	
211	0,15	1506	20	91,3%	0.872	
212	0,15	1561	16.6	94,6%	0.806	
213	0.15	1486	12.9	90,1%	0.897	
214	0.15	1448	23.1	87.8%	0.947	
215	0,15	1554	13.3	94,2%	0,814	
216	0,15	1522	17.3	92,2%	0,852	
217	0.15	1459	19.3	88.4%	0.932	
218	0,15	1562	19.5	94,7%	0.805	
219	0.15	1523	18.7	92.3%	0.851	
220	0.15	1581	12,2	95.8%	0.783	
221	0.15	1548	13.1	93.8%	0.821	
222	0,15	1470	12.9	89,1%	0,918	
223	0.15	1409	25,4	85,4%	1.001	
224	0.15	1471	11.8	89.2%	0.916	
225	0.15	1376	18,3	83,4%	1.049	
226	0.15	1532	22.2	92,8%	0,840	
227	0.15	1565	14.4	94.8%	0.801	26 janvier 1996
228	0.15	1523	13.3	92.3%	0.851	
229	0.15	1544	11.2	93.6%	0.826	

....

-

-- --

- -

- - -

- -

Г

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Test no.	Couche	Ya ka/m3	W %	% du Proctor	Indice	notes de terrain
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	136	0.15	1534	14.4	93.0%	0.838	
138         0,15         1510         14,7         91,5%         0,867           139         0,15         1561         17,3         94,6%         0,806           140         0,15         1581         16,2         95,8%         0,783           141         0,15         1523         10,6         100,3%         0,703           143         0,15         1655         10,6         100,3%         0,703           144         0,15         1577         18,6         95,6%         0,788           145         0,15         1658         10,9         100,5%         0,700           147         0,15         1658         10,9         100,5%         0,707           148         0,15         1580         16,1         95,8%         0,784           149         0,15         1580         16,1         95,8%         0,707           151         0,15         1533         18,1         93,0%         0,833           152         0,15         1641         12,7         92,2%         0,853           153         0,15         1641         12,7         94,5%         0,718           155         0,15	137	0.15	1611	15.3	97.6%	0.750	
	138	0.15	1510	14.7	91.5%	0.867	
	139	0.15	1561	17.3	94.6%	0.806	
	140	0.15	1581	16.2	95.8%	0,783	
142       0,15       1623       17,6       98,4%       0,737         143       0,15       1655       10,6       100,3%       0,703         144       0,15       1557       18,6       95,6%       0,788         145       0,15       1594       19,3       96,6%       0,769         147       0,15       1668       10,9       100,5%       0,773         148       0,15       1519       12,7       92,1%       0,856         149       0,15       1651       10,8       100,1%       0,707         151       0,15       1535       18,1       93,0%       0,836         152       0,15       1521       17,7       92,2%       0,833         153       0,15       1483       19,5       89,9%       0,901         154       0,15       1661       14,3       97,6%       0,751         155       0,15       1641       12,7       99,5%       0,703         155       0,15       1641       12,7       99,5%       0,703         155       0,15       1657       16,1       100,3%       0,703         156       0,15       1657	141	0.15	1517	12.8	91,9%	0,858	
143 $0,15$ 165510,6 $100,3\%$ $0,703$ 144 $0,15$ 157718,6 $95,6\%$ $0,788$ 145 $0,15$ 1594 $19,3$ $96,6\%$ $0,769$ 146 $0,15$ 1658 $10,9$ $100,5\%$ $0,700$ 147 $0,15$ 1508 $15,2$ $97,5\%$ $0,753$ 148 $0,15$ 1519 $12,7$ $92,1\%$ $0,856$ 149 $0,15$ 1551 $10,8$ $100,1\%$ $0,707$ 151 $0,15$ 1551 $10,8$ $100,1\%$ $0,707$ 152 $0,15$ 1521 $17,7$ $92,2\%$ $0,853$ 153 $0,15$ 1483 $18,9$ $96,6\%$ $0,769$ 155 $0,15$ 1610 $14,3$ $97,6\%$ $0,718$ 156 $0,15$ 1641 $12,7$ $99,5\%$ $0,718$ 157 $0,15$ 1637 $16,8$ $99,2\%$ $0,722$ 160 $0,15$ 1641 $12,7$ $99,5\%$ $0,718$ 157 $0,15$ 1637 $21,8$ $99,2\%$ $0,722$ 160 $0,15$ 1581 $21,7$ $95,8\%$ $0,763$ 161 $0,15$ 1637 $21,8$ $99,2\%$ $0,722$ 163 $0,15$ 1638 $20,6$ $0,770$ 164 $0,15$ 1669 $20,5$ $101,2\%$ $0,689$ 165 $0,15$ 1601 $18,4$ $97,0\%$ $0,761$ 167 $0,15$ 1672 $20,2$ $96,8\%$ $0,765$ 168 $0,15$ 1	142	0.15	1623	17.6	98,4%	0,737	
144 $0,15$ $1577$ $18,6$ $95,6\%$ $0,788$ 145 $0,15$ $1658$ $10,9$ $100,5\%$ $0,700$ 147 $0,15$ $1608$ $15,2$ $97,5\%$ $0,753$ 148 $0,15$ $1519$ $12,7$ $92,1\%$ $0,856$ 149 $0,15$ $1561$ $10,8$ $100,1\%$ $0,707$ 151 $0,15$ $1535$ $18,1$ $93,0\%$ $0,836$ 152 $0,15$ $1483$ $19,5$ $89,9\%$ $0,901$ 154 $0,15$ $1483$ $19,5$ $89,9\%$ $0,718$ 155 $0,15$ $1483$ $19,5$ $89,9\%$ $0,718$ 155 $0,15$ $1483$ $19,5$ $89,9\%$ $0,718$ 156 $0,15$ $1610$ $14,3$ $97,6\%$ $0,751$ 157 $0,15$ $1637$ $16,8$ $99,2\%$ $0,722$ 160 $0,15$ $1581$ $21,7$ $95,8\%$ $0,770$ 156 $0,15$ $1581$ <td< td=""><td>143</td><td>0.15</td><td>1655</td><td>10.6</td><td>100,3%</td><td>0,703</td><td>  6</td></td<>	143	0.15	1655	10.6	100,3%	0,703	6
145 $0,15$ $1594$ $19,3$ $96,6\%$ $0,769$ 146 $0,15$ $1658$ $10,9$ $100,5\%$ $0,700$ 147 $0,15$ $1668$ $15,2$ $97,5\%$ $0,753$ 148 $0,15$ $1519$ $12,7$ $92,1\%$ $0,856$ 149 $0,15$ $1580$ $16,1$ $95,8\%$ $0,784$ 150 $0,15$ $1535$ $18,1$ $93,0\%$ $0,836$ 152 $0,15$ $1521$ $17,7$ $92,2\%$ $0,833$ 153 $0,15$ $1483$ $19,5$ $89,9\%$ $0,901$ 154 $0,15$ $1594$ $18,9$ $96,6\%$ $0,769$ 155 $0,15$ $1488$ $18,2$ $90,2\%$ $0,894$ 156 $0,15$ $1610$ $14,3$ $97,6\%$ $0,751$ 157 $0,15$ $16655$ $16,1$ $100,3\%$ $0,703$ 158 $0,15$ $1641$ $12,7$ $99,5\%$ $0,718$ 160 $0,15$ $1581$ $21,7$ $99,5\%$ $0,722$ 160 $0,15$ $1581$ $21,7$ $99,5\%$ $0,722$ 164 $0,15$ $1667$ $18,5$ $010,2\%$ $0,689$ 165 $0,15$ $1593$ $19,2$ $96,5\%$ $0,770$ 166 $0,15$ $1597$ $20,2$ $96,5\%$ $0,771$ 170 $0,15$ $1667$ $18,5$ $010,0\%$ $0,681$ 167 $0,15$ $1649$ $20,4$ $99,9\%$ $0,710$ 171 $0,15$ $1592$ $21,2$ $96,5\%$	144	0.15	1577	18.6	95.6%	0,788	3
146 $0,15$ 1658 $10,9$ $100,5\%$ $0,700$ 147 $0,15$ 1608 $15,2$ $97,5\%$ $0,753$ 148 $0,15$ 1519 $12,7$ $92,1\%$ $0,856$ 149 $0,15$ 1580 $16,1$ $95,8\%$ $0,784$ 150 $0,15$ 1551 $10,8$ $100,1\%$ $0,784$ 151 $0,15$ 1521 $17,7$ $92,2\%$ $0,853$ 153 $0,15$ 1521 $17,7$ $92,2\%$ $0,853$ 153 $0,15$ 1483 $19,5$ $89,9\%$ $0,901$ 154 $0,15$ 1610 $14,3$ $97,6\%$ $0,751$ 157 $0,15$ 1641 $12,7$ $99,5\%$ $0,718$ 158 $0,15$ 1641 $12,7$ $99,5\%$ $0,7221$ 160 $0,15$ 1581 $21,7$ $95,5\%$ $0,770$ 163 $0,15$ 1637 $21,8$ $99,2\%$ $0,7221$ 164 $0,15$ 1637 $21,8$ $99,2\%$ $0,7221$ 163 $0,15$ 1637 $21,8$ $99,2\%$ $0,721$ 163 $0,15$ 1637 $21,8$ $99,2\%$ $0,770$ 166 $0,15$ 1601 $18,4$ $97,0\%$ $0,761$ 167 $0,15$ 1697 $20,2$ $96,8\%$ $0,765$ 169 $0,15$ 1597 $20,2$ $96,8\%$ $0,765$ 169 $0,15$ 1592 $21,2$ $96,5\%$ $0,770$ 170 $0,15$ 1642 $19,2$ $94,8\%$ $0,770$ 171	145	0.15	1594	19.3	96.6%	0,769	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	146	0.15	1658	10.9	100.5%	0.700	l f
148 $0,15$ 151912,7 $92,1\%$ $0,856$ 149 $0,15$ 1580 $16,1$ $95,8\%$ $0,784$ 150 $0,15$ 1651 $100,1\%$ $0,707$ 151 $0,15$ 1521 $17,7$ $92,2\%$ $0,836$ 152 $0,15$ 1521 $17,7$ $92,2\%$ $0,836$ 153 $0,15$ 1521 $17,7$ $92,2\%$ $0,836$ 154 $0,15$ 1594 $18,9$ $96,6\%$ $0,769$ 155 $0,15$ 1488 $18,2$ $90,2\%$ $0,894$ 156 $0,15$ 1610 $14,3$ $97,6\%$ $0,718$ 157 $0,15$ 1655 $16,1$ $100,3\%$ $0,703$ 158 $0,15$ 1641 $12,7$ $99,5\%$ $0,718$ 159 $0,15$ 1637 $16,8$ $99,2\%$ $0,722$ 160 $0,15$ 1514 $14,3$ $91,8\%$ $0,862$ 161 $0,15$ 1637 $21,8$ $99,2\%$ $0,7721$ 163 $0,15$ 1637 $21,8$ $99,2\%$ $0,7721$ 163 $0,15$ 1637 $21,8$ $99,2\%$ $0,7721$ 164 $0,15$ 1667 $18,5$ $101,2\%$ $0,689$ 165 $0,15$ 1593 $19,2$ $96,5\%$ $0,770$ 166 $0,15$ 1597 $20,2$ $96,8\%$ $0,765$ 169 $0,15$ 1592 $21,2$ $96,5\%$ $0,771$ 170 $0,15$ 1667 $18,5$ $101,0\%$ $0,692$ 173 $0,15$	147	0.15	1608	15.2	97.5%	0.753	
1490,15158016,193,8%0,7841500,15165110,8100,1%0,7071510,15153518,193,0%0,8361520,15152117,792,2%0,8531530,15148319,589,9%0,9011540,15159418,996,6%0,7691550,15161014,397,6%0,7511570,15166316,1100,3%0,7031580,15164112,799,5%0,7131590,15163716,899,2%0,7221600,15151414,391,8%0,8621610,15158121,798,8%0,7831620,15163712,899,3%0,7211630,15163721,899,3%0,7221640,15166920,5101,2%0,6891650,15166718,5101,0%0,6911660,15166718,5101,0%0,6811680,15159221,296,5%0,7701700,15164920,499,9%0,7101710,15167220,1101,3%0,6861720,15153112,792,8%0,7331750,15166314,2101,0%0,6921760,15153312,792,8%0,737 <t< td=""><td>148</td><td>0.15</td><td>1519</td><td>12.7</td><td>92.1%</td><td>0.856</td><td></td></t<>	148	0.15	1519	12.7	92.1%	0.856	
1500,15165110,110,140,7071510,15153518,193,0%0,8361520,15152117,792,2%0,8351530,15148319,589,9%0,9011540,15159418,996,6%0,7691550,15148818,290,2%0,8941560,15161014,397,6%0,7031570,15164112,799,5%0,7181590,15164112,799,5%0,7221600,15151414,391,8%0,8621610,15158121,795,8%0,7211630,15163721,899,2%0,7221640,15163820,699,3%0,7211630,15163721,899,2%0,7221640,15166920,5101,2%0,6891650,15160118,497,0%0,7611660,15160118,497,0%0,7611670,15166718,5101,0%0,6911680,15159319,296,5%0,7701700,15164920,499,9%0,7101710,15162319,294,8%0,8221730,15153112,792,8%0,8411740,15162319,294,8%0,737175	149	0.15	1580	16.1	95.8%	0.784	
1510,15153153163,10,131520,15152117,792,2%0,8331530,15148319,589,9%0,9011540,15159418,996,6%0,7691550,15148818,290,2%0,8941560,15161014,397,6%0,7511570,15164112,799,5%0,7181590,15163716,899,2%0,7221600,15151414,391,8%0,8621610,15163716,899,2%0,7211630,15163721,899,2%0,7221640,15163721,899,2%0,7211630,15163721,899,2%0,7611640,15166920,5101,2%0,6891650,15160118,497,0%0,7611660,15160118,497,0%0,7611670,15166718,5101,0%0,6911680,15159221,296,5%0,7701700,15162319,798,9%0,7101710,15165419,294,8%0,8021720,15154112,792,8%0,8021730,15153112,792,8%0,7101740,15162319,798,9%0,705175 <td>150</td> <td>0.15</td> <td>1651</td> <td>10.8</td> <td>100.1%</td> <td>0.707</td> <td></td>	150	0.15	1651	10.8	100.1%	0.707	
15.115.215.215.729.2%0.8531530,15148319,5 $89.9\%$ 0,9011540,15159418,996.6%0,7691550,15148818,290.2%0,8941560,15161014,397.6%0,7031570,15165516,1100.3%0,7031580,15164112,799.5%0,7181590,15163716,899.2%0,7221600,15151414,391.8%0,8621610,15158121,795.8%0,7831620,15163721,899.2%0,7221630,15163721,899.2%0,7221640,15166920,5101.2%0,6891650,15159319,296.5%0,7701660,15160118,497.0%0,7611670,15166718,5101.0%0,6911680,15159720,296.8%0,7651690,15159221,296.5%0,7101700,15164920,499.9%0,7101710,15162319,798.4%0,8021730,15153112,792.8%0,7341740,15162319,798.4%0,7371750,15166614,2101,0%0,692 <t< td=""><td>151</td><td>0.15</td><td>1535</td><td>18.1</td><td>93.0%</td><td>0.836</td><td>   </td></t<>	151	0.15	1535	18.1	93.0%	0.836	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	152	0.15	1521	177	92.2%	0.853	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	152	0.15	1483	195	89.9%	0,000	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	155	0.15	1594	18.9	96.6%	0 769	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	155	0.15	1488	18.2	90.2%	0.894	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	155	0,15	1610	14.3	97.6%	0,054	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	157	0,15	1655	16.1	100.3%	0,703	T
1560,15161112,79,9,2%0,7221600,15151414,391,8%0,7221610,15158121,795,8%0,7831620,15163820,699,3%0,7211630,15163721,899,2%0,7221640,15166920,5101,2%0,6891650,15163721,899,2%0,7701660,15166718,497,0%0,7611670,15166718,5101,0%0,6911680,15159720,296,8%0,7651690,15159221,296,5%0,7711700,15164920,499,9%0,7101710,15164920,499,9%0,8021720,15164920,499,9%0,8021730,15166614,2101,3%0,6861720,15166614,2101,0%0,6921730,15165315,3100,5%0,7701750,15165315,3100,5%0,7001770,1516538,5100,2%0,7051780,1516538,5100,2%0,7051790,1516538,5%0,7341810,15162618,898,5%0,7341820,15157513,695,5%0,79023 janvier 1996<	157	0,15	1641	10,1	99.5%	0.718	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	150	0,15	1637	16.8	99.2%	0,710	
100       0,15       1514       14,5       74,65       0,622       15,144       15,15         161       0,15       1581       21,7       95,8%       0,783       0,783         162       0,15       1637       21,8       99,2%       0,722       0,689         163       0,15       1637       21,8       99,2%       0,721       0,689         164       0,15       1669       20,5       101,2%       0,689       0,691         165       0,15       1601       18,4       97,0%       0,761       0,161         166       0,15       1667       18,5       101,0%       0,691       0,161         168       0,15       1597       20,2       96,5%       0,771       0,171         170       0,15       1667       18,5       101,0%       0,686       0,171         171       0,15       1672       20,1       101,3%       0,686       0,171         171       0,15       1564       19,2       94,8%       0,802       22 janvier 1996         173       0,15       1531       12,7       92,8%       0,841       0,15         174       0,15       1623	159	0,15	1514	14.3	91.8%	0.862	18 janvier 1996
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	161	0,15	1581	21.7	95.8%	0,302	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	162	0,15	1638	21,7	00 3%	0,705	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	162	0,15	1638	20,0	00.2%	0,727	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103	0,15	1660	21,0	101.2%	0,722	
163 $0,13$ $153$ $15,2$ $9,374$ $0,770$ $166$ $0,15$ $1601$ $18,4$ $97,0%$ $0,761$ $167$ $0,15$ $1667$ $18,5$ $101,0%$ $0,691$ $168$ $0,15$ $1597$ $20,2$ $96,8%$ $0,765$ $169$ $0,15$ $1592$ $21,2$ $96,5%$ $0,771$ $170$ $0,15$ $1649$ $20,4$ $99,9%$ $0,710$ $171$ $0,15$ $1672$ $20,1$ $101,3%$ $0,686$ $172$ $0,15$ $1564$ $19,2$ $94,8%$ $0,802$ $22$ janvier 1996 $173$ $0,15$ $1531$ $12,7$ $92,8%$ $0,841$ $174$ $0,15$ $1623$ $19,7$ $98,4%$ $0,737$ $175$ $0,15$ $1666$ $14,2$ $101,0%$ $0,692$ $176$ $0,15$ $1593$ $16,1$ $96,5%$ $0,770$ $177$ $0,15$ $1658$ $15,3$ $100,5%$ $0,700$ $178$ $0,15$ $1653$ $8,5$ $100,2%$ $0,705$ $179$ $0,15$ $1632$ $16,5$ $98,9%$ $0,727$ $180$ $0,15$ $1560$ $21,1$ $94,5%$ $0,807$ $181$ $0,15$ $1626$ $18,8$ $98,5%$ $0,734$ $182$ $0,15$ $1575$ $13,6$ $95,5%$ $0,790$ $23$ janvier 1996	104	0,15	1009	20,5	06 5%	0,035	
166 $0,13$ $1801$ $18,4$ $9,03$ $0,701$ $167$ $0,15$ $1667$ $18,5$ $101,0%$ $0,691$ $168$ $0,15$ $1597$ $20,2$ $96,8%$ $0,765$ $169$ $0,15$ $1592$ $21,2$ $96,5%$ $0,771$ $170$ $0,15$ $1649$ $20,4$ $99,9%$ $0,710$ $171$ $0,15$ $1672$ $20,1$ $101,3%$ $0,686$ $172$ $0,15$ $1564$ $19,2$ $94,8%$ $0,802$ $22$ janvier 1996 $173$ $0,15$ $1531$ $12,7$ $92,8%$ $0,841$ $174$ $0,15$ $1623$ $19,7$ $98,4%$ $0,737$ $175$ $0,15$ $1666$ $14,2$ $101,0%$ $0,692$ $176$ $0,15$ $1593$ $16,1$ $96,5%$ $0,770$ $177$ $0,15$ $1658$ $15,3$ $100,5%$ $0,700$ $178$ $0,15$ $1653$ $8,5$ $100,2%$ $0,705$ $179$ $0,15$ $1632$ $16,5$ $98,9%$ $0,727$ $180$ $0,15$ $1560$ $21,1$ $94,5%$ $0,807$ $181$ $0,15$ $1626$ $18,8$ $98,5%$ $0,734$ $182$ $0,15$ $1575$ $13,6$ $95,5%$ $0,790$ $23$ janvier 1996	163	0,15	1593	19,2	90,576	0,770	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	0,15	1001	10,4	57,076	0,701	. <b> </b>
168 $0,13$ $1977$ $20,2$ $90,874$ $0,703$ $169$ $0,15$ $1592$ $21,2$ $96,5%$ $0,771$ $170$ $0,15$ $1649$ $20,4$ $99,9%$ $0,710$ $171$ $0,15$ $1672$ $20,1$ $101,3%$ $0,686$ $172$ $0,15$ $1564$ $19,2$ $94,8%$ $0,802$ $22$ janvier 1996 $173$ $0,15$ $1531$ $12,7$ $92,8%$ $0,841$ $174$ $0,15$ $1623$ $19,7$ $98,4%$ $0,737$ $175$ $0,15$ $1666$ $14,2$ $101,0%$ $0,692$ $176$ $0,15$ $1593$ $16,1$ $96,5%$ $0,700$ $177$ $0,15$ $1658$ $15,3$ $100,5%$ $0,700$ $178$ $0,15$ $1653$ $8,5$ $100,2%$ $0,705$ $179$ $0,15$ $1632$ $16,5$ $98,9%$ $0,727$ $180$ $0,15$ $1560$ $21,1$ $94,5%$ $0,807$ $181$ $0,15$ $1626$ $18,8$ $98,5%$ $0,734$ $182$ $0,15$ $1575$ $13,6$ $95,5%$ $0,790$ $23$ janvier 1996	167	0,15	1607	10,5	06.894	0,091	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	108	0,15	1502	20,2	90,070 06 50/	0,705	1 1
1700,13164920,499,9700,7101710,15167220,1101,3%0,6861720,15156419,294,8%0,80222 janvier 19961730,15153112,792,8%0,8411740,15162319,798,4%0,7371750,15166614,2101,0%0,6921760,15159316,196,5%0,7701770,15165815,3100,5%0,7001780,1516538,5100,2%0,7051790,15163216,598,9%0,7271800,15156021,194,5%0,8071810,15162618,898,5%0,7341820,15157513,695,5%0,79023 janvier 1996	107	0,15	1372	20.4	00.0%	0,771	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170	0,15	1047	20,4	101 20/	0,710	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	171	0,15	1672	10.2	QA 80/	0,000	22 janvier 1996
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	172		1504	12,2	07 8%	0,802	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/3	0,15	1202	12,1	08 /0/	0,071	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	174		1623	17,1	101.0%	0,757	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	175	0,15	1600	14,4	06 50/	0,032	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/0	0,15	1259	10,1	10,5%	0,700	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1//	0,15	1650	د,د ء ہ	100,370	0,700	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/8	0,15	1000	0,0 165	100,2%	0,703	
180         0,15         1560         21,1         94,5%         0,807           181         0,15         1626         18,8         98,5%         0,734           182         0,15         1575         13,6         95,5%         0,790         23 janvier 1996	179	0,15	1632	10,5	70,7%	0,121	
181         0,15         1626         18,8         98,5%         0,734           182         0,15         1575         13,6         95,5%         0,790         23 janvier 1996	180	0,15	1560	21,1	94,5%	0,807	
182 0,15 1575 13,6 95,5% 0,790 23 janvier 1996	181	0,15	1626	18,8	98,5%	0,734	22 insuries 1006
	182	0,15	1575	13,6	93,3%	0,/90	

.

- -

TABLEAU B - 3

951-7156

Test no.	Couche	Ya	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	[
277	0,15	1508	23,3	91,4%	0,869	
278	0,15	1441	22,8	87,3%	0,956	
279	0,15	1499	19,6	90,8%	0,881	
280	0,15	1526	21,6	92,5%	0,847	
281	0,15	1416	27,4	85,8%	0.991	
282	0,15	1619	19,1	98,1%	0,741	8 février 1996
283	0,15	1614	14,1	97.8%	0,747	
284	0.15	1576	19.4	95.5%	0.789	
285	0.15	1597	22	96.8%	0.765	
286	0.15	1577	19.8	95.6%	0 788	
287	0.15	1607	20.1	97.4%	0 754	
288	0.15	1528	26,9	92.6%	0.845	
289	0.15	1589	20,5	96.3%	0,045	
200	0.15	1582	22,5	95.9%	0,774	
290	0.15	1668	20.2	101 1%	0,782	
201	0,15	1637	20,2	00.7%	0,070	
292	0,15	1606	21,7	97.3%	0,722	
293	0.15	1643	20,4	99.6%	0,755	
204	0.15	1625	10.8	98 5%	0,710	
295	0.15	1605	20.2	97.3%	0,755	
290	0,15	1500	10.1	05 104	0,750	
208	0,15	1508	20.4	97 5%	0,773	
298	0,15	1530	20,4	97,270	0,755	
300	0,15	1580	23.1	92,776	0,842	
301	0,15	1530	23,1	97 7%	0,784	
302	0,15	1584	17	96.0%	0,742	
302	0,15	1515	23.0	91.8%	0,861	
304	0,15	1574	16	95.4%	0,001	
305	0.15	1488	29.4	90.2%	0,894	
305	0,15	1538	14 1	93.2%	0,833	
307	0,15	1553	163	94 7%	0,804	
202	0,15	1505	22.1	08 0%	0,304	
200	0,15	1629	1/1	00.30/	0,743	
210	0,15	1038	14,1	07 20/	0,721	
211	0,15	1667	14,0	37,370 04 40/	0,755	
212	0,15	1537	24,1	94,470	0,011	
312	0,15	1545	23	93,0%	0,823	
313	0,15	1337	22,5	01,070 100 (0/	1,108	
314	0,15	1660	19,9	100,0%	0,698	
315	0,15	1669	10.0	101,2%	0,089	·-····
516	0,15	1025	19,8	70,3%	0,735	
317	0,15	15/8	19,1	75,0%	0,780	
318	0,15	1584	22,9	90,0%	0,780	
319	0,15	1527	17,5	92,3%	0,846	
320	0,15	1537	19,4	93,2%	0,834	
321	0,15	1502	26,7	91,0%	0,877	
322	0,15	1636	18,8	99,2%	0,723	
323	0,15	1619	22,4	98,1%	0,741	

	1	1		- Y	· · · · · · · · · · · · · · · · · · ·	
Test no.	Couche	Y.	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	•⁄•	standard	vides	
324	0.15	1630	15.7	98.8%	0.729	
325	0.15	1630	15,1	98.8%	0,729	
326	0.15	1545	18.9	93.6%	0,825	
327	0.15	1574	14.7	95.4%	0 791	
328	0.15	1532	12.5	92.8%	0 840	
329	0.15	1609	13.6	97.5%	0,752	
330	0.15	1534	11.8	93.0%	0.838	13 février 1996
331	0.15	1559	14 3	94 5%	0,808	
332	0.15	1571	10	95.2%	0 794	
333	0.15	1666	13.2	101.0%	0,692	
334	0.15	1645	13	99.7%	0,072	
335	0.15	1608	162	97 5%	0.753	
336	0.15	1570	13,2	95.2%	0,705	
337	0.15	1511	17.0 17.2	01 6%	0,790 A 866	
338	0,15	1615	12.0	07.00/	0,000	
330	0,15 A 15	1013	12,0	71,770	0,740	
370	0,15	1501	10,2	72,070	0,703	
241	0,15	1033	12,5	100,3%	0,703	
241	0,15	1721	13	104,3%	0,038	
342	0,15	1640	13,3	99,4%	0,719	
343	0,15	1595	12,8	90,7%	0,707	
344	0,15	1505	13,1	94,8%	0,801	
345	0,15	1580	14,1	95,8%	0,784	
346	0,15	1640	13,4	99,4%	0,719	
347	0,15	1620	13	98,2%	0,740	
348	0,15	1603	12,7	97,3%	0,756	
349	0,15	1007	13,9	101,0%	0,691	
350	0,15	1652	9,4	100,1%	0,706	
351	0,15	1534	13	93,0%	0,838	
352	0,15	1564	13,8	94,8%	0,802	
353	0,15	1526	11,7	92,5%	0,847	
354	0,15	1598	11,5	96,8%	0,764	
355	0,15	1563	8,7	94,7%	0,804	
356	0,15	1556	13,5	94,3%	0,812	
357	0,15	1726	15,9	104,6%	0,633	14 février 1996
358	0,15	1596	16,3	96,7%	0,766	
359	0,15	1646	17,1	99,8%	0,713	· · ·
360	0,15	1692	15,6	102,5%	0,666	[
361	0,15	1784	16,4	108,1%	0,580	
362	0,15	1672	12,4	101,3%	0,686	
363	0,15	1553	21,4	94,1%	0,815	
364	0,15	1630	15,5	98,8%	0,729	
365	0,15	1716	17,7	104,0%	0,643	
366	0,15	1625	15,8	98,5%	0,735	
367	0,15	1565	16,4	94,8%	0,801	
368	0,15	1710	17,9	103,6%	0,649	
369	0,15	1650	16,1	100,0%	0,708	
370	0,15	1641	16	99,5%	0,718	

## TABLEAU B - 3

951-7156

Test no.Couche $\gamma_4$ w $\gamma_6$ du ProctorIndicenotes de terrain3710,15157015,195,2%0,7963720,15159515,896,7%0,7673730,15161016,197,6%0,7513740,15154816,393,8%0,8213750,15151216,491,6%0,8643770,15156619,894,9%0,8003780,15154816,293,7%0,8233790,15156619,894,9%0,8003800,15157614,595,5%0,7893810,15156016,294,5%0,8073820,15167810,4101,7%0,6803830,15163912,499,3%0,7203840,1515598,994,5%0,8083860,15158011,695,8%0,7843870,1515598,994,5%0,8083880,15175215106,2%0,6063900,15175215106,2%0,6063910,15168311,5102,0%0,6753920,15172113,4104,3%0,6383930,15161912,198,1%0,7413940,15174016,5105,5%0,203940,15174016,51
mkg/m3 $%$ standardvides3710,15157015,195,2%0,7963720,15159515,896,7%0,7673730,15161016,197,6%0,7513740,15154816,393,8%0,82115 février 19963750,15155813,694,4%0,80912 heures après3760,15151216,491,6%0,864Les essais ont été faits3770,15156619,894,9%0,80012 heures après3780,15157614,595,5%0,7893800,15158015,195,8%0,8073820,15167810,4101,7%0,68015 février 19963830,15163912,499,3%0,7203840,1515598,994,5%0,80815 février 19963850,15158011,695,8%0,7843860,15158011,695,8%0,8083870,15156613,5106,2%0,6093890,15175215106,2%0,6093890,15175513,9106,4%0,6383910,15168311,5102,0%0,6753920,15172113,4104,3%0,6383930,15161912,198,1%0,7413940,151740 <td< th=""></td<>
371 $0,15$ $1570$ $15,1$ $95,2%$ $0,796$ $372$ $0,15$ $1595$ $15,8$ $96,7%$ $0,767$ $373$ $0,15$ $1610$ $16,1$ $97,6%$ $0,751$ $374$ $0,15$ $1548$ $16,3$ $93,8%$ $0,821$ $15$ $375$ $0,15$ $1558$ $13,6$ $94,4%$ $0,809$ Les essais ont été faits $376$ $0,15$ $1512$ $16,4$ $91,6%$ $0,864$ Les essais ont été faits $377$ $0,15$ $1566$ $19,8$ $94,9%$ $0,800$ 12 hcures après $378$ $0,15$ $1576$ $14,5$ $95,5%$ $0,789$ $380$ $0,15$ $1580$ $15,1$ $95,8%$ $0,784$ $381$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $383$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $384$ $0,15$ $1537$ $11,8$ $93,2%$ $0,808$ $386$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1537$ $11,8$ $93,2%$ $0,808$ $386$ $0,15$ $1559$ $8,9$ $94,5%$ $0,609$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1721$ $13,4$ $104,3%$ $0,620$ $394$ $0,15$
372 $0,15$ $1595$ $15,8$ $96,7%$ $0,767$ $373$ $0,15$ $1610$ $16,1$ $97,6%$ $0,751$ $374$ $0,15$ $1548$ $16,3$ $93,8%$ $0,821$ $15$ février 1996 $375$ $0,15$ $1558$ $13,6$ $94,4%$ $0,809$ Les essais ont été faits $376$ $0,15$ $1512$ $16,4$ $91,6%$ $0,864$ Les essais ont été faits $377$ $0,15$ $1566$ $19,8$ $94,9%$ $0,800$ $12$ heures après $378$ $0,15$ $1546$ $16,2$ $93,7%$ $0,823$ l'emplacement $379$ $0,15$ $1576$ $14,5$ $95,5%$ $0,784$ $380$ $0,15$ $1560$ $16,2$ $94,5%$ $0,807$ $382$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $383$ $0,15$ $1639$ $12,4$ $99,3%$ $0,720$ $384$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,2%$ $0,733$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
374 $0,15$ $1548$ $16,3$ $93,8%$ $0,821$ $15 fevrier 1996$ $375$ $0,15$ $1558$ $13,6$ $94,4%$ $0,809$ Les essais ont été faits $376$ $0,15$ $1512$ $16,4$ $91,6%$ $0,864$ Les essais ont été faits $377$ $0,15$ $1566$ $19,8$ $94,9%$ $0,800$ $12$ hures après $378$ $0,15$ $1546$ $16,2$ $93,7%$ $0,823$ l'emplacement $379$ $0,15$ $1576$ $14,5$ $95,5%$ $0,789$ $380$ $0,15$ $1580$ $15,1$ $95,8%$ $0,784$ $381$ $0,15$ $1560$ $16,2$ $94,5%$ $0,807$ $382$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $383$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,807$ $386$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $387$ $0,15$ $1560$ $11,6$ $95,8%$ $0,784$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ </td
375 $0,15$ $1558$ $13,6$ $94,4%$ $0,809$ $376$ $0,15$ $1512$ $16,4$ $91,6%$ $0,864$ Les essais ont été faits $377$ $0,15$ $1566$ $19,8$ $94,9%$ $0,800$ $12$ houres après $378$ $0,15$ $1546$ $16,2$ $93,7%$ $0,823$ Pemplacement $379$ $0,15$ $1576$ $14,5$ $95,5%$ $0,789$ $380$ $0,15$ $1580$ $15,1$ $95,8%$ $0,784$ $381$ $0,15$ $1560$ $16,2$ $94,5%$ $0,807$ $382$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $383$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1752$ $15$ $106,2%$ $0,606$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,638$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,723$
376 $0,15$ $1512$ $16,4$ $91,6%$ $0,864$ Les essais ont été faits $377$ $0,15$ $1566$ $19,8$ $94,9%$ $0,800$ $12$ heures après $378$ $0,15$ $1546$ $16,2$ $93,7%$ $0,823$ l'emplacement $379$ $0,15$ $1576$ $14,5$ $95,5%$ $0,789$ $380$ $0,15$ $1580$ $15,1$ $95,8%$ $0,784$ $381$ $0,15$ $1560$ $16,2$ $94,5%$ $0,807$ $382$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $15$ février 1996 $383$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $384$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1560$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$
377 $0,15$ $1566$ $19,8$ $94,9%$ $0,800$ $12$ heures après $378$ $0,15$ $1546$ $16,2$ $93,7%$ $0,823$ l'emplacement $379$ $0,15$ $1576$ $14,5$ $95,5%$ $0,789$ $380$ $0,15$ $1580$ $15,1$ $95,8%$ $0,784$ $381$ $0,15$ $1560$ $16,2$ $94,5%$ $0,807$ $382$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $15$ février 1996 $383$ $0,15$ $1639$ $12,4$ $99,3%$ $0,720$ $384$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1806$ $13,5$ $109,5%$ $0,561$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $395$ $0,15$ $1740$ $16,5$ $12,9$ $0,733$
378 $0,15$ $1546$ $16,2$ $93,7%$ $0,823$ Femplacement $379$ $0,15$ $1576$ $14,5$ $95,5%$ $0,789$ $380$ $0,15$ $1580$ $15,1$ $95,8%$ $0,784$ $381$ $0,15$ $1560$ $16,2$ $94,5%$ $0,807$ $382$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $383$ $0,15$ $1639$ $12,4$ $99,3%$ $0,720$ $384$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1755$ $13,9$ $106,4%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
380 $0,15$ $1580$ $15,1$ $95,8%$ $0,784$ $381$ $0,15$ $1560$ $16,2$ $94,5%$ $0,807$ $382$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $15$ février 1996 $383$ $0,15$ $1639$ $12,4$ $99,3%$ $0,720$ $384$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1806$ $13,5$ $109,5%$ $0,561$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$
381 $0,15$ $1560$ $16,2$ $94,5%$ $0,807$ $382$ $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $15$ $383$ $0,15$ $1639$ $12,4$ $99,3%$ $0,720$ $384$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$
382 $0,15$ $1678$ $10,4$ $101,7%$ $0,680$ $15$ février 1996 $383$ $0,15$ $1639$ $12,4$ $99,3%$ $0,720$ $384$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1806$ $13,5$ $109,5%$ $0,561$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1683$ $11,5$ $102,0%$ $0,675$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $205$ $0,15$ $1740$ $16,5$ $12.9$ $99.2%$ $0.723$
383 $0,15$ $1639$ $12,4$ $99,3%$ $0,720$ $384$ $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1683$ $11,5$ $102,0%$ $0,675$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $305$ $0,15$ $1636$ $12,9$ $99,2%$ $0,723$
384 $0,15$ $1537$ $11,8$ $93,2%$ $0,834$ $385$ $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1806$ $13,5$ $109,5%$ $0,561$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1683$ $11,5$ $102,0%$ $0,675$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $205$ $0,15$ $1536$ $12,9$ $99,2%$ $0,723$
385 $0,15$ $1559$ $8,9$ $94,5%$ $0,808$ $386$ $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1806$ $13,5$ $109,5%$ $0,561$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1683$ $11,5$ $102,0%$ $0,675$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$
386 $0,15$ $1580$ $11,6$ $95,8%$ $0,784$ $387$ $0,15$ $1660$ $11,1$ $100,6%$ $0,698$ $388$ $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1806$ $13,5$ $109,5%$ $0,561$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1683$ $11,5$ $102,0%$ $0,675$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $395$ $0,15$ $1636$ $12,9$ $99,2%$ $0,723$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
388 $0,15$ $1752$ $15$ $106,2%$ $0,609$ $389$ $0,15$ $1806$ $13,5$ $109,5%$ $0,561$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1683$ $11,5$ $102,0%$ $0,675$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $395$ $0,15$ $1636$ $12.9$ $99.2%$ $0.723$
389 $0,15$ $1806$ $13,5$ $109,5%$ $0,561$ $390$ $0,15$ $1755$ $13,9$ $106,4%$ $0,606$ $391$ $0,15$ $1683$ $11,5$ $102,0%$ $0,675$ $392$ $0,15$ $1721$ $13,4$ $104,3%$ $0,638$ $393$ $0,15$ $1619$ $12,1$ $98,1%$ $0,741$ $394$ $0,15$ $1740$ $16,5$ $105,5%$ $0,620$ $205$ $0,15$ $1636$ $12.9$ $99.2%$ $0.723$
390       0,15       1755       13,9       106,4%       0,606         391       0,15       1683       11,5       102,0%       0,675         392       0,15       1721       13,4       104,3%       0,638         393       0,15       1619       12,1       98,1%       0,741         394       0,15       1740       16,5       105,5%       0,620         395       0,15       1636       12,9       99,2%       0,723
391         0,15         1683         11,5         102,0%         0,675           392         0,15         1721         13,4         104,3%         0,638           393         0,15         1619         12,1         98,1%         0,741           394         0,15         1740         16,5         105,5%         0,620           395         0,15         1636         12.9         99.2%         0.723
392       0,15       1721       13,4       104,3%       0,638         393       0,15       1619       12,1       98,1%       0,741         394       0,15       1740       16,5       105,5%       0,620         395       0,15       1636       12,9       99,2%       0,723
393         0,15         1619         12,1         98,1%         0,741           394         0,15         1740         16,5         105,5%         0,620           305         0.15         1636         12.9         99.2%         0.723
394         0,15         1740         16,5         105,5%         0,620           305         0.15         1636         12.9         99.2%         0.723
205 015 1636 12.9 09.2% 0.723
396 0,15 1713 13,7 103,8% 0,646
397 0.15 1553 15,7 94,1% 0,815
398 0.15 1556 15.3 94.3% 0.812
399 0.15 1668 14 101,1% 0,690
400 0.15 1704 13.4 103.3% 0.654
401 0.15 1653 19 100.2% 0.705
402 0.15 1727 16.9 104.7% 0.632
403 0.15 1776 16.7 107.6% 0.587
404 0.15 1709 19.3 103.6% 0.650
405 0.15 1726 14.6 104.6% 0.633
406 0.15 1627 15 98.6% 0.733
407 0.15 1715 12.5 103.9% 0.644
408 0.15 1702 17.2 103.2% 0.656
409 0.15 1670 15 101.2% 0.688
410 0.15 1645 18.9 99.7% 0.714
411 0.15 1681 16 101.9% 0.677
413 0.15 1580 15.4 95.8% 0.784
414         0.15         1500         15,1         98,2%         0.740
414 0,15 1020 10,17 00,270 0,140 415 0,15 1578 18.2 95,6% 0,786
415 0,15 1576 16,2 75,676 0,786 416 0,15 1507 12.5 01.3% 0.871
410 0,15 1507 15,5 91,570 0,011 417 0,15 1517 14.3 91,0% 0.858

- -

- -

_

#### TABLEAU B-3

Test no.	Couche	Ya	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
418	0,15	1564	17	94.8%	0,802	
419	0,15	1524	11.7	92.4%	0.850	· ·
420	0,15	1511	11,7	91,6%	0,866	
421	0,15	1656	12,3	100,4%	0.702	
422	0,15	1564	14,9	94,8%	0,802	
423	0,15	1711	12,4	103,7%	0,648	16 février 1996
424	0,15	1632	11,3	98,9%	0,727	
425	0,15	1702	11,2	103,2%	0,656	
426	0,15	1752	10,9	106,2%	0,609	
427	0,15	1681	12,9	101,9%	0,677	
428	0,15	1700	9,5	103,0%	0,658	
429	0,15	1670	10,1	101,2%	0,688	!
430	0,15	1695	11	102,7%	0,663	
431	0,15	1660	12,3	100,6%	0, <del>69</del> 8	
432	0,15	1721	11	104,3%	0,638	
433	0,15	1704	9,5	103,3%	0,654	
434	0,15	1677	14,9	101,6%	0,681	
435	0,15	1738	12,2	105,3%	0,622	
436	0,15	1791	13,6	108,5%	0,574	
437	0,15	1751	13,6	106,1%	0,610	
438	0,15	1735	19	105,2%	0,625	
439	0,15	1 <b>678</b>	16,6	101,7%	0,680	
440	0,15	1723	10,4	104,4%	0,636	
441	0,15	1697	16,8	102,8%	0,661	
442	0,15	1620	17,7	98,2%	0,740	
443	0,15	1 <b>636</b>	15	99,2%	0,723	
444	0,15	1605	13	97,3%	0,756	
445	0,15	1724	13,9	104,5%	0,635	
446	0,15	1721	14	104,3%	0,638	
447	0,15	1726	18,5	104,6%	0,633	
448	0,15	1710	18,1	103,6%	0,649	
449	0,15	1720	17,2	104,2%	0,639	
450	0,15	1796	13,3	108,8%	0,570	
451	0,15	1687	12,7	102,2%	0,671	
452	0,15	1717	13,6	104,1%	0,642	
453	0,15	1684	18,2	102,1%	0,674	1
454	0,15	1698	16,3	102,9%	0,660	
455	0,15	1780	16,9	107,9%	0,584	•
456	0,15	1678	16,3	101,7%	0,680	
457	0.15	1715	15.2	103.9%	0.644	

Projet

Description

Barrick - Finalisation - LTA

Matériaux MRN - site LTA

0,15

493

1639

21,6

951-7156

no. projet

Personnel	Eric Bouchard	(Golder)				Compacteur rouleau
Gs	2,819	Résultats du P Densité optima Teneur en eau	roctor standard ale (Mg/m3) optimale	d 1,718 17%	Résultats du Densité optir Teneur en ea	Proctor modifié nale (Mg/m3) nu optimale
		-				
Test no.	Couche	Ya	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
458	0,15	1583	22,2	92,1%	0,781	20 février 1996
459	0,15	1734	14,1	100,9%	0,626	
460	0,15	1734	17,4	100,9%	0,626	
461	0,15	1654	15,4	96,3%	0,704	
462	0,15	1682	16	97,9%	0,676	
463	0,15	1725	19,1	100,4%	0,634	
464	0,15	1630	18,9	94,9%	0,729	
465	0,15	1645	18,6	95,8%	0,714	
466	0,15	1674	12,6	97,4%	0,684	
467	0,15	1703	12,6	99,1%	0,655	
468	0,15	1731	15,9	100,8%	0,629	
469	0,15	1708	12,3	99,4%	0,650	
470	0,15	1710	18,1	99,5%	0,649	
471	0,15	1651	17,1	96,1%	0,707	
472	0,15	1675	16	97,5%	0,683	
473	0,15	1609	15,3	93,7%	0,752	
474	0,15	1670	17,5	97,2%	0,688	
475	0,15	1668	13,3	97,1%	0,690	
476	0,15	1667	21,9	97,0%	0,691	
477	0,15	1705	15,7	99,2%	0,653	
478	0,15	1657	14,5	96,4%	0,701	
479	0,15	1676	19,9	97,6%	0,682	
480	0,15	1683	20,3	98,0%	0,675	
481	0,15	1690	18,6	98,4%	0,668	
482	0,15	1661	21,6	96,7%	0,697	
483	0,15	1668	21,2	97,1%	0,690	
484	nd	nd	nd	····		
485	0,15	1565	21,1	91,1%	0,801	21 février 1996
486	0,15	1597	19,1	93,0%	0,765	
487	0,15	1559	18,6	90,7%	0,808	Les essais ont été faits
488	0,15	1610	17,9	93,7%	0,751	12 heures après
489	0,15	1593	17,8	92,7%	0,770	l'emplacement
490	0,15	1584	22	92,2%	0,780	
491	0,15	1620	22,2	94,3%	0,740	
492	0,15	1535	23,2	89,3%	0,836	

# Rapport des essais de calcul de densité - Résidus MRN

95,4%

0,720

21 février 1996

Test no.	Couche	۲. Y	w	% du Proctor	Indice	notes de terrain	
	m	kg/m3	%	standard	vides		
494	0.15	1622	17.7	94.4%	0.738		
495	0.15	1628	17.1	94.8%	0.732		
496	0.15	1586	18.3	92.3%	0.777		
497	0.15	1644	20	95.7%	0.715		
498	0.15	1591	23.1	92,6%	0,772		30
499	0.15	1527	21,7	88,9%	0,846		
500	0.15	1601	22.7	93,2%	0,761		
501	0.15	1620	20.1	94.3%	0,740		
502	0.15	1610	20.5	93.7%	0.751		
503	0.15	1585	23.1	92.3%	0.779		
503	0.15	1579	22.2	91.9%	0.785		4
505	0.15	1611	21.5	93.8%	0.750		
505	0.15	1630	20	94.9%	0.729		្រ
507	0.15	1684	17.8	98.0%	0.674	22 février 1996	
508	0.15	1466	23.9	85.3%	0.923		
500	0.15	1400	26.5	83.9%	0.956	Les essais ont été faits	C C
510	0.15	1539	14 5	89.6%	0,832	12 heures après	÷
510	0.15	1656	18.6	96.4%	0 702	l'emplacement	Ī
512	0.15	1554	13.7	91.0%	0.802		
513	0.15	1605	173	93.4%	0,002		
514	0,15	1578	18.3	91.9%	0,786		T
515	0.15	1534	10,5	89.3%	0,838		k
516	0.15	1525	15,1	88.8%	0,849		
517	0,15	1479	25.5	86.1%	0,045		Γ
518	0,15	1475	23,5	83.0%	0,900		ł
510	0,15	150/	15.5	97.8%	0,769	23 février 1996	
520	0,15	1653	14.6	96.7%	0,705		Ī
520	0,15	1678	160	07 7%	0,705		ŀ
521	0,15	1552	10,9	90,3%	0,816		
522	0,15	1532	23,2	90,370	0,010		Ī
523	0,15	1622	12.7	05 1%	0,715		
524	0,15	1709	13,2	95,176	0,720		
525	0,15	1400	20.0	02 70/	0,050		ľ
520 527	0,15	1569	20,7	93,170	0,752		-
521	0,15	1522	171	89.2%	0,720		
520	0,15	1502	17.2	07,270	0,039		Ĩ
529	0,15	1595	21,0	07 60/	0,770		ļ
020	0,15	1606	177	03 50/	0,772		
231 522	0,13	1610	175	03 70%	0,755		ľ
232	0,15	1610	17,5	07 0%	0,751		
222	0,15	1605	17,4	03 10/	0,071		
534	0,15	1603	1/,/	75,470	0,750		
535	0,15	103/		90,470 04 10/	0,701		1
536	0,15	1616	14,0	74,1%	0,744		
537	0,15	1595	10,8	92,8%	0,/0/		
538	0,15	1568	18,2	91,5%	0,798	27 661100 1006	—
539	0,15	1591	19,6	92,6%	0,772	2/ Tevrier 1990	
540	0,15	1532	21,1	89,2%	0,840		

# TABLEAU B - 4

951-7156

Test no.	Couche	Ya	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
541	0.15	1530	24.2	89.1%	0.842	
542	0,15	1450	18,9	84,4%	0,944	
543	0,15	1507	20,3	87,7%	0,871	
544	0,15	1528	16,1	88,9%	0,845	
545	0,15	1539	13,9	89,6%	0,832	
546	0,15	1503	21,4	87,5%	0,876	
547	0,15	1543	20,6	89,8%	0,827	
548	0,15	1698	18,4	98,8%	0,660	
549	0,15	1553	18,3	90,4%	0,815	
550	0,15	1631	13	94,9%	0,728	
551	0.15	1582	23.6	92.1%	0,782	
552	0,15	1613	13.2	93,9%	0,748	
543a	0.15	1631	13	94.9%	0.728	
544a	0.15	1582	23.6	92.1%	0.782	
545a	0.15	1613	13.2	93.9%	0.748	
546a	0.15	1661	17.6	96.7%	0.697	
547a	0.15	1654	14.8	96.3%	0.704	
548a	0.15	1598	22	93.0%	0.764	
549a	0.15	1600	19.3	93.1%	0.762	
550a	0.15	1458	23.5	84.9%	0.933	28 février 1996
551a	0.15	1519	22.4	88.4%	0.856	
552a	0.15	1446	29.3	84.2%	0.950	
553	0.15	1488	19.2	86.6%	0.894	
554	0.15	1456	23.2	84.7%	0.936	
555	0.15	1456	26.9	84,7%	0,936	
556	0.15	1565	20.1	91.1%	0.801	
557	0.15	1587	19.1	92.4%	0.776	
558	0.15	1610	17.9	93.7%	0.751	
559	0.15	1622	17.1	94.4%	0,738	
560	0.15	1591	23.1	92.6%	0.772	
561	0.15	1594	15.5	92.8%	0.769	
562	0.15	1608	19.1	93.6%	0.753	
563	0.15	1568	21.1	91.3%	0,798	
564	0,15	1553	20,6	90,4%	0,815	
565	0,15	1506	22,9	87,7%	0,872	
566	0,15	1563	22,7	91,0%	0,804	
567	0,15	1555	19,6	90,5%	0,813	
568	0,15	1641	16,8	95,5%	0,718	1 mars 1996
569	0,15	1655	16,2	96,3%	0,703	
570	0.15	1678	15,9	97,7%	0,680	
571	0.15	1667	15,7	97,0%	0,691	
572	0.15	1698	17,1	98,8%	0,660	
573	0.15	1761	13.6	102.5%	0.601	
574	0,15	1618	19.1	94.2%	0,742	
575	0,15	1553	22.3	90.4%	0.815	
576	0.15	1552	17.3	90.3%	0,816	
510	0.15	1610	161	93.7%	0.751	
511	0,15	1010	10,1			

Test no.	Couche	Yd	w	% du Proctor	Indice	notes de terrain
	m	kg/m3	%	standard	vides	
578	0,15	1640	16,3	95,5%	0,719	
579	0,15	1622	16,1	94,4%	0,738	
580	0,15	1690	16,9	98,4%	0,668	
581	0,15	1685	17,1	98,1%	0,673	
582	0,15	1608	17,6	93,6%	0,753	
583	0,15	1671	15,5	97,3%	0,687	
584	0,15	1655	14,1	96,3%	0,703	
585	0,15	1677	13,6	97,6%	0,681	
586	0,15	1715	14,5	99,8%	0,644	
587	0,15	1689	16,1	98,3%	0,669	
588	0,15	1720	16,5	100,1%	0,639	
589	0,15	1621	16,3	94,4%	0,739	
590	0,15	1701	17,1	99,0%	0,657	
591	0,15	1633	15,9	95,1%	0,726	
592	0,15	1846	14,2	107,5%	0,527	5 mars 1996
593	0,15	1616	11,6	94,1%	0,744	
594	0,15	1735	14,4	101,0%	0,625	
595	0,15	1554	15,8	90,5%	0,814	
596	0,15	1744	14,9	101,5%	0,616	
597	0,15	1758	15	102,3%	0,604	
598	0,15	1759	14,2	102,4%	0,603	
599	0,15	1796	10,4	104,5%	0,570	
600	0,15	1712	12	99,7%	0,647	
601	0,15	1618	15,2	94,2%	0,742	
602	0,15	1719	14,8	100,1%	0,640	
603	0,15	1728	15,6	100,6%	0,631	
604	0,15	1731	14	100,8%	0,629	

# APPENDIX H

# IN SITU COMPACTION MONITORING RESULTS (SUMMER 96)

(Golder Associés)

.....

---

-

···· • •

## <u>TABLEAU A-1</u> Résultats des analyses de compactage sur place Sable et gravier

Projet	Вагно	ck/Construction	/LTA	no. du projet	951-7156
			Résultats du Pro	octor standard	
	Dr	2.751	Densité optimal	le, kg/m3	2010
			Teneur en eau o	optimale	6.5

No. de test	Couche					
Test no.	m	γd	w	% du Proctor	Indice des vides	Remarques
		kg/m ³	%	standard		
1	0.5	2047	5	102%	0.344	Poids volumique
2	0.5	2009	6.5	100%	0.369	$Proctor = 2010 \text{ kg/m}^3$
3	0.5	2087	5.5	104%	0.318	
4	0.5	1939	8.3	96%	0.419	
5	0.5	2062	6.1	103%	0.334	
6	0.5	1967	7.8	98%	0.399	
7	0.5	2020	8.8	100%	0.362	
8	0.5	1984	5.4	99%	0.387	
9	0.5	2055	7.4	102%	0.339	
10	0.5	2026	4.6	101%	0.358	
11	0.5	2044	4.5	102%	0.346	
12	0.5	1998	4.3	99%	0.377	
13	0.5	2145	3.4	107%	0.283	
14	0.5	2058	4.2	102%	0.337	
15	0.5	2023	4,4	101%	0.360	
16	0.5	2055	5.2	102%	0.339	
17	0.5	2104	4.3	105%	0.308	
18	0.5	2049	3.4	102%	0.343	
19	0.5	1987	3.3	99%	0.384	
20	0.5	1956	4.2	97%	0.406	
21	0.5	2096	3.1	104%	0.313	
22	0.5	1983	3.3	99%	0.387	
23	0.5	1965	3.9	98%	0.400	
24	0.5	2081	3.6	104%	0.322	
25	0.5	2130	5.7	106%	0.292	
26	0.5	2082	4.8	104%	0.321	
27	0.5	2007	5	100%	0.371	
28	0.5	2121	4.6	106%	0.297	
29	0.5	2045	4.2	102%	0.345	
. 30	0.5		4.2	101%	0.350	
31	0.5	1997	5.3	99%	0.378	
32	0.5	2106	4	105%	0.306	
33	0.5	2073	6.9	103%	0.327	
34	0.5	1996	4.3	99%	0.378	
35	0.5	2095	3.7	104%	0.313	
Valeurs moyennes			102%	0.349		

**--**. .

<u>.</u> .

- -

- -

۰.

- --- -

-

. -

## TABLEAU B-1 Résultats des analyses de compactage sur place Silt

Projet	Barrick/Construction/LTA			no. du projet	951-7156
			Résultats du Proctor stand	ard	
D	r	2.819	Densité optimale, kg/m3		1742
			Teneur en eau optimale		11.45

No. de test	Couche					
Test no.	m	γd	w	% du Proctor	Indice des vides	Remarques
		kg/m ³	%	standard		
1	0.8	1540	21.3	88%	0.831	
2	0.8	1612	22.7	93%	0.749	
3	0.8	1617	12.5	93%	0.743	
4	0.8	1674	13.6	96%	0.684	
5	0.8	1597	20.1	92%	0.765	
6	0.8	1596	11.8	92%	0.766	
7	0.8	1626	9.8	93%	0.734	
8	0.8	1638	10.2	94%	0.721	
9	0.8	1673	12.9	96%	0.685	
10	0.8	1689	11.8	97%	0.669	
11	0.8	1530	25.9	88%	0.842	
12	0.8	1539	24.4	88%	0.832	
13	0.8	1513	27.5	87%	0.863	
14	0.8	1577	21.7	91%	0.788	
15	0.8	1622	12.2	93%	0.738	
16	0.8	1582	10.1	91%	0.782	
17	0.8	1640	21.4	94%	0.719	
18	0.8	1602	20.7	92%	0.760	
19	0.8	1679	17.6	96%	0.679	
20	0.8	1671	18.8	96%	0.687	
21	0.8	1688	14.7	97%	0.670	
22	0.8	1662	17.3	95%	0.696	
23	0.8	1513	18.4	87%	0.863	
24	0.8	1526	15.3	88%	0.847	ļ
25	0.8	1474	16.4	85%	0.912	
26	0.8	1611	12.9	92%	0.750	
27	0.8	1573	17.3	90%	0.792	
Valeurs moyennes				92%	0.762	