CONTROL OF ACIDIC DRAINAGE IN LAYERED WASTE ROCK: LABORATORY STUDIES AND FIELD MONITORING

MEND Project 2.37.3

This work was done on behalf of MEND and sponsored by the British Columbia Ministry of Employment and Investment and the Canada Centre for Mineral and Energy Technology (CANMET) through the CANADA/BC Mineral Development Agreement (MDA)

September 1997

CONTROL OF ACIDIC DRAINAGE IN LAYERED WASTE ROCK AT THE SAMATOSUM MINESITE: LABORATORY STUDIES AND FIELD MONITORING

prepared for:

Mine Environment Neutral Drainage (MEND) Program 555 Booth Street, Ottawa, Ontario K1A 0G1

Contract No. 23440-5-1151/01-SQ

prepared by:

Kevin A. Morin, Ph.D, P.Geo. Nora M. Hutt, A.Sc.T, c.C.T. Minesite Drainage Assessment Group A Division of Morwijk Enterprises Ltd. Suite 2401, 289 Drake Street, Vancouver, British Columbia V6B 5Z5

May 14, 1997

NOTICE

This study is based on detailed technical information interpreted through standard and advanced chemical and geoscientific techniques available at this time. As with all geoscientific investigations, the findings are based on data collected at discrete points in time and location. In portions of this report, it has been necessary to infer information between and beyond the measured data points using established techniques and scientific judgement. In our opinion, this report contains the appropriate level of chemical and geoscientific information to reach the conclusions stated herein.

This study has been conducted in accordance with British Columbia provincial law as stated in the Engineers and Geoscientists Act and in the Applied Science Technologists and Technicians Act.

> Kevin A. Morin, Ph.D., P.Geo. Registration No. 18,721 Association of Professional Engineers and Geoscientists

Nora M. Hutt, A.Sc.T., c.C.T. Registration No. 10700 Association of Applied Science Technologists and Technicians

Minesite Drainage Assessment Group

i

TABLE OF CONTENTS

List of Tables iv
List of Figures iv
EXECUTIVE SUMMARY/SOMMAIRE v
1. INTRODUCTION AND OBJECTIVES 1
2. GEOLOGY AND ROCK UNITS AT SAMATOSUM 4
3. RESULTS OF PREDICTIVE STATIC AND KINETIC TESTS 7 3.1 Introduction to Static and Kinetic Testing 7 3.2 Acid-Base Accounting of Rock Units 8 3.3 Laboratory Kinetic Column Tests 14 3.3.1 Design and Contents of Column Tests 14 3.3.2 Effluent Chemistry and Reaction Rates from Columns 15 3.3.3 Static Tests of Layers from Columns 20 3.3.4 Summary of Column Results 23
4. CONSTRUCTION, FIELD MONITORING, AND PREDICTIONS FOR THE FULL-SCALE SAMATOSUM DUMP
5. CONCLUSIONS
6. ACKNOWLEDGEMENTS
7. REFERENCES
A. Data from Static Tests 32 A1. Acid-Base Accounting (ABA) for Samatosum Rock Units 33 A2. ABA, Whole-Rock and Total-Metal Contents for Column Samples 42 A3. Graphs of ABA Results for Columns by Grain Size 49 A3.1. Column 2 50 A3.2. Column 3 56 A3.3. Columns 1, 4, and 5 62 A3.4. Column 6 68 A4. Graphs of Whole-Rock Composition for Columns by Grain Size 74 A4.1. Column 2 75
A4.2. Column 3

Minesite Drainage Assessment Group

A4.3. Columns 1, 4, and 5	39 96
A5. Graphs of Total-Metal Contents for Columns by Grain Size)3
A5.1. Column 2)4
A5.2. Column 3 11	19
A5.3. Columns 1, 4, and 5 13	34
A5.4. Column 6	19
A6. Comparison of Total-Metal and Converted Whole-Rock Analyses	54
B. Results of Column Tests	57
B1. Column 1	58
B2. Column 2	37
B3. Column 3)9
B4. Column 4	30
B5. Column 5	12
B6. Column 6	59
C. Mineralogical Examination of Rock from Column 1 (PAG) and 4 (MAF)27	75
D. Field Monitoring Data from 1989 to 1996	37
E. Compiled Monitoring Data and Empirical Drainage-Chemistry Model	€
F. Photographs of Column Dismantling)1

List of Tables

2-1. Rock Units at the Samatosum Minesite	6
3-1. Summary of ABA Samples for Samatosum Rock Units	. 9
3-2. Summary TNNP Statistics for Samatosum Waste-Rock Units	. 12
3-3. Predicted Tonnages and Weight-Averaged ABA Results	13
3-4. Summary of Six Column Tests on Samatosum Waste Rock	. 15
3-5. Summary of Rates and Predictions from Column Tests	. 18
4-1. Chemical Analysis of One Drainage Sample from the Internal Trench	
Beneath the Lowermost PAG Layer in the Dump	. 24

List of Figures

1-1. Location of the Samatosum Minesite in British Columbia	1
1-2. Layout and Monitoring Sites of the Samatosum Minesite (from Inmet files)	2
1-3. Layout and Monitoring Sites of the Samatosum Minesite	
(adapted from Piteau Associates, 1996)	3
2-1. Geological Cross-section of the Samatosum Minesite	5
3-1. ABA Paste pH vs. Total Sulphur	10
3-2. ABA Paste pH vs. Neutralization Potential	10
3-3. ABA Total Sulphur vs. NP	10
3-4. ABA Paste pH vs. TNNP	10
3-5. ABA TNPR vs. TNNP	11
3-6. Schematic Diagrams of Samatosum Laboratory Columns	16
3-7. Temporal Trends of pH in the Samatosum Columns	17
3-8. Temporal Trends of Sulphate Production in the Samatosum Columns	17
3-9. Comparison of NP Consumption Rate to Alkalinity Production from	
the International Kinetic Database	19
4-1. Schematic Diagram of the Layered Samatosum Waste-Rock Dump	25
4-2. Cross-Section Through the Samatosum Waste-Rock Dump	
Perpendicular to Dip of PAG Layers	25

EXECUTIVE SUMMARY/SOMMAIRE

This study represents another contribution in the MEND series on the prediction and control of acidic drainage from waste-rock dumps. The Samatosum Minesite in southeastern British Columbia implemented full-scale layering of acid-generating and acid-neutralizing rock in its waste-rock dump, based on a series of column tests.

This study has reviewed existing information, reinterpreted old data, and obtained new data for the layered waste-rock dump at Samatosum and the column tests which simulated it. Most of the rock units at Samatosum had significant proportions of net-acid-generating rock, except for mafic pyroclastics (MAF). As a result, all rock was divided into MAF and Potentially Acid Generating (PAG) rock. The PAG was encapsulated by MAF layers within the dump, and the overall ratio of Neutralization Potential (NP) to Total Acid Potential (TAP) within the dump was 3:1.

Column tests containing 10-50 kg of rock simulated various layered and unlayered sequences of PAG and MAF rock. These columns were operated up to 5.5 years to determine if the dump design was appropriate. However, the two columns containing layers of PAG and MAF to simulate the dump had NP:TAP ratios close to 1:1, instead of 3:1.

Because effluent concentrations of metals like calcium and magnesium were not measured during column testing, rates of NP consumption and depletion could not be determined. However, simple geochemical relationships and data from other mines indicated that the ratio of NP consumption to sulphide depletion in the layered columns was likely greater than 1:1. Additionally, not all measured NP at Samatosum is available for neutralization: up to 10 t $CaCO_3/1000$ t is unavailable. Therefore, the columns were predicted to eventually release net acidity if they had continued. This contradicted previous predictions, primarily because previous work assumed that the rate of NP consumption was lower and equivalent to the rate of alkalinity production. In reality, alkalinity production typically represents only a portion of total NP consumption.

Comparisons of pre-test and post-test analyses on various grain-size ranges from the columns indicated layering as small as 0.2 m did not alter the reaction rates and the geochemical behaviour of the PAG and MAF material. In other words, layering with MAF did not slow reaction rates in the adjacent PAG layers. However, the effluent from the layered columns did represent a composite from the two materials.

Significant accumulation of sulphate from sulphide oxidation was noted in PAG, where it originated, and in basal MAF layers within the columns. Also, NP was significantly depleted in MAF layers, particularly in the finest grain-size range. In fact, NP depletion in the finest MAF particles caused some MAF to become net acid generating and suggested that NP in the coarser particles may not be readily available. This also supported the prediction of net acidity from the columns.

Minesite Drainage Assessment Group

V

Monitoring of drainage from the dump at Samatosum has revealed signs of impending net acidity. In fact, pH at one station has fluctuated between neutral and acidic values, with the acidic values becoming lower and more persistent with time. However, unlike the columns, the dump has an overall ratio of NP:TAP of 3:1, and thus is not predicted to generate net acidity.

The reconciliation of predictions with monitoring data is based on (1) the observations in the columns that layering does not suppress reaction rates in the PAG and (2) coarser rock can preferentially channel water through a layer. Consequently, the appearance of net acidity in some dump drainage is simply the result of physical conditions rather than a failure of geochemical principles. This highlights the importance of physical design and physical hydrogeology in any future design and construction of a layered dump. If drainage does not pass through all available neutralizing layers, acidic drainage may appear even in the presence of excess neutralizing potential.

A final note focusses on metal leaching. Although acidic pH may be prevented with carefully designed and implemented layering, leaching of metals is not so easily controlled. Because reaction rates in even small layers of net-acid-generating Samatosum rock, on the order of 0.2 m, could proceed unattenuated by adjacent net-acid-neutralizing rock, metal leaching can probably occur at accelerated rates in layered dumps. If site-specific solubilities of secondary minerals are relatively high, aqueous metal concentrations may then exceed water-quality requirements even in near-neutral drainage. Therefore, layering is not necessarily a control technique for metal leaching.

1. INTRODUCTION AND OBJECTIVES

The Mine Environment Neutral Drainage (MEND) Program has sponsored numerous studies in the areas of prediction, prevention, and control of acidic drainage. This has led to improved techniques and approaches under each area. Through the combination of prediction and prevention, this project contributes to the improvements by documenting how field-scale control for a full-size waste-rock dump was designed using predictive techniques.

As documented in the references, much of the original work reported here was carried out by Minnova Inc. (now Inmet Mining Corporation), its consultants, and regulatory agencies. This work showed thoughtful, long-range planning and execution of the dump design. For the benefit of the Canadian mining industry and regulatory agencies, MEND has sponsored this project which compiles the original work, reinterprets the analytical data through more recent approaches, includes additional sample analysis, and draws new conclusions for comparison to the initial ones.

The Samatosum Minesite is located near Kamloops, British Columbia (Figures 1-1 to 1-3), approximately 39 km east of Barriere by road. Average annual net precipitation is 0.940 m. The mine was operated from May 1989 to September 1992 for recovery of silver, gold, copper, zinc, and lead. Initially, mining was in an open pit, turning to underground methods in 1991. The average daily rate of mining was 465 tonnes. In total, 565,700 t of ore and 9.6x10⁶ t of waste rock were mined (Piteau Associates, 1996).

The following chapters follow the logical design,

FIGURE 1-1. Location of the Samatosum Minesite in British Columbia.

construction, and monitoring of the dump. Specifically, Chapter 2 describes the geology and rock units at Samatosum. The types and volumes of these units were the key to designing the dump in order to prevent acidic drainage. Chapter 3 describes the predictive laboratory testwork, particularly acid-base accounting and kinetic column tests, on which the dump was designed. Monitoring of drainage from the dump, as documented in Chapter 4, shows how relevant and representative the predictive results were. Various conclusions are then discussed in Chapter 5 about prediction and prevention of acidic drainage at Samatosum.

Minesite Drainage Assessment Group

FIGURE 1-3. Layout and Monitoring Sites of the Samatosum Minesite (adapted from Piteau Associates, 1996).

2. GEOLOGY AND ROCK UNITS AT SAMATOSUM

The Samatosum Deposit is located in the Eagle Bay Assemblage of Early Cambrian to Late Mississippian age (Hatfield Consultants Limited, 1988). During the Jurassic and Cretaceous Periods (65-190 million years ago), this rock was subjected to multiple stages of thrust faulting and folding, causing it to be metamorphosed, strongly foliated, and overturned. The Eagle Bay Assemblage was then intruded by granodiorite, quartz monzonite, quartz-feldspar porphyry, basalt and lamprophyre dykes. All of this was later overlain by sedimentary and volcanic rocks and plateau lava.

The Samatosum Deposit is primarily a stratabound quartz-carbonate vein located within volcanic-related mafic pyroclastics, sericitic tuffs, cherts, muddy tuffs, argillite, mudstone, and greywacke (Hatfield Consultants Limited, 1988). The Muddy Tuff Unit contains up to 60% syngenetic to diagenetic pyrite, and 1 to 3% of zinc, lead, and copper over distances of 10-15 m. Ore is located near the interface of sericitic tuffs and cherts in the structural hanging wall and muddy tuff and metasedimentary rocks in the footwall (Figure 2-1). The ore rock is predominantly composed of 11% pyrite, 32% quartz, and 19% dolomite (calcium-magnesium carbonate), as well as tetrahedrite described as a copper-iron-zinc-silver-antimony sulphide, sphalerite, galena, chalcopyrite, and electrum (native gold-silver mixture). The degree of sericite alteration decreases away from the ore zones (Denholm and Hallam, 1991).

From the complex geology in the area, seven rock units can be delineated (Table 2-1). For the purposes of this study, all units except the mafic pyroclastics (MAF, Table 2-1) are combined into one group labelled "potentially acid generating" (PAG, Section 3.2).

Figure 2-1. Geological Cross-section of the Samatosum Minesite (from Denholm and Hallam, 1991).

TABLE 2-1Rock Units at the Samatosum Minesite(from Denholm and Hallam, 1991)						
<u>Rock Unit</u>	Mine Code	<u>Code for This</u> <u>Study</u>	<u>Volume (Percentage) of</u> <u>Total Waste Rock</u>			
mafic pyroclastics	MAF	MAF	2,000,000 m ³ (58%)			
sericitic tuff	SERT		982,000 m ³ (29%)			
argillite	ARG		173,000 m ³ (5.0%)			
muddy tuff	MUT	DAC	116,000 m ³ (3.4%)			
quartz vein	QV	PAG	87,000 m ³ (2.5%)			
quartzite	QITE		72,000 m ³ (2.1%)			
chert	CHERT		3,600 m ³ (0.11%)			

3. RESULTS OF PREDICTIVE STATIC AND KINETIC TESTS

3.1 Introduction to Static and Kinetic Testing

Static tests characterize samples only once, at the time of analysis. The results are then extrapolated through time to estimate past conditions or predict future conditions. The three most common static tests are acid-base accounting (ABA), total-metal contents, and whole-rock composition. The latter two involve digestion of samples in acid followed by chemical analyses for metals and nonmetals. ABA is more complicated.

Acid-base accounting is a specialized chemical procedure that determines a sample's balance of potentially acid-generating and acid-neutralizing minerals. The best known and most widely used method is known as Sobek or EPA 600 ABA (e.g., Morin and Hutt, 1997). This method was used for column samples (Section 3.3), but the method used for past ABA on rock units (Section 3.2) was not reported.

The total acid-generating potential, also known as Total Acid Potential (TAP), is mathematically calculated from ABA's total sulphur (TAP = %S total * 31.25). The conversion factor is based on various stoichiometric and environmental assumptions, and provides TAP in any one of three equivalent units: tonnes (t) of CaCO₃ equivalent/1000 tonnes of sample, kg of CaCO₃ equivalent/t of sample, or parts of CaCO₃ equivalent per thousand.

Since not all forms of sulphur are acid generating, the expanded version of ABA (used for column samples) also includes analyses of non-acid-generating sulphate (including gypsum) and acid-generating sulphide. In theory, total sulphur equals sulphate plus sulphide, but other forms of sulphur and analytical accuracy often cause some discrepancy (del %S). The discrepancy is added to sulphide so that Sulphide Acid Potential [SAP = (%S sulphide + del %S) * 31.25] is not underestimated.

Expanded ABA also includes measurements of bulk Neutralization Potential (NP), based on a hot acid bath, and Carbonate Neutralization Potential (CaNP), based on CO_2 measurement. The comparison of NP to CaNP reveals that amount of NP consisting of fast-neutralizing carbonate minerals and slower-neutralizing aluminosilicate minerals. Like acid potentials, these NPs are typically reported in any one of three equivalent units: tonnes (t) of CaCO₃ equivalent/1000 tonnes of sample, kg of CaCO₃ equivalent/t of sample, or parts of CaCO₃ equivalent per thousand.

The net balance of acid potentials ("xAP") and neutralization potentials ("xNP") are determined through either subtraction or division. With subtraction, Total Net Neutralization Potential is calculated from Total Acid Potential (TNNP = NP - TAP) and Sulphide Net Neutralization Potential (SNNP = NP - SAP). In contrast, Total Net Potential Ratio (TNPR = NP / TAP) and Sulphide Net Potential Ratio (SNPR = NP / SAP) are calculated through division.

According to general criteria, any sample with a TNNP or SNNP less than $+10 \text{ t CaCO}_3/1000$ t is declared net acid generating, although it may not be so at the time of analysis. Similarly, any sample with a TNPR or SNPR less than 1.0-2.0 is considered net acid generating. Negligible levels of sulphide ($\leq 0.05\%$ S) are considered non-acid-generating regardless of their xNNP and xNPR values. Exceptions to these criteria are known, and site-specific kinetic testwork is needed to determine site-specific criteria of xNNP and xNPR (Morin and Hutt, 1997).

Finally, ABA also includes a measurement of "paste pH" on a mixture of pulverized sample and water. If a sample's paste pH is acidic, net acid generation has already begun and any measured NP is not available for neutralization.

Another less-common type of static test, used for the Samatosum laboratory columns (Section 3.3), was repetitive batch leaching of samples at pH 2 until pH remained constant. This was followed by distilled-water rinsing until pH recovered. The remaining solids were then analyzed for total-metal contents. This revealed the amount of each metal that was retained in secondary minerals or occurred in primary soluble minerals like calcite.

Since static tests like ABA are one-time analyses, they cannot provide information on reaction rates. They may indicate whether pH or water chemistry may change, but not when the changes might happen. For this information, kinetic tests are required. One common kinetic test is a Sobek humidity cell, which has been in use for approximately 30 years. Another common test uses columns to hold a sample. Column tests containing 10-50 kg of sample were used for Samatosum (Appendices B and F).

Column kinetic tests typically allow exposure of a sample to air with a thorough weekly rinse or a nearly continuous trickling of water. For Samatosum columns, approximately 20 L were passed through each column weekly. Samples were collected once a week and chemically analyzed. Rates of acid generation, acid neutralization, and metal leaching could then be calculated using:

$$Rate (mg/kg/wk) = Concentration (mg/L) * Flow (L/wk) / Weight (kg)$$
(3-1)

Pre-test analyses combined with reaction rates allow the calculation of depletion rates and time to total depletion within the columns. For example, a pre-test copper level of 1000 ppm and a leach rate of 10 mg Cu/kg of sample/wk indicate that copper would be fully leached and depleted in 100 weeks. This is discussed further in Section 3.3.

3.2 Acid-Base Accounting of Rock Units

The various rock units at Samatosum (Table 2-1) were subjected to acid-base accounting of the basic, rather than expanded, form (Section 3.1). Pre-mining ABA characterization was based on 61 samples (Hatfield Consultants Limited, 1988) that indicated that all rock units, except Mafic

Pyroclastics (MAF), were considered potentially net acid generating (PAG). In reality, Quartzite and Quartz Vein were net-acid-neutralizing, but they could not be segregated from surrounding PAG rock during mining.

A search of DBARD, the Database for Acid Rock Drainage (B. Price, personal communication, 1996), provided 109 ABA analyses of Samatosum waste rock, ore, and overburden (Appendix A1 and Table 3-1). The original source of the data is not reported in DBARD, but probably includes the 61 samples from Hatfield Consultants Limited (1988).

TABLE 3-1 Summary of ABA Samples for Samatosum Rock Units (from DBARD, the Database for Acid Rock Drainage, 1996)							
UnitNo. of SamplesUnitNo. of Samples							
Ore	10	Overburden	2				
	Waste Rock						
Mafic Pyroclastics8Sericite Tuff55							
Muddy Tuff 10 Quartz Vein & 8 Quartzite							
Chert	6	Argillite	10				

A scatterplot of total sulphur against paste pH for Samatosum rock units (Figure 3-1) shows that most samples had total sulphur levels less than 5 wt-%S. A few samples had levels above 10%S, particularly the massive-sulphide ore. Most of the acidic paste pHs (pH < 5.0) were associated with the high-sulphide samples.

A scatterplot of NP against paste pH (Figure 3-2) shows that paste pH can decrease to acidic levels as NP falls below 10 t/1000 t. This level of "unavailable NP" (UNP) is typical of many mines (Morin and Hutt, 1997) and can be subtracted from measured NP to obtain "effective NP" for calculating xNNP and xNPR (Section 3.1). Alternatively, any xNNP value below +10 t/1000 t can be declared net acid generating, as already indicated in Section 3.1.

A comparison of total sulphur and measured NP (Figure 3-3) demonstrates no clear correlation between the two parameters. This is typical of most mines and confirms that these two independent variables require separate evaluations before combining them into xNNP and xNPR values.

FIGURE 3-1. ABA Paste pH vs. Total Sulphur.

FIGURE 3-3. ABA Total Sulphur vs. NP.

FIGURE 3-2. ABA Paste pH vs. Neutralization Potential.

FIGURE 3-4. ABA Paste pH vs. TNNP.

Paste pH vs. TNNP (Figure 3-4) shows that most Samatosum rock units have significant percentages capable of generating net acidity. However, many of the samples were not doing so at the time of analysis.

The correlation of TNNP and TNPR demonstrates that the Samatosum TNNP criterion of +10 t/1000 t is comparable to a TNPR criterion of approximately 1.2 (Figure 3-5). The best estimate for the TNPR criterion is obtained from kinetic tests, but the Samatosum columns (Section 3.3) did not include metals like calcium in the effluent. As a result, the TNPR criterion cannot be accurately estimated. Morin and Hutt (1997) indicate "safe" TNPR criteria for mines like Samatosum with significant quantities of carbonate minerals are often in the range of

FIGURE 3-5. ABA TNPR vs. TNNP.

1.3-1.7. This is discussed further in Section 3.3.

Based on ABA statistics by rock unit (Appendix A1 and Table 3-2), all units have some percentage of net-acid-generating rock (Table 3-3). On average, only Mafic Pyroclastics and Quartzite/Quartz Veins are net acid neutralizing. Thus, these units would be entirely net acid neutralizing if the entire units were thoroughly blended, but would generate net acidity in places if the net-acid-generating portions were piled separately or not well blended.

TABLE 3-2 Summary TNNP Statistics for Samatosum Waste-Rock Units (from Appendix A1)						
Rock Unit Minimum TNNP ¹ Mean TNNP ¹ Maximum TNN						
Mafic Pyroclastics	-130	+305	+901			
Sericite Tuffs	-265	-33	+68			
Muddy Tuffs	-345	-221	-119			
Quartzite & Qtz Veins	-67	+46	+299			
Cherts	-588	-226	+29			
Argillites	-230	-52	+171			
Overburden	-17	+10	+36			
¹ TNNP (Total Net Neutralization Potential, see Section 3.1) in units of t CaCO ₃ equivalent/ 1000 t.						

TABLE 3-3 Predicted Tonnages and Weight-Averaged ABA Results (from Hatfield Consultants Limited, 1988; Denholm and Hallam, 1991; and Appendix A1)								
Total Acid Potential Neutralization Potential								
<u>Unit</u>	<u>Code</u>	$\underline{\text{Rock } (t)}^1$	<u>(t/1000 t)²</u>	(tonnes)	<u>(t/1000 t)²</u>	(tonnes)		
		Net Acid Net	eutralizing (MAI	F)				
Mafic Pyroclastics	MAF	5,300,000	73	387,000	377	2,000,000		
		Net Acid C	Generating (PAG))				
Sericite Tuffs	SERT	2,600,000	79	205,000	45	117,000		
Muddy Tuffs	MUT	307,000	235	72,100	14	4,300		
Quartzite & Qtz Vein	QITE & QV	421,000	85	35,800	131	55,200		
Cherts	CHERT	9,540	250	2,390	23	219		
Argillites	ARG	458,000	85	38,900	33	15,100		
TOTAL PAG		3,800,000		354,000		192,000		
		Ov	erburden					
Overburden		728,580	10	7,290	19	13,800		
GRAND TOTAL	GRAND TOTAL 9,830,000 748,000 2,210,000							
¹ Based on an assumed bulk density of 2.65 t /m ³ in the original report and volumes in Table 2-1, except for overburden with an assumed bulk density of 1.6 t /m ³ for this report. Total predicted tonnage excluding overburden is 9.8×10^6 t compared with a final reported tonnage of 9.6×10^6 t (Piteau Associates, 1996). This is due to some ambiguity in final volumes of each rock unit. ² mean values from Appendix A1, as CaCO ₃ equivalent								

3.3 Laboratory Kinetic Column Tests

3.3.1 Design and Contents of Column Tests

Laboratory-based column tests (Section 3.1) were designed to test various aspects of layered and unlayered net-acid-neutralizing MAF and net-acid-generating PAG waste rock (Table 3-4). There were six columns containing various proportions of MAF and/or PAG rock (Figure 3-6, Table 3-4, and Appendix B). The first four columns were started in February 1989, and were operated for up to $5\frac{1}{2}$ years. Columns 5 and 6 were started later, apparently to answer specific questions about PAG reaction rates after all NP was removed (Column 5) and the effect of a single MAF layer above a PAG layer. Samples were retained in all columns with a basal perforated plastic plate with 1 cm holes, covered with fiberglass.

Columns 2 and 3 were dismantled over a year before this study began. Nevertheless, rock from the MAF (acid "consuming") and PAG (acid "producing") layers were sampled and bagged at that time for later analysis. Columns 1, 4, and 6 were dismantled as part of this study (Appendix F), and a sample from a large bag of Column 5 material was collected. Dismantling of all columns was handled by B.C. Research in Vancouver, and the authors collected samples for analysis. B.C. Research also indicated that the residence time of water during column testing was approximately 3-4 days.

Visual examination of dismantled Column 1 material (pure PAG) showed most of the material was orange-brown silty sandy gravel with approximately 15% of the material well cemented (but with some porosity) with fines and precipitants (Appendix F). The bottom few cm was more iron stained than higher material.

Secondary-mineral precipitants identified through x-ray diffraction of field samples (Piteau Associates, 1996) were: iron oxides (Fe(OH)₃), zinc-bearing copiapite (Fe²⁺Fe₄³⁺(SO₄)₆(OH)₂ ·20H₂O), gypsum (CaSO₄·H₂O), and epsomite (MgSO₄·7H₂O). These minerals are therefore also expected in the observed column precipitants.

Column 4 (pure MAF) contained light grey-green silty gravel (Appendix F). About 2% of the material was well cemented with fine particles, but with no obvious precipitants and obvious porosity.

The bag with Column 5 material (acid-leached PAG material) contained silty gravel, grey to buff to orange-brown in colour. Any cemented material was likely broken up during bagging.

Finally, Column 6 contained an upper MAF layer of grey-green silty gravel with 10% cemented with fines having some porosity. The lower PAG layer was grey to orange to tan/buff in colour with 5% cemented with fines having some porosity (Appendix F).

TABLE 3-4Summary of Six Column Tests on Samatosum Waste Rock(see Figure 3-1 and Appendix B)							
No. PAG/MAFStart Date/No. OfColumn No.LayersWeeksInitial/Final Rinse pH							
1	1/0	08 Feb 89/214	7.5/2.95				
2	1/2	08 Feb 89/286	7.6/7.05				
3	2/3	08 Feb 89/286	7.9/7.19				
4	0/1	08 Feb 89/20	7.6/7.9				
5	1/0	19 Jul 89/131	2.9/3.2				
6	1/1	19 Feb 92/128	7.4/8.15				

Sieving of column samples into >11 mm, 2-11 mm, and <2 mm was conducted by the Soil Science Laboratory at the University of British Columbia. Where sufficient sample for a grain-size range was obtained, it was submitted for four static tests (Section 3.1): ABA (Appendices A2 and A3), whole-rock composition (Appendix A4), total-metal contents (Appendices A5 and A6), and acid-rinse tests (Appendix A2). Results are discussed in Section 3.3.3.

3.3.2 Effluent Chemistry and Reaction Rates from Columns

Lead analyses were suspended at Week 74 for Columns 1, 2, and 3 and at Week 48 for Column 5 because of low concentrations (Appendix B). For the same reason, antimony analyses were suspended at Week 70 for Columns 1, 2, and 3 and at Week 50 for Column 5. On the other hand, manganese analyses started at Week 70 for Columns 1, 2, and 3 and at Week 47 for Column 5, because elevated manganese was noticed in on-site drainage.

The effluent pH showed trends (Figure 3-7 and Table 3-4) which were generally expected, that is, any column with some acid-consuming MAF material yielded nearly the same neutral effluent during the length of the tests. The major uncertainty was whether full neutralization would continue until reactive sulphides were depleted. The trends of sulphate in the effluents showed the initial flushing effect of retained sulphate (Figure 3-8). Afterwards, sulphate-production rates began to stabilize and reflect the rates of sulphide oxidation and acidity production. The sulphate rate from Column 4 was significantly lower than the other columns, because there was no highly reactive, acid-generating PAG rock in this column. Thus, the rate from Column 4 provides the acid-generation rate from pure MAF rock.

FIGURE 3-6. Schematic Diagrams of Samatosum Laboratory Columns (from Denholm and Hallam, 1991).

Columns 1, 5, and 6 with pure PAG rock yielded similar rates indicating pretreatment with acid and overlying MAF rock make little difference in the long-term rate of acid generation.

Calcium was not measured in the effluent, so aqueous saturation with respect to gypsum and subsequent retention of sulphate could not be determined. However, post-test column dismantling (Section 3.3.1) and solid-phase sulphate analyses (Section 3.3.3) show that significant secondary-mineral precipitants and sulphate was retained within PAG material and basal MAF layers in Columns 2 and 3. Overall, columns retained about 0.1-0.5 wt-%S as sulphate. This is equivalent to a sulphate production rate (Figure 3-8) of approximately 20-70 mg/kg/wk for pure PAG columns and 10-20 mg/kg/wk for the layered columns, with the exception of Column 4 (pure MAF) which showed n o significant accumulation. Therefore, late-stage sulphate-production (sulphideoxidation) rates of Table 3-5 were actually 50-100% higher than listed due to this internal retention of sulphate.

With the assumption that all

Weekly pH vs Week

FIGURE 3-7. Temporal Trends of pH in the Samatosum Columns.

(Appendix B and Table 3-5). These rates are

Minesite Drainage Assessment Group

TABLE 3-5 Summary of Rates and Predictions from Column Tests (from Appendix B)							
Parameter	Column <u>1</u>	Column 2	Column <u>3</u>	Column <u>4</u>	<u>Column</u> <u>5</u>	Column <u>6</u>	
Weeks of Testing	214	286	286	20	131	128	
Initial wt. (kg)	28.9	46.2	46.2	11.5	17.2	35.8	
pH, minimum	2.2	6.3	6.7	7.3	2.0	7.4	
pH, maximum	8.2	8.3	8.3	8.0	3.4	8.23	
pH, late stage ¹	2.9	7.3	7.3	7.7	3.2	8.0	
SO ₄ rate ¹	71	28	34	2.7	82	18	
Years to sulphur depletion	22	48	38	30	14	56	
Acidity rate ¹	5.9	1.6	1.4	4.5	18	0.89	
Alkalinity rate ¹	0	8.9	8.0	87	0.00	22	
Molar Ratio Alk/SO ₄	0.00	0.32	0.23	34	0.00	0.00	
Th	eoretical O _J	pen-System	NP Consu	mption			
NP rate ¹	68	36	42	85	67	40	
% remaining at end	33	78	77	98	45	87	
Years to NP depletion	9.9	38	33	25	10	39	
The	oretical Clo	osed-Systen	n NP Consu	imption			
NP rate ¹	140	56	70	1.4	150	36	
% remaining at end	-34	69	68	99	-59	84	
Years to NP depletion	2.7	24	20	1600	0.8	40	
Dissolved copper rate ¹	0.049	0.0022	0.0038	0.0011	0.085	0.0024	
Dissolved zinc rate ¹	0.21	0.011	0.014	0.019	0.24	0.0020	
¹ Late-stage rates as mg/kg/wk, defined as average of the last five weeks, or last eight weeks if only one data value was available in the last five; these values used as long-term predictions							

roughly 1-2 times greater than the sulphate production rate on a molar ratio, and are consistent with observations of 1.3-1.7 for carbonate systems like Samatosum (Morin and Hutt, 1997).

Based on these rates, NP in the layered columns, which is close to a ratio of 1:1 with acid potential (Appendices B2 and B3), will be depleted in 20-40 years, or before all sulphide is oxidized. Therefore, eventual net acidity is expected from the layered columns.

This prediction is further reinforced by the knowledge that approximately 10 t/1000 t of NP, or about 12% of total NP in these columns, is unavailable for neutralization (Section 3.2). These predictions of net acidity for the layered columns contradict those of Denholm and Hallam (1991), because they used measured alkalinity for the rate of NP depletion.

Alkalinity production is typically less than NP consumption. For example, the International Kinetic Database (Morin et al., 1996; Morin and Hutt, 1997) with

FIGURE 3-9. Comparison of NP Consumption Rate to Alkalinity Production from the International Kinetic Database.

462 kinetic tests from 63 mines shows that NP consumption at levels of the layered columns often exceeds alkalinity consumption by a 70-100% (Figure 3-9). Also, carbonate molar ratios which indicate the rate of NP consumption to sulphate production are virtually always greater than 1.0 in near-neutral kinetic tests. In comparison, the alkalinity/sulphate ratios for the layered Samatosum columns were only 0.32 and 0.23, meaning that NP consumption was likely a factor of at least 3-4 times greater than alkalinity production. Since the ratio of NP to acid potential in the layered columns were close to 1:1, the preferential depletion of NP appeared inevitable. Furthermore, posttest analyses of the layered columns (Section 3.3.3) indicate that most of the NP in the finer, and presumably most reactive, grains was nearly consumed by the end of the tests. All these observations indicate the prediction of eventual net acidity is reasonable.

Even Column 4 which contains pure MAF could eventually generate net acidity, depending on its actual rate of NP consumption (Table 3-5). However, this is not the result of active sulphide oxidation, but to the opposite: because the rate of acid generation is so low, NP is preferentially depleted from the column simply by the water passing through it. The late-stage ratio of alkalinity to sulfate is 33.8 in Column 4, indicating that NP is being depleted at some rate greater than 34 times the rate that acid is being generated.

3.3.3 Static Tests of Layers from Columns

Post-test samples from the various layers in the columns were sieved to three grain sizes and analyzed for expanded ABA, total-metal contents, and whole-rock composition (Appendix A2; see also Section 3.1 and 3.3.1). Additionally, post-test samples from Columns 1 (PAG only) and 4 (MAF only) were submitted for mineralogical examinations (Appendix C).

Samples of the original PAG and MAF materials placed into the columns, stored in tightly sealed plastic bags and apparently unreacted, unsorted, and unoxidized, were analyzed for comparison to the post-test reacted rock. Since this original material had already been analyzed by ABA (Denholm and Hallam, 1991), these second ABA analyses were a check on accuracy of sample splitting and chemical analyses. A comparison of the results revealed discrepancies up to 50%. Therefore, there are probably error bars on the order of 50% for chemical characterization of column materials (see also Appendix A6).

To more easily examine and discuss ABA results for the column layers, ABA values were graphed by grain size in Appendix A3. In these diagrams, MAF material is labelled acid "consuming" and PAG is acid "producing" to remain consistent with terminology in the original column testwork. Numbering of layers in layered Columns 2 and 3 begins with 1 at the bottom and increases upward.

Paste pH (Appendix A3) for the PAG and MAF (acid "consuming") in the original material ("unreacted unsorted") was near neutral (7.60 and 8.20, respectively). Thus, all rock in the columns initially started neutral, except Column 5 which was presoaked with acid. Paste pH data for Column 4 (MAF only) show that pH was consistently alkaline for all grain sizes, whereas the finer grain sizes were more acidic in Column 1 (PAG only). This indicates that finer particles of PAG either generated or retained acidity more than the coarser particles. These same trends also appear in layered Columns 2 and 3 (Appendix A3), so that layering made no difference to paste pH in the individual layers. In other words, the presence or absence of MAF material in the columns made little difference to paste pH in the PAG material.

Total sulphur and sulphide in post-test MAF (acid "consuming") rock reached minimum values in the 2-11 mm size range in all columns (Appendix A3). However, values in all ranges were generally similar to values in the original MAF rock ("unreacted unsorted"), indicating no significant depletion of sulphur in all ranges of MAF during the column tests. This is consistent with the relatively low sulphate production rate from pure MAF (Table 3-5).

For the net-acid-generating PAG, total sulphur and sulphide were variable with grain size between columns, but generally steady. Post-test levels were generally higher than the original PAG, indicating formation of sulphide in most samples. The exception was the finest grain size (<2 mm) of Column 1 which significant depletion of total sulphur and sulphide. Since sulphide probably did not form in the PAG material and the rate of sulphide depletion in the MAF should not be significantly higher than in PAG, the preceding differences with original materials probably reflect accuracy of the chemical analyses and sample compositing rather than actual chemical reactions (discussed above). In fact, two separate analyses of total sulphur for the PAG material yielded 2.63 and 3.62 %S, a difference of 38%.

Leachable sulphate (Appendices A2 and A3) increased markedly (1) with decreasing grain size in post-test MAF (acid "consuming") rock and (2), in comparison to original levels ("unreacted unsorted"), within the bottom layers ("Consuming 1") in both layered columns. The upper MAF layers in these columns showed only some increase in sulphate in the finest range. The PAG layers in these columns also showed some accumulation in the post-test unsorted and finest range. Additionally, accumulation of sulphate occurred in the unlayered PAG columns and the basal PAG in Column 6, particularly in the finest range. Therefore, there are significant accumulations of sulphate, probably as gypsum and/or epsomite, in all PAG rock and in the bottom layer of MAF in the layered columns. All columns, except Column 4, showed roughly 0.1-0.5 wt-%S retention of sulphate over the duration of the tests.

Measured bulk NP and Carbonate NP in Column 4 containing only acid-consuming MAF were relatively constant across the grain-size ranges and somewhat lower in comparison to the original ("unreacted unsorted") levels (Appendix A3). In contrast, the MAF layers in layered Columns 2 and 3 showed marked and often consistent decreases in NP and CaNP with decreasing grain size and relative to original levels. Thus, most of the neutralization within the columns came from the finer grain sizes of MAF rock. In contrast to MAF, NP and CaNP in PAG has not changed much during the column tests, except for some depletion in the finest grain-size range.

Trends in TNNP (using NP) and RNNP (using CaNP) in the layered columns were parallel to those of NP and CaNP for MAF rock (Appendix A3), again showing significant depletion with decreasing grain size. In fact, the TNNP and RNNP values of the finest grain sizes of MAF were reduced toward and into net acid generating values. In other words, the acid generation in the PAG rock caused finer grains of MAF to become net acid generating. However, the weighted average TNNP and RNNP values for MAF were still net acid neutralizing, but there is some doubt on whether the NP in the coarser grains is reactive, available, and can be counted on for neutralization.

TNPR and RNPR values (Appendix A3) for MAF rock showed peak values in the 2-11 mm or > 11 mm range. This primarily reflects the minimum sulphide values in these ranges (discussed above) rather than a peak in NP values. Trends in TNNP and RNPR for PAG rock were generally constant with grain size and in comparison to original ("unreacted unsorted") levels.

Like ABA, whole-rock composition and total-metal contents were measured in original MAF and PAG material ("unreacted unsorted") and in the three grain-size ranges (Appendices A4 to A6). Many metals like chromium and sodium displayed no clear and regular trend in the MAF and PAG layers within the columns, and thus no clear pattern of enrichment or depletion. On the other hand, calcium and strontium clearly parallelled the concentrations of NP discussed above, demonstrating the dominance of calcium-based carbonate minerals in reactive NP. Notably, magnesium displayed a trend different from NP and calcium, indicating magnesium-bearing minerals did not contribute to NP in the columns. This may be the result of the subsequent precipitation of epsomite (magnesium sulphate, Section 3.3.1), rather than the lack of initial dolomite dissolution.

Comparisons of pre-test and post-test levels of arsenic, lead, molybdenum, and zinc showed that MAF materials often display some depletion during the column test, whereas PAG layers often show enrichment. This suggests these metals were significantly leached from MAF and precipitated in PAG rock. Similar comparisons for aluminum, iron, and potassium show no significant depletion or enrichment.

The repetitive acid-batch leaching explained in Section 3.1 was used to calculate the amount of each metal that was retained in secondary minerals or occurred in primary soluble minerals like calcite within the layered column tests. Appendix A2 contains columns with the label, "remaining after acid rinse test", providing the percentage of total metal not removed by this test. Due to analytical accuracy, some values close to 100% are greater than 100%, meaning virtually none of the metal was removed. Most metals typically showed no significant removal (>50%) in the acid washes. The exceptions were: copper in a few samples of acid "producing" PAG rock, and silver and sometimes cadmium in samples of acid "consuming" MAF rock. Since these metals showed no clear enrichment or depletion in Appendices A3 to A5, they were probably dissolved from primary minerals rather than secondary minerals formed during the column tests. Thus, there was only limited secondary-mineral accumulation according to the total-metal, whole-rock, and acid-leach static tests.

Notably, calcium and magnesium from the acid-leach tests showed generally 0-50% depletion (mostly < 30%) in acid, meaning large amounts did not occur as soluble carbonate minerals (discussed below). Thus the preceding discussions on NP and calcium depletion in finer grain sizes lead to the conclusion that most NP occurred as finer grains and was nearly depleted in the layered columns, despite the persistence of most of the original non-carbonate calcium.

Mineralogical observations of Column 1 (pure PAG) rock revealed quartz-rich rock showing iron-oxide staining and cementation by fine mica and iron oxides (Appendix C), which was also noted during column dismantling (Section 3.3.1). The lack of iron enrichment or depletion in the post-test samples indicates the iron oxides were formed predominantly from the oxidized pyrite in the PAG. Chlorite at 3.5% in the PAG sample indicates some minor neutralization probably occurred even after net acidity, and would likely be characterized by the release of magnesium. Elevated magnesium levels have been noted in dump drainage (Chapter 4), but this has been

attributed solely to dolomite dissolution in the past. The low percentage of carbonate (0.2%) in the PAG of Column 1 is in close agreement with CaNP from ABA analyses (Appendices A2 and A3), confirming the presence of unavailable NP initially discussed in Section 3.2.

Mineralogical examination of a sample of MAF from Column 4 (pure MAF) noted little to no reaction of the sulphide and carbonate minerals, in agreement with the relatively low NP reaction rates in the absence of PAG (Section 3.3.2) and with no accumulation of secondary minerals in Column 4. The high levels of plagioclase, chlorite, and amphibole can provide additional NP, albeit at a lower rate, to the already abundant carbonate in the MAF.

3.3.4 Summary of Column Results

Interpretations of rates and depletion times (Section 3.3.2) and comparison of pre-test and post-test results by grain size (Section 3.3.3) have shown that PAG is relatively reactive from the perspective of acid generation and generates net acidity within several weeks to months due to a relative lack of neutralization potential (NP). On the other hand, MAF contains excess NP and sulphide oxidizes at a slower rate. A significant amount of the sulphate from oxidation is retained within PAG and basal (lower) MAF layers within the columns.

The layering of MAF and PAG within columns did not change the onset of net acidity or the precipitation of secondary minerals in PAG and basal MAF layers relative to unlayered columns. Therefore, layering on the order of 0.2-1.0 m did not affect reaction rates or geochemical behaviour within individual layers, but the layering did affect the composite effluent from the columns. For example, layered columns produced near-neutral pH in spite of the presence of net acid generation from PAG layers, although effluent pH and alkalinity were 0.4 pH units and a factor of 10 lower, respectively, than the pure MAF column.

Mass-balance calculations of acid generation and NP depletion were hampered by the lack of effluent analyses for metals like calcium and magnesium. However, based on simple chemical relationships and the International Kinetic Database, rates of NP consumption were estimated to be greater than 1.0 relative to the rate of sulphate production. Since the layered columns contained nearly equal amounts of NP and acid potential, the excess consumption of NP led to a prediction of eventual net acidity in 20-40 years. However, not all measured NP is available for neutralization (Section 3.2), so net acidity may have appeared in even less time.

4. CONSTRUCTION, FIELD MONITORING, AND PREDICTIONS FOR THE FULL-SCALE SAMATOSUM DUMP

The primary requirement behind the design of the waste-rock dump was the encapsulation of net-acid-generating (PAG) layers within net-acid-neutralizing (MAF) layers (Figures 4-1 and 4-2), as reflected in the laboratory columns (Section 3.3). A basal MAF layer of 2 m thickness was placed over the undisturbed till and organic soil with hydraulic conductivities around 10⁻⁵ to 10⁻⁷ m/s (Denholm and Hallam, 1991). Any mixing or blending of rock units within a layer was an unintentional result of blasting, loadings, hauling, and dumping.

Because most MAF rock was removed from the pit by mid-1990 due to its shallow occurrence, it was stockpiled for use as needed in dump layering. Overburden (till) was also stockpiled for a final, uppermost cover. By the end of 1990, the 2 m base of MAF, the lower 6 m of PAG, and 6 m of MAF were completed. The second 6 m of PAG was half completed by mid-1991 and completed by the end of mining. The uppermost MAF layer was reportedly completed, and the overburden was moved onto the dump at thicknesses of 0.3 to 1 m (Piteau Associates, 1996).

Eight strings of thermistors were installed during dump construction to monitor temperature. However, all strings were apparently damaged by the unexpected degree of dump settlement.

Seepage through the waste-rock dump flows into the Minewater Sedimentation Pond (MWSP), which is monitored at Site MOE-4 (Figures 1-2 and 1-3). Also, a trench was excavated and lined at the base of the lowermost PAG layer, above the basal MAF, and drains to either side of the dump (Sites MOE-6A and 6B). As a result, drainage chemistry can be monitored at MWSP, in seepage locations at the toe of the dump, and in the minor flow from the internal trench. A sample from the internal trench collected in April 1991 had insufficient volume for filtration and analysis of dissolved metals, so only pH and total metals could be determined (Table 4-1). This sample had a near-neutral pH with detectable concentrations of several metals.

TABLE 4-1 Chemical Analysis of One Drainage Sample from the Internal Trench Beneath the Lowermost PAG Layer in the Dump (from Denholm and Hallam, 1991)									
	Total Metals as mg/L								
pH Cu Pb Zn Fe Ag Cd Mn							Mn		
7.3	7.3 0.03 0.2 0.84 3.37 <0.01 <0.01 29.3								

FIGURE 4-1. Schematic Diagram of the Layered Samatosum Waste-Rock Dump (from Denholm and Hallam, 1991).

FIGURE 4-2. Cross-Section Through the Samatosum Waste-Rock Dump Perpendicular to Dip of PAG Layers (adapted from Piteau Associates, 1996).

Minesite Drainage Assessment Group

Monitoring data for MOE-6A (Appendix D) show that pH has remained between 7.0 and 8.0. However, sulphate has increased sharply since 1990, and this was found to be a sign of impending onset of net acidity at Island Copper Mine (Morin et al., 1995a) and in kinetic tests (Morin and Hutt, 1997). The accompanying increases in calcium and magnesium suggested that the dissolution rate of carbonate minerals has increased in response to the accelerating rate of acid generation signalled by sulphate. Copper and zinc concentrations also increased through time, reaching peak concentrations of 0.23 and 23 mg/L in spring of 1995. The prediction for future drainage passing MOE-6A is acidic pH with elevated metal concentrations.

Monitoring data for MOE-6B (Appendix D) show that acidic pH was first measured at this location in spring of 1993, which then recovered to over 7.0. Each spring the acidic water reappears, probably reflecting the increased flow and flushing of the dump's PAG layers. However, compared to the previous year, each year has a lower pH for a longer duration. This was also noted at one waste-rock monitoring station at Island Copper Mine (Morin et al., 1995a). Therefore, the prediction for MOE-6B is acidic pH with elevated metal concentrations.

Monitoring data for MOE-4 (Appendix D) show that the combined drainage from the dump and pit has remained consistently around pH 8.0. Consequently, the pH fluctuations at MOE-6B do not overwhelm the alkalinity in the entire drainage system. Nevertheless, the trends of increasing sulphate, increasing calcium, and decreasing alkalinity indicate acidic drainage may soon appear. Due to this, Inmet Mining has built a water-treatment plant near MOE-4.

At this point, it is informative to examine various predictions for dump drainage and their justifications. The new treatment plant and preceding predictions seem to contrast with the predictions of Piteau Associates (1996):

"In the short term, ARD rates ... are expected to increase in the waste dump, but this increase is not expected to be significant.... Iron precipitates may also be coating exposed pyrite crystals, which should naturally reduce the rate of ARD generation over time, and sulphate precipitates (e.g. gypsum) should start to blind off pathways for oxygen and water flow through the dump. The long term prognosis is an improving trend in dump discharge water quality after the next one or two decades.... [T]he waste dump actually contains much more than twice the buffering capacity required to neutralize the products of any sulphide oxidation which is likely to occur over time." (p. iiiiv)

These expectations appear overly optimistic since case studies show that (1) metal leaching can continue at elevated levels for many decades and (2) acidic drainage can appear even when large-scale calculations show excess neutralization potential (Morin and Hutt, 1997). Although it is not clear, Piteau Associates may have tempered their optimistic predictions later in their report:

"Kinetic simulation and ABA data suggest that ARD in the waste dump will be buffered by the available neutralization potential. Nevertheless, some important dynamic factors such as channelling and seasonal flushing are ignored in the column simulation. Taking these factors into account, one can conclude that ARD will be significantly mitigated by the existing NP, but will not be totally inhibited." (p. 14)

Denholm and Hallam (1991) indicated that flowpaths of infiltration through the dump are assumed to be vertical, turning to lateral as the drainage reaches the basal MAF layer and undisturbed till. However, lateral flow within layers is considered a possibility, particularly since sericitized rock can have a low permeability. Consequently, the appearance of acidic drainage from the dump does not necessarily mean that all neutralizing capacities of the MAF layers are nearly consumed. This turns out to be the key factor in reconciling various predictions and monitoring data, as explained below.

To reconcile predictions, estimates of acid generation and neutralization within the dump are needed. A relatively simple technique for assessing and predicting drainage chemistry involves the compilation of all relevant monitoring data (Morin and Hutt, 1993; Morin et al., 1995b; Norecol, Dames and Moore, 1996; Morin and Hutt, 1997). This leads to an "empirical drainage-chemistry model" (EDCM) that predicts average annual concentrations as well as shorter-term fluctuations based on past data and an estimate of pH.

The compilation of relevant monitoring data (Appendix E) shows that some parameters like alkalinity and copper produce reliable trends with pH, and are thus easily amenable to prediction. Other parameters like sulphate and manganese show a poor trend with pH, particularly around neutral values. This is one of a few cases where the technique for the EDCM fails to reasonably characterize overall drainage chemistry, and is the result of generally increasing concentrations through time at constant pH which violates one of the premises of the model.

This means that a consistent and repeatable release of sulphate and calcium from the Samatosum does not occur. Instead, annual concentrations and loadings have fluctuated and generally increased despite the neutral pH, by over an order of magnitude. This is further complicated by the precipitation and retention of sulphate within the dump, so the actual rate of in situ sulphide oxidation is only known to be greater than the variable loadings draining from the dump. Consequently, depletion of sulphide and NP within the dump cannot be estimated accurately.

Piteau Associates ignored the significant internal retention of sulphate and other metals, and calculated a flux of sulphate from the dump. The estimated flux of approximately 280 t SO_4/yr in 1995 was accompanied by warnings that significant error bars are attached to this flux. Following the same approach, the flux of calcium and magnesium can be estimated at 40 and 30 t/yr, respectively. When these fluxes are converted to molar values, the carbonate molar ratio

 $[(Ca+Mg)/SO_4]$ is 0.77 in the dump drainage. Due to the error bars and internal retention, the ratio is probably around or above the theoretical value of 1.0 (Section 3.3.2).

The uncertain mass balance for the dump can be avoided, for the most part, by noting that the molar ratio of NP to TAP within the dump (Table 3-3) is approximately 3. This is much greater than the layered columns with ratios around 1.0 (Section 3.3.2). Therefore, on a geochemical mass-balance basis, it is unlikely that the dump can generate net acidity. However, as noted in the columns, even a PAG layer as thin as 0.2 m will generate net acidity at an unattenuated rate even when surrounded by acid-neutralizing MAF rock.

This fact, combined with physical channelling of water through the dump, particularly the coarser PAG layers, explains the discrepancies between predictions and observations. In other words, the release of net acidity from the dump is not a consequence of geochemical factors, but of physical factors. Because acidic drainage in the PAG layers does not always contact MAF material before exiting the dump, this layered dump has released net acidity and will probably do so at a greater rate in the future in spite of its overall 3:1 NP:TAP ratio. This highlights the importance of physical hydrogeology in the success of geochemical layering scenarios.

Recently, the ratio of NP to TAP in the Samatosum dump has been recalculated and reported as between 10:1 and 13:1 (letter from E. Denholm to P. Mehling, 14 March 1997). However, these ratios are incorrect because they are based on averaged NNP values for PAG and MAF rock, rather than NP and AP values for each unit (e.g., Table 3-3). Since NP and AP are independent variables (Section 3.2), averaged combinations of them as NNP or NPR are not valid.
5. CONCLUSIONS

This study has reviewed existing information, reinterpreted old data, and obtained new data for the layered waste-rock dump at Samatosum. Most of the rock units at Samatosum had significant proportions of net-acid-generating rock, except for mafic pyroclastics (MAF). As a result, all rock was divided into MAF and Potentially Acid Generating (PAG). The PAG was encapsulated by MAF layers within the dump, and the overall ratio of Neutralization Potential (NP) to Total Acid Potential (TAP) was 3:1.

Column tests with various layered and unlayered sequences of PAG and MAF rock were used to determine if the dump design was appropriate. However, the two columns containing layers of PAG and MAF, simulating the dump, had NP:TAP ratios only close to 1:1. Because effluent concentrations of metals like calcium and magnesium were not measured during column testing, rates of NP consumption and depletion could not be determined. However, simple geochemical relationships and data from other mines indicated that the ratio of NP consumption to sulphide depletion in the columns was likely greater than 1:1. Additionally, as is typical at many minesites, not all measured NP at Samatosum is available for neutralization: up to 10 t CaCO₃/1000 t is unavailable at Samatosum. Therefore, the columns were predicted to eventually release net acidity if they had continued. This contradicted previous predictions, primarily because previous work assumed that the rate of NP consumption was lower and equivalent to the rate of alkalinity production. In reality, alkalinity production typically represents only a portion of total NP consumption.

Comparisons of pre-test and post-test analyses on various grain-size ranges indicated layering as small as 0.2 m in the columns did not alter the reaction rates and the geochemical behaviour of the PAG and MAF material. In other words, layering with MAF did not slow reaction rates in the adjacent PAG layers. However, the effluent from the layered columns did represent a composite from the two materials.

Significant accumulation of sulphate from sulphide oxidation was noted in PAG, where it originated, and in basal (lower) MAF layers within the columns. Also, NP was significantly depleted in MAF layers, particularly in the finest grain-size range. In fact, NP depletion in the finest MAF particles caused some MAF to become net acid generating and suggested that NP in the coarser particles may not be readily available. This also supports the prediction of net acidity from the columns.

Monitoring of drainage from the dump at Samatosum has revealed signs of impending net acidity. In fact, pH at one station has fluctuated between neutral and acidic values, with the acidic values becoming lower and more persistent with time. However, unlike the columns, the dump has an overall ratio of NP:TAP of 3:1, and thus is not predicted to generate net acidity.

The reconciliation of predictions with monitoring data is based on the observations in the columns that layering does not suppress reaction rates in the PAG and that coarser rock can preferentially channel water through a layer. Consequently, the appearance of net acidity in some dump drainage is simply the result of physical conditions rather than a failure of geochemical principles. This highlights the importance of physical design and physical hydrogeology in any future design and construction of a layered dump. If drainage does not pass through all available neutralizing layers, acidic drainage may appear even in the presence of excess neutralizing potential.

A final note focusses on metal leaching. Although acidic pH may be prevented with carefully designed and implemented layering, leaching of metals is not so easily controlled. Because reaction rates in even small layers of net-acid-generating Samatosum rock, on the order of 0.2 m, could proceed unattenuated by adjacent net-acid-neutralizing rock, metal leaching can probably occur at accelerated rates in layered dumps. If site-specific solubilities of secondary minerals are relatively high, aqueous metal concentrations may then exceed water-quality requirements even in near-neutral drainage. Therefore, layering is not necessarily a control technique for metal leaching.

6. ACKNOWLEDGEMENTS

This study was initiated by Bill Price (British Columbia Ministry of Employment and Investment), who wrote the Terms of Reference and helped design the analytical protocol.

This report has benefited greatly from reviews and comments by Gilles Tremblay (MEND), Peri Mehling and Kelly Sexsmith (Mehling Environmental Management), Bill Price (British Columbia Ministry of Employment and Investment), and Pat Bolger (Inmet Mining). We appreciated the assistance and kindness that John Froese (Samatosum) and his family gave us during our site visit and during the preparation of this report.

Although the layering of waste rock at Samatosum was not very successful, the commitment of time and money by Inmet Mining to carry out the layering was outstanding and exemplary. There is no doubt that Inmet carried out the layering with diligence and care.

7. REFERENCES

- Denholm, E., and R. Hallam. 1991. A review of acid generation research at the Samatosum Mine. Proceedings of the Second International Conference on the Abatement of Acidic Drainage, Montreal, September 16-18, Tome 2, p.561-578.
- Hatfield Consultants Limited. 1988. Samatosum Project Stage I Environmental and Socio-Economic Impact Assessment. Submitted to the British Columbia Mine Development Steering Committee (representing regulatory agencies). May, 1988.
- Morin, K.A., and N.M. Hutt. 1997. *Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies*. MDAG Publishing, Vancouver, British Columbia.
- Morin, K.A., and N.M. Hutt. 1993. The use of routine monitoring data for assessment and prediction of water chemistry. Proceedings of the 17th Annual Mine Reclamation Symposium, Port Hardy, British Columbia, May 4-7, p.191-201.
- Morin, K.A., N.M. Hutt, and K.D. Ferguson. 1996. The International Kinetic Database: Rates of acid generation, neutralization, and metal leaching from mines around the world. Proceedings of the 3rd International and 21st Annual Minerals Council of Australia Environmental Workshop, October 14-18, Newcastle, New South Wales, Australia, Volume 1, p.132-148.
- Morin, K.A., N.M. Hutt, and I.A. Horne. 1995a. Prediction of future water chemistry from Island Copper Mine's On-Land Dumps. Proceedings of the 19th Annual British Columbia Mine Reclamation Symposium, Dawson Creek, B.C., June 19-23, p. 224-233.
- Morin, K.A., N.M. Hutt, and R. McArthur. 1995b. Statistical assessment of past water chemistry to predict future chemistry at Noranda Minerals' Bell Mine. Proceedings of the Conference on Mining and the Environment, Sudbury, Ontario, May 28 June 1, Volume 3, p.925-934
- Norecol, Dames & Moore. 1996. Guide for Predicting Water Chemistry from Waste Rock Piles. Canadian MEND Project 1.27.1a.
- Piteau Associates. 1996. Assessment of ARD Mitigation Measures for the Open Pit and Waste Dump, Volume 1 and 2. Report for Inmet Mining, Project 1464, April 1996.

APPENDIX

A. Data from Static Tests

Minesite Drainage Assessment Group

A1. Acid-Base Accounting (ABA) for Samatosum Rock Units

Minesite Drainage Assessment Group

ABA Data

Sample ID	Rock Type	Pyrite (%)	Mine Component	Material Type	Paste pH	% S (Total)	TAP (tonnes CaCO ₃ /1000 tonnes)	NP (tonnes CaCO ₃ /1000 tonnes)	TNNP (tonnes CaCO3/1000 tonnes)	TNPR
BCS 8551	Sercite Tuff			Waste Rock	8.4	4.67	146	38	-108	0.26
BCS 8552	Sercite Tuff			Waste Rock	8.4	2.15	67	21	-46	0.31
BCS 8553	Sercite Tuff			Waste Rock	8.4	0.37	12	15	3	1.30
BCS 8555	Servite Tuff			Waste Rock	7.9	2.73	85	15	-70	0.18
BCS 8557	Servite Tuff			Waste Rock	0.1	2.31	74	20	-49	0.34
BCS 8559	Sercite Tuff			Waste Rock	6.1	1.47	46	14	-02	0.20
BCS 8560	Sercite Tuff			Waste Rock	6.6	3.73	117	88	-29	0.75
BCS 8561	Serolte Tuff			Waste Rock	a.7	1.52	48	38	-10	0.80
BCS 8562	Serolte Tuff			Waste Rock	8.6	1.88	59	23	-36	0.39
BCS 8563	Serolte Tuff			Waste Rock	7.9	3.71	116	7	-109	0.06
BCS 8564	Serolte UII			Waste Rock	8.4	1.72	54	38	-16	0.71
BCS 8565				Waste Rock	8.8	2.32	73	67	-6	0.92
BCS 9567	Sercite Tuff			Waste Rock	0.1	3.46	108	23	-60	0.21
BCS 8569	Serolte Tuff			Waste Rock	73	3.30 4.04	126	20	-114	0.25
BCS 8570	Semite Tuff			Waste Rock	6.4	2.49	7.8	3	75	0.10
BCS 8574	Serolte Tuff			Waste Rock	8.6	1.20	38	6 5	28	1.73
BCS 8575	Sercite Tuff			Waste Rock	6.9	0.64	26	9	-17	0.34
BCS 6576	Sercite Tuff			Waste Rock	8.6	0.61	19	35	16	1.84
BCS 8577	Sercite Tuff			Waste Rock	6.9	0.69	21	65	44	3.04
BCS 8578	Semite lun			Waste Rock	7.4	3.07	96	9	-87	0.09
BCS 6580	Semite IUII Somito Tuff			Waste Rock	6.1	0.20	124	11	122	1.02
BCS 6581	Semite Tuft			Waste Rock	8.1	3 05	95	85	-125	0.00
BCS 8582	Sercite Tuff			Waste Rock	8.7	3.76	118	77	-41	0.66
BCS 8583	Sercite Tuff			Waste Rock	8.5	0.36	11	15	4	1.32
BCS 8584	Semite Tuff			Waste Rock	a.4	2.40	75	21	- 5 4	0.28
BCS 8585	Semite Tuff			Waste Rock	8.5	3.11	97	43	-54	0.44
BCS 6586	Sercite Tuff			Waste Rock	8.7	1.91	60	36	-24	0.60
BCS 8587	Semite luff			Waste Rock	6.6	2.29	7 2	33	- 3 9	0.46
BUS 8586				Waste Rock	0.2	1.5/	49	16	-33	0.33
BCS 8502	Seroite Tuff			Waste Rock	8.8	1.00	31 44	37	71	1.10
BCS 6593	Seroite Tuff			Waste Rock	8.6	0.55	17	17	0	0.99
BCS 8595	Sercite Tuff			Waste Rock	8.5	1.03	3 2	71	39	2.21
BCS 8596	Serolte Tuff			Waste Rock	8.9	0.77	24	32	6	1.32
BCS 8597	Sercite Tuff			Waste Rock	8.5	1.60	50	15	- 3 5	0.30
BCS 8598	Servite Tuff			Waste Rock	8.6	2.27	71	20	-51	0.26
BCS 8599				Waste Rock	8.7	0.31	10	12	2	1.26
SCD10393 BCD10377		5		Waste Rock	8.4	3.29	103	50	-30	0.00
BCD10431	Sericite Tuff Chart	5		Waste Rock	8 Q	4.07	123	150	27	1 2 2
BCD10434	Sericite Tuff / Chert		Fw	Waste Rock	8.6	5.34	167	182	15	1.09
BCD10476	Serioite Tuff / Chert	5	HW	Waste Rock	8.4	3.44	108	71	- 3 7	0.66
BCD4140	Sericite Tuff / Chert	10	Hw	Waste Rock	8.5	3.35	105	139	34	1.33
BCD4178	Sericite Tuff / Chert	5	Pit	Waste Rock	6.4	0.90	28	19	- 9	0.68
BCD5280	Sericite Tuff / Chert	10	Hw	Waste Rock	7.7	2.97	93	11	-82	0.12
BCD8300		Trace-3	Pi	Waste Rock	9.0	1.87	50	241	163	4.12
BCD10313 BCD5259	Seriolie Tuff + Quartzite	5 20	HW	Waste Rock	88	0 53	17	105	8.8	6.32
BCD5298	Sericite Tuff + Quartzite + Argillite	20	FW	Waste Rock	6.6	3.20	100	4	-96	0.04
BCD5302	Sericite Tuff + Quartzite + Argiltije		Hw	Waste Rock	8.4	2.40	75	8	-67	0.11
BCD10541	Sertciie Tuff + Quartzite + Quarts Vein	15	FW	Waste Rock	6.5	8.61	269	4	-265	0.01
BCD5883	Sericite Tuft + Quarztite		HW,FW	Waste Rock	6.3	7.14	223	7	-216	0.03
Maximum					9.0	8.61	269	241	183	6.32
Mean					0.3	0.23	0 79	45	33	0.88
Standard Deviation	1				0.7	1.68	5 2	49	66	1.10
10 Percentile					7.1	0.57	18	а	-106	0.09
Median					8.4	2.37	74	2 5	33	0.60
90 Percentile					8.8	4.20	131	111	32	1.79
Count					55	55	55	55	55	55

TAP = % S (Total) * 31.25 TNNP = NP • TAP TNPR = NP | TAP

Note: Data taken from DBARD database

ABA Data

Sample ID	Rock Type	Pyrite (%)	Mine Component	Mate Tyj	rial D e	Paste	pH <mark>%</mark> S _(Total)	TAP (tonnes CaCO ₃ /1000 tonnes)	N P (tonnes CaCO ₃ /1000 tonnes)	T N N P (tornes CaCO ₃ /1000 tonnes)	TNPR
SC010426	Mafic Pyroclastic	Trace-3	PI	Waste	Rock	6.9	2.10	6 6	715	649	10.90
BCD10514	Mafic Pyroclastic	Trace-2	Pi	Waste	Rock	a.9	2.10	66	516	440	7.57
BCD10526	Mafic Pyroclastic		Pit	Waste	Rock	6.7	3.65	120	452	332	3.76
BCD4255	Mafic Pyroclastic	5 - a	Pit	Waste	Rock	6.5	4.46	140	136	- 2	0.99
BCD4257	Mafte Pyroclastic		PI	Waste	Rock	0.2	1.06	34	71	37	2.10
BCD4275	Mafic Pyroclastic	Trace	Pi	Waste	Rock	6.2	0.15	5	207	202	45.37
BCD5251	Mafic Pyroclastic		Pi	Waste	Rock	6.5	0.47	15	916	901	62.10
BCD5717	Mafic Pyroclastic		PI	Waste	Rock	4.7	4.30	134	4	-130	0.03
Maximum						a.9	4.46	140	916	901	62.10
Minimum						4.7	0.15	5	4	-130	0.03
Mean						8.1	2.33	73	377	305	16.60
Standard Deviation						1.4	1.72	54	327	351	23.62
10 Percentile						7.2	0.37	1 2	51	-41	0.70
Median						a.5	2.14	67	330	267	5.67
90 Percentile						0.9	4.35	136	775	725	50.39
Count						а	8	а	а	а	8

TAP = % S (Total) • 31.25 TNNP = NP • TAP TNPR = NP / TAP

Note: Data taken from DBARD detabase

ABA Data

Sample ID	Rock Type	Pyrite (%)	Mine Component	Material Type	Paste pH	% S (Totai)	TAP (tonnes CaCO ₃ /1000 tonnes)	NP (tonnes CaCO-/1000 tonnes)	TNNP (tonnes CaCOy/1000 tonnes)	TNPR
BCD10203	Muddy Tuff	10-20	Fw	Waste Rock	6.6	5.86	183	7	-176	0.04
BCD10520	Muddy Tuff	30 - 60	Fw	Waste Rock	7.2	9.06	203	4	-279	0.01
SC010645	Muddy Tuff	2 0	Fw	Waste Rock	6.8	11.10	347	2	-345	0.01
BCD4082	Muddy TM	20.40	HW FW	Waste Rock	4.1	8.69	272	3	-269	0.01
BCD4215	Muddy Tuff	2 0	Fw	Waste Rock	6.4	5.20	163	9	-154	0.06
BCD5214	Muddy Tuff	4 0	Fw	Waste Rack	4.2	10.40	325	2	-323	0.01
BCD5727	Muddy Tuff	4 0	Hw	Waste Rock	6.5	6.51	203	5	-198	0.02
BCD5889	Muddy Tuff	10-20	Fw	Waste Rock	6.4	4.99	156	1	-155	0.01
BCD5905	Muddy Tuff	+ sun	Fw	Waste Rock	5.3	4.34	136	17	-119	0.13
BCD9343	Muddy Tuff	30 • 40	FW	Waste Rock	7.0	9.15	286	89	-197	0.31
Maximum					7.0	11.10	347	09	-119	0.31
Minimum					4.1	4.34	136	1	-345	0.01
Mean					6.1	7.53	236	14	-221	0.06
Standard Deviat	ion				1.2	2.43	76	27	77	0.10
10 Percentile					4.2	4.93	154	2	-325	0.01
Median					6.5	7.60	238	5	-198	0.02
90 Percentile					7.3	10.47	327	24	-150	0.14
Count					10	10	10	10	10	10

TAP **= %** S (Total) • 31.25 TNNP **= NP -TAP** TNPR **=** NP I TAP

Note: Deta taken from DBARD database

1000000007741282639827

ABA Data

Sample ID	Rock Type	Pyrite (%)	Mine Component	Material Type	Paste pH	% S (Total)	TAP (tonnes CaCO ₂ /1000 tonnes)	NP (tonnes CaCOy/1000 tonnes)	TNNP (tonnes CaCO ₂ /1000 tonnes)	TNPR
SC04111	Quartz Vein Quartz BX		HW	Waste Rock	a.1	5.68	178	118	-60	0.66
BCD10130	Quartz Vein + Quartzite		HW	Waste Rock	9.1	1.58	49	348	299	7.05
BCD4036	Quartz Vein + Sulphide		HW,FW	Waste Rock	8.1	1.04	33	21	-12	0.65
BCD5743	Quartzite		HW	Waste Rock	7.4	0.10	3	11	а	3.42
BCD9336	Quartzite	2 0	Fw	Waste Rock	a.7	6.05	189	300	111	1.59
BCD4146	Quartzite + Muddy Tuff		Fw	Waste Rock	9.1	2.95	92	2 5	-67	0.27
BCD1 0255	Quartzite + Quartz Vein		Fw	Waste Rock	a.9	2.51	78	214	136	2.73
BCD5877	Quartzite + Tuff		Hw	Waste Rock	7.7	1.73	54	а	46	0.15
Maximum					9.1	6.05	189	346	299	7.05
Minimum					7.4	0.10	3	а	- 6 7	0.15
Mean					a.4	2.71	85	131	46	2.66
Standard Deviation	1				0.7	2.13	67	139	127	2.34
10 Percentile					7.6	0.76	24	10	-62	0.23
Median					a.4	2.12	66	72	- 2	1.13
90 Percentile					9.1	5.79	181	314	la4	4.51
Count					a	а	а	а	а	а

TAP = % S (Total) '31.25 TNNP = NP -TAP TNPR = NP | TAP

-

٠

Note: Data taken from DBARD database

ABA Data

Sample ID	Rock Type	Pyrite (%)	Mine Component	Material Ty pe	Paste pH	% S (Totai)	TAP (tonnes CaCO ₃ /1000 tonnes)	N P (tonnes CaCO ₃ /1000 tonnes)	TNNP (tonnes CaCOy1000 tonnes)	TNPR
BCD10442	Chert	5	FW	Waste Rock	7.6	5.67	177	23	-154	0.13
BCD4019	Chert	10-15	Fw	Waste Rock	7.4	3.46	106	10	-96	0.09
Sax376	Chert		HW	Waste Rock	4.0	12.00	375	1	-374	0.00
BCD4739	Chert		Fw	Waste Rock	3.2	16.60	566	0	-566	0.00
BCD5304	Chert	5	Fw	Waste Rock	6.6	2.26	71	100	29	1.42
BCD4025	Chett+Muddy Tuff	3 0	Fw	Waste Rock	6.6	5.75	160	6	-174	0.03
Maximum					6.6	16.60	566	100	29	1.42
Minimum					3.2	2.26	71	0	-566	0.00
Mean					6.3	7.99	250	23	-226	0.28
Standard Deviation	1				2.2	6.27	196	38	220	0.56
10 Percentile					3.6	2.86	89	1	-481	0.00
Median					7.0	5.71	178	6	-164	0.06
90 Percentile					8.2	15.40	461	6 2	-34	0.77
Count					6	6	6	6	6	6

TAP ≈ % **S** (Total) '31.25 TNNP = NP -TAP TNPR ≌ NP | TAP

Note: Data taken from DSARD database

ABA Data

Sample ID	Rook Type	Py (1	rite %)	Mine Component	Mate Typ	rial e	Paste pH	% S (Totai)	TAP (tonnes CaCOy/1000 tonnes)	NP (tonnes CaCOy/1000 tonnes)	TNNP (tonnes CaCO ₃ /1000 tonnes)	TNPR
BCS 8556	Araillite				Waste	Rock	8.1	0.20	6	7	1	1.12
B C S 8558	Argillije				Waste	Rock	7.7	1.00	31	23	- 8	0.74
BCS 8568	Argillije				Waste	Rock	8.3	0.50	16	34	18	2.18
BCS 8571	Argillite				Waste	Rock	7.5	0.80	19	15	-4	0.80
BCS 8572	Araillite				Waste	Rock	4.3	7.40	231	5	-226	0.02
BCS 8573	Argillite				Waste	Rock				2	-229	0.01
BCS 8589	Araillite				Waste	Rock	4.9	0.00	231	5	4	10.00
BCS 8590	Arailliie				Waste	Rock	7.6	0.50	16	2	-14	0.13
BCS 8594	Araillite				Waste	Rock	8.8	2.00	63	233	171	3.73
BCS 8600	Argillite				Waste	Rock	4.4	7.50	234	4	-230	0.02
Maximum							8.8	7.50	234	233	171	10.00
Minimu <u>m</u>							4.0	0.04	1	2	-230	0.01
Mean							6.9	2.71	85	33	-52	1.87
Standard Deviatio	ก						1.9	3.30	103	71	133	3.09
10 Percentile							4.3	0.18	6	2	-229	0.02
Median							7.7	0.80	25	6	-6	0.77
90 Percentile							8.4	7.41	232	54	34	4.38
Count							1 0	10	10	10	10	10

TAP = % S (Total) • 31.25 TNNP **≡ NP -TAP** TNPR **=** NP I TAP

Note: Deta taken from DBARD database

ABA Data

Sample ID	Rock Type	Pyrite (%)	Mine Component	Material Type	Paste pH	% S (Total)	TAP (tonnes CaCO ₃ /1000 tonnes)	N P (tonnes CaCO ₃ /1000 tonnes)	TNNP (tonnes CaCO ₃ /1000 tonnes)	TNPR
BCD5432	Massive Sulphide			Ore	3.9	27.90	872	2	-870	0.00
BCD5887	Massive Sulphkte			Ore	8.1	4.80	144	275	131	1.91
BCD10441	Chert + Muddy Tuff			Ore	8.9	10.10	316	10	-306	0.03
BCD4214	Muddy Tuff			Ore	5.2	5.98	187	10	-177	0.05
BCD10398	Quartz Vein			Ore	8.4	5.13	160	168	8	1.06
BCD5209	Quartz Vein			Ore	8.5	2.67	83	369	286	4.42
BCD5592	Quartz Vein			Ore	7.9	8.63	270	91	-179	0.34
BCD9366	Quartz Vein + Quartzite			Ore	6.7	22.20	694	3	-691	0.00
BCD5903	Quartzite			Ore	8.1	4.47	140	168	28	1.20
BCD5303	Semite Tuff			Ore	7.8	4.69	147	43	-104	0.29
Maximum					8.5	27.90	872	369	286	4.42
Minimum					3.9	2.67	83	2	-870	0.00
Mean					7.2	9.64	301	114	-187	0.93
Standard Deviation	1				1.5	8.51	268	129	357	1.39
10 Percentile					5.1	4.29	134	3	-709	0.00
Median					7.9	5.56	174	67	-140	0.32
90 Percentile					6.4	22.77	712	284	147	2.16
Count					10	10	10	10	10	10

TAP **= % S** (Total) → 31.25 TNNP = NP -TAP TNPR = NP I TAP

1

Note: Data taken from DBARD detabase

ABA Data

Sample ID	Rock Type	Pyrite (%)	Mine Component	Material Type	Paste pH	% S (Total)	TAP (tonnes CaCO ₃ /1000 tonnes)	NP (tonnes CaCO ₃ /1000 tonnes)	TNNP (tonnes CaCO3/1000 tonnes)	TNPR
TAILINGS AREA/SOILS	Soils		Tailings Area / PI	Unspecified	7.9	0.03	1	3 7	36	10.00
WASTE DUMP/SOILS	Soils		Waste Dump / Pi	Unspecified	0.2	0.56	18	1	-17	0.07
Maximum					a.2	0.58	18	37	36	10.00
Minimum					7.9	0.03	1	1	-17	0.07
Mean					8.1	0.31	10	19	10	5.04
Standard Deviatio	n				0.2	0.39	1 2	25	37	7.02
10 Percentile					7.9	0.09	3	5	-12	1.06
Median					8.1	0.31	10	19	10	5.04
90 Percentile					a.2	0.53	16	33	31	9.01
Count					2	2	2	2	2	2

TAP = % \$ (Total) • 2131.25 TNNP = NP -TAP TNPR = NP / TAP

Note: Data taken from DBARD database

9879-

A2. ABA, Whole-Rock and Total-Metal Contents for Column Samples

Minesite Drainage Assessment Group

100

Column Test Samples

Sample	Size Fractio	Sample n Weights (g)	Rinse pH (1:1)	Paste pH	% s (Total)	% S (Sulphide)	% S (Sulphate)	% S (BaSO4)	% S (del)	TAP (tonnes CaCOy/1000 tonnes)	SAP (tonnes CaCOy1000 tonnes)	HAP (tonnes CaCOy/1000 lonnes)	NP (tonnes CaCOy10 tonnes)	co2 % XXX (inorganic)	CaNP (tonnes CaCO ₃ /1000 tonnes)	TNNP (tonnes CaCO ₃ /1000 tonnes)	SNNP (tonnes CaCOy/1000 lonnes)	RNNP (tonnes CaCO ₃ /1000 tonnes)	HNNP (tonnes CaCOy1000 tonnes)	TNPR	SNPR	RNPR	HNPR	(CaNP /NP) '100
Column 2. Consuming 1 Column 2. Consuming 1 Column 2, Consuming 1 Column 2. Consuming 1	> 11 mm 2 - 11 mm < 2 mm Pulped	362 4 175.4 44 225	6.60 5.20	7.60 7.60 7.30	0.14 0.34 0.61	0.09 0.26 0.55	0.06 0.07 027	0011 0.022 0.015	0.000 0.000 0.000	4 11 25	3 6 17	3 6 17	116 74 17	4.50 2.70 0.30	102 61 7	112 63 -8	113 66 0	100 53 -10	113 66 0	26.51 6.96 067	41.24 9.11 0.99	36.39 7.56 0.40	41.24 9.11 0.99	66 63 40
Column 2. Producing 2 Column 2. Producing 2 Column 2. Producing 2 Column 2. Producing 2 Column 2. Consuming 3 Column 2. Consuming 3	> 11 mm 2 - 11 mm < 2 mm Pulped > 11 mm 2 - 11 mm	13.9 1360.2 858.7 170.5 792.7 436.2	4.00 4.30 7 50 7.70	6.60 5.30 6.39 6.30 8.30	3.12 3.51 3.16 0.09 0.11	3.14 3.39 316 009 0.12	0.06 0.27 017 0.01 0.01	0.020 0.006 0.023 0.006 0.004	0.000 0.000 0.000 0.000 0.000	98 110 99 3 3	98 106 99 3 4	98 106 99 3 4	40 14 35 91 77	1.70 0.70 1.60 3.40 2.50	39 16 36 77 57	-56 -96 -64 88 74	-56 • 92 • 64 66 73	-59 -90 -63 75 53	-56 -92 -64 66 73	0.41 0.13 035 32.36 22.40	0.41 0.13 0.35 32.36 20.53	0.39 0.15 0.37 27.49 15.16	0.41 0.13 0.35 32.36 20.53	97 114 104 65 74
Column 2. Consuming 3 Column 2. Consuming 3 Column 3. Consuming 1 Column 3. Consuming 1 Column 3. Consuming 1	< 2 mm Pulped > 11 mm 2 - 11 mm < 2 mm	61.6 179.2 266 194.3 79.7	6.30 3.80	6.10 7.60 7.49 6.30	0.37 0.16 0.36 0.99	0.22 0.06 021 0.33	0.03 007 0.16 0.66	0.010 0 003 0 014 0.016	0.110 0.027 0.000 0.000	12 6 12 31	10 3 7 10	7 3 7 10	17 100 66 14	0.40 3.60 2.20 0.40	9 66 50 Q	5 94 54 17	7 97 59 4	-1 63 43 -1	10 98 59 4	1.47 17.76 5.56 045	1.65 28.65 10.06 1.36	0.68 25.60 7.62 0.66	2.47 40.00 10.08 1.36	54 66 76 65
Column 3. Consuming 1 Column 3. Producing 2 Column 3. Producing 2 Column 3. Producing 2 Column 3. Producing 2	Pulped > 11 mm 2 - 11 mm < 2 mm Pulped	173.2 15.6 1133.1 11063 149.5	3.30 3.10	6.00 4.40 5.60	2.62 3.42 3.21	2.76 3.14 3.04	0.15 0.49 0.33	0.016 0.005 0.005	0.000 0.000 0.000	62 107 100	66 98 95	66 96 95	36 7 27	1.90 0.40 1.30	43 9 30	44 -100 -73	4 6 -91 - 68	-43 - 89 -65	4 6 -91 -68	0.46 0.07 0.27	0.44 0.07 0.26	0.50 0.09 0.31	0.44 0.07 0.26	114 130 110
Column 3. Consuming 3 Column 3. Consuming 3 Column 3. Consuming 3 Column 3. Consuming 3 Column 3. Producing 4	> 11 mm 2 - 11 mm < 2 mm Pulped 2 - 11 mm	740.1 252 297 251.5 746.5	3.00 4.10 3.40	7.90 7.60 7.50 6.30	0.20 0.40 0.63 2.40	0.16 0.32 0.43 2.44	0.02 0.03 0.15 0.16	0.001 0.011 0.036 0.012	0.000 0.036 0.012 0.000	6 13 20 75	6 11 14 76	6 10 13 76	74 76 21 60	2.80 2.90 0.40 3.00	59 68 9 66	66 66 1 -15	66 67 7 -16	54 55 -5 -8	68 66 6	11.64 6.24 1.07 0.60	13.16 6.96 1.52 0.79	10.51 5.66 0.66 0.69	13.16 7.60 1.56 0.79	60 65 43 114
Column 3. Producing 4 column 3. Producing 4 Column 3. Consuming 5 Column 3. Consuming 5 Column 3. Consuming 5	< 2 mm Pulped > 11 mm 2 - 11 mm < 2 mm	935.6 196.4 799.5 242.6 26	3.40 7.70 7.30	5.30 6.10 6.30 6.00	3.13 2.92 0.05 0.12 0.36	2.66 2.65 0.02 0.11 0.24	0.41 0.33 0.02 0.02 0.11	0.006 0.007 0.004 0.005 0.009	0.000 0.000 0.006 0.000 0.001	96 91 2 4	69 83 1 3	89 63 1 3	24 33 76 69 41	1.20 1.60 2.30 2.30	27 36 52 52	-74 -56 76 65 30	- 65 -50 77 66 33	-62 -46 52 49 6	-65 -60 77 66 34	0.25 0.36 10.00 16.40 3.64	0.27 0.40 10.00 20.07 5.45	0.31 0.44 10.00 15.22 1.61	0.27 0.40 10.00 20.07 5.47	114 110 67 76 33
Column 3. Consuming 5 Original PAG Original MAF Column I. Original PAG Column I. Original PAG	Pulped Pulped Pulped Unsorted	226.9 296 245.7 940	2 90	7.60 6.20	3.62 0.14	3.62 0.14	0.11 0.02	0.006	0.000	113 4	113 4	113 4	35 125	1.60 5.30	41 121	-76 121	-76 121 26	-72 116	-76 121 26	0.31 26.57	0.31 26.57	0.36 27.55 0.60	0.31 26.57	117 96
Column I. Original PAG Column I. Original PAG Column 1. Original MAF Column 4. Original MAF	2 - 9.6 mm < 2 mm Unsorted > 9.6 mm	1565 610 1400 3095	2.30 2.50 2.40 6 70	3.60 2.99 7.90	2.64 1.56 0.44	2.65 2.17 0.51 0.40	0.33 0.47 1.12 0.02	0.017 0.014 0.007 0.006	0.000 0.000 0.014	63 49 14	66 16 13	66 16 13	45 4 -18 95	2.20 0.40 0.10 3.30	9 2 75	49 -7s -67	-36 - 64 -34 62	-33 - 59 -14 62	-30 -64 -34 63	0.46 0.05 -0.36 6.91	0.34 0.06 -1.13 7.34	0.13 0.14 5.60	0.04 0.06 -1.13 7.60	227 -13 79
Column 4. Original MAF Column 4. Original MAF Column 5 Column 5 Column 5	2 - 9.6 mm < 2 mm Unsorted 1 > 9.6 mm 2 = 9.6 mm	1215 630 5 0 0 1705 1790	8.50 760 2.60	6.09 6.10 5.00	0.16 0.26 1.39	0.13 0.23 0.97	0.03 002 042	0.021 0.013 0.005	0.000 0.017 0.000	5 9 43	4 6 30	4 7 30	66 13	3.70 3.10 0.60	64 71 18	94 79 -30	80 -17	60 63 -12	95 81 -17	1006 0.30	24.37 11.39 0.43	9.13 0.60	24.37 12.24 0.43	80 140
Column 5 Column 6, MAF (Top) Column 6, MAF (Top) Column 6, MAF (Top) Column 6, MAF (Top)	< 2 mm Unsorted > 9.6 mm 2 • 9.6 mm < 2 mm	765 1355 2370 1445 1190	7.60	7.49	1.42	1.42	0.03	0.006	0.000	44	44	44	65	3.50	80	41	41	35	41	1.92	1.92	1.79	1.92	94
Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom)	Unsorted > 9.6 mm 2 • 9.6 mm < 2 mm	1725 1460 1495 1015	3.70	6.30	2.27	2.04'	0.22	0.006	0.004	71	64	64	42	2.60	59	-29	-22	-5	-22	0.59	0.66	0.93	0.66	141
Maximum Minimum Mean Standard Deviation IO Percentile		3095 13.9 605.6 721.1 80.1	6.70 2 40 509 219 266	6.30 2.90 6.67 <u>1.39</u> 5.12	3.62 0.05 1.42 <u>1.31</u> 0.13	3.62 0.02 1.26 1.30 0.10	1.12 0.01 020 0.23 002	0.036 0.001 0 012 0.006 0.005	0.110 0.000 0.007 0.020	113 2 44 41 4	113 1 10 40 3	113 1 39 <u>41</u> 3	125 - 18 52 38 13	5.30 0.10 2.04 <u>1.33</u> 0.40	121 2 46 <u>30</u> 9	121 - 100 6 <u>69</u> -76	121 • 92 13 <u>66</u> 67	116 -90 7 <u>56</u> -64	121 -92 13 <u>66</u> -67	32.36 -0.36 6.77 945 0.17	41.24 -1.13 6.05 11.29 0.10	36.39 0.09 6.79 9.61 0.21	41.24 -1.13 6.43 <u>11.97</u> 0.19	227 -13 91 39 47
Median <u>90 Precentile</u> count		740.1 1661.0 53	4.10 7.76 25	7.40 <u>6.16</u> 35	0.61 <u>3.20</u> 35	0.43 <u>3.14</u> 35	0.11 0.45 35	0.009 0.021 35	0.000 0.016 35	25 100 35	14 96 35	13 98 35	42 97 35	2.20 3.62 35	50 62 35	1 92 35	7 92 35	-1 78 35	8 92 35	1.07 21.36 35	1.52 26.89 35	0.69 23.76 35	1.56 26.69 35	66 125 35
		% S(BaS) % _S (del) Note: I TAP = % SAP = (%	O ₄) = Ba(pp # % S (Total f % S (del) S (Total) * 3 S (Sulphide	om) '32.06 /) =% S (Sul ¢ < 0 then set 1.25) +% S (del	44.01 HO hide)•% to0))•31.25	000 _S (Sulphate) • % s (BaS	(O ₄)		HAP =% S CaNP = % TNNP = NP SNNP = NP RNNP = Ca	(Sulphide) CO2 * 100.0 • TAP • SAP NP • SAP	* 31.25 99 * 10 / 44 .9	01	HNNP = NP TNPR = NP Note: If SNPR = NP Note: If (• HAP / TAP % S (Totai) = I SAP % S (Sulpid	=<0.05 then ie) + % S (di	set to 10 el))=<0.05 ti	F h en set to	RNPR = Cat Note: If (9 H	NP • SAP 6 S (Sulpid INPR = NF Note: If '	le) + % s (de ? / HAP % S (Sulpic	al)) =<0.05 de) =<0.05	(hen set to then set to	o 10 10

in:

.

۳İ

ł

and the second second

Sample	Al ₂ O ₃ (%) XRF	CaO (%) XRF	Cr ₂ O3 (%) XNF	Fe ₂ O3 (%) XMF	K2O (%) XMF	MgO (%) XRF	MnO (%) JRF	Na ₂ O (%) XRF	P2O5 (%) XRF	SiO ₂ (%) XMF	TiO2 (%) XRF	LOI (%) XRF	Totai (%) XRF
Columo 2 Consumina 1	13 18	7 66	0 010	11 35	0.07	11 58	0 10	2.69	0.15	12 16	1 28	7 88	98 50
Column 2, Consuming 1	13 72	5.48	0.010	11.81	0.31	11.16	0.19	2.52	0.15	45.44	t.42	6.19	98.40
Column 2, Consuming 1	15.01	2.37	0.010	12.99	0.69	11.91	0.27	2.08	0.17	44.21	1.62	7.47	98.78
Column 2, Consuming 1													
Column 2, Producing 2													
Column 2, Producing 2	9.58	1.43	0.010	6.05	2.15	2.07	0.11	0.16	0.14	71.96	0.59	5.14	99.37
Column 2, Producing 2	17.07	0.79	0.010	r.56	4.11	1.78	0.09	0.33	0.16	59.08	0.99	6.91	98.90
Column 2, Producing 2	11.87	1.34	0.010	0./1	2.70	2.10	0.11	0.2/	0.15	0/.42	0./1	0.08 7 47	89.10
Column 2, Consuming 3	13.15	0.84	0.010	11.38	0.08	12.08	0.17	2.58	0.15	U.4Z A107	1.52	6.02	99.20 00.48
Column 2, Consuming 3	14.15	2 02	0.010	13.30	0.00	12.90	0.18	2.43	0.17	43.35	1.39	6.65	99 30
Column 2, Consuming 3		2.92	01010	11110	0.15	15.05	0.21	2100	0.20	10.00	1110	0102	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Column 3, Consuming 1	12.71	7.40	0.010	12.14	0.06	11.37	0.22	2.59	0.15	43.25	1.39	7.16	98.47
Column 3, Consuming 1	13.30	4.84	0.010	12.26	0.17	12.20	0.22	2.20	0.17	43.74	1.45	6.63	97.21
Column 3, Consuming 1	14.26	2.78	0.010	13.46	0.30	12.47	0.36	2.24	0.19	42.24	1.64	6.83	98.78
Column 3, Consuming 1													
Column 3, Producing 2													~~ ~~
Column 3, Producing 2	9.34	1.59	0.010	6.07	1.92	2.67	0.11	0.12	0.10	70.54	0.63	5.36	98.46
Column 3, Producing 2	17.10	0.68	0.005	7.31	4.14	1.78	0.08	0.29	0.16	58.45	1.01	7.63	98.63
Column 3, Producing 2	13.01	1.23	0010	6.82	3.01	2.22	0.11	0.28	0.14	84.5U 1609	0.78	8.81 7 34	98.92
Column 3, Consuming 3	12.84	5.33	0.010	12.45	0.08	12.0/	0.18	2 40	0.18	40.00	1.42	7 36	SS 55
Column 3, Consuming 3	15.51	2.48	0.010	13.86	0.22	12 41	0.18	2.49	0.17	45.00	1.40	4 08	95 64
Column 3, Consuming 3	15.51	2.10	01010	10100	0100		0100	2110	0.21	10.10	1107		,,,,,,
Column 3, Producing 4	7.60	2.34	0.005	5.87	1.55	2.86	0.15	0.17	0.09	72.36	0.58	5.23	99.00
Column 3, Producing 4	14.02	1.25	0.010	7.51	3.26	2.27	0.10	0.36	0.15	62.34	0.89	7.00	99.16
Column 3, Producing 4	11.66	1.46	0.010	6.95	2.59	2.47	0.11	0.25	0.13	65.81	0.77	6.57	98.78
Column 3, Consuming 5	13.59	5.89	0.010	12.12	0.07	12.10	0.17	2.89	0.15	44.03	1.36	6.//	99.15
Column 3, Consuming 5	13.18	4.86	0.010	12.11	0.08	12.94	0.17	2.16	0.17	40.63	141	12.58	99.20
Column 3, Consuming 5	1444	314	0010	13.85	0.14	13.19	0.22	2.33	0.19	42.01	1.09	/.10	99.17
Original PAG	1237	1.41	0010	6 49	2 57	1 71	0.10	0.30	0.15	67 00	0 66	5.87	98 84
Original MAF	12.93	8.89	0.010	10.87	0.62	9.27	0.10	1.69	0.18	46.04	1.32	6.83	99.02
Column 1, Original PAG													
Column 1, Original PAG	9.18	1.92	0.020	6.91	1.73	3.13	0.15	0.25	0.10	65.07	0.58	8.33	95.37
Column 1, Original PAG	12.44	0.55	0.005	6.29	2.87	1.52	0.08	0.21	0.15	66.52	0.78	6.40	97.77
Column 1, Original PAG	17.77	026	0.005	8.60	4.22	1.52	0.05	0.38	0.19	55.77	1.07	9.52	99.35
Column 4, Original MAP	12 51	(10	0.010	10.07	0.07	12.05	0.17	2.40	0.17	10.41	1.72	7 50	00 47
Column 4, Original MAP	13.51	0.12	0.010	12.3/	0.0/	12.05	0.1/	2.49	0.1/	42.41	1.52	7.90	98.47
Column 4, Original MAF	13.32 13 OR	5.01	0.010	12.u 12.24	0.07	12.04	0.10	2.42	0.10	42.23	1.40	7.80	98.86
Column 5	12.53	0.76	0.005	4 54	2 75	1 61	0.09	0 41	0.18	67 94	0.74	5.85	97 13
Column 5	12.55	0170			2110	1.01		0.11	0.11	••••	0.7.	0100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Column 5													
Column 5													
Column 6, MAF (Top)	13.07	4.75	0.010	11.26	0.87	9.22	0.18	1.45	0.15	47.93	1.29	7.25	97.40
Column 6. MAF (Top)													
Column 6, MAF (Top)													
Column 6 PAG (Bottom)	12 10	2.05	0.005	6 14	2.76	1 02	0 10	0.23	0.12	64 97	0.88	6 10	08 10
Column 6 PAG (Bottom)	15.10	2.00	0.005	0.14	2.70	1.85	0.10	0.23	0.12	04.82	0.00	0.10	50.15
Column 6 PAG (Bottom)													
Column 6, PAG (Bottom)													
Maximum	17.77	7.68	0.020	14.16	4.22	13.19	0.36	2.89	0.21	72.36	1.75	12.58	99.58
Minimum	7.80	0.26	0.005	4.54	0.06	1.52	0.05	0.12	0.09	40.63	0.88	4.08	98.37
Mean	13.23	3.52	0.009	9.99	1.35	7.69	0.16	1.43	0.15	52.94	1.19	7.01	98.68
Standard Deviation	2.10	2.37	0.003	3.07	1.41	4.98	0.07	1.05	0.03	11.38	0.38	1.48	0.85
No Foi convic Median	10.36	0.//	0.005	0.10	0.08	1.74	0.09	0.23	0.11	42.24	U.66	5.48 8 07	97.55
90 Precentile	15.10	£.10 6.87	0.010	13.42	3 16	12.58	0.17	2.59	0.15	40.04 67 73	1.52	8.45	20.00 00 38
Count	35.00	35.00	35.000	35.00	35.m	35.00	35.00	35.00	35.00	35.00	35.00	35.00	35.m

Test = (Original (ppm) / Acid Rinse (ppm)) * 100

MARKARIA

Column Test Samples

Sample	Ag (ppm) Original	Ag (ppm) Acid Panse	Ag 9L Romaining Mar Acid Rinsa Taol	Al (ppm) Original	Al(ppm) Acid Rinse	A) % Romaining After Acid Rinse Tetti	As (ppm) Original	As (ppm) Acid Rinse	As % Romaining After Acid Rinsa Test	Ba (ppm) Original	Ba (ppm) Acid Rinse	Ba % Romeining Mer Acid Rinse Test	Be (spm) Original	Be (ppm) Acid Rinse	Be % Romaining Alter Acid Rinse Test	Bi (ppm) Ortginal	Bi (ppm) Acid Rinse	Bi % Romaining Attor Acid Rinse Test	Ca (ppm) Original	Ca (ppm) Acid Rinse	Ca % Romaining Aller Acid Rinse Test	Cd (ppm) Original	Cd (ppm) Acid Rinse	Cd % Romaining After Acid Rinse Test	Co (ppm) Original	Co (ppm) Acid Rinse	Co % Remaining After Acid Rinse Test
Column 2, Consuming 1	1.0			73000			4			490			0.25			1			50900			0.25			51		
Column 2, Consuming 1	4.0	0 1	2.50	73400	73109	99.59	20	22	110.00	930	790	84.95	0.25	0.50	200.00	1	1	100.00	35300	33300	94.33	0.5	0.25	50.00	54	52	96.30
Column 2, Consuming 1 Column 2, Consuming 1	1.4			80000			52			660			0.25			1			15100			2.5			81		
Column 2, Consuming 1 Column 2, Producing 2																											
Column 2, Producing 2	14.2	44.0	309.86	50700	43100	85.01	148	172	116.22	860	500	66.14	0.50	1.00	200.00	2	2	100.00	9800	7600	77.55	0.25	3.00	1200.00	19	19	100.90
Column 2, Producing 2	14.8	12.4	83.78	a2300	a9200	108.38	198	178	as.90	260	660	253.85	2.09	3.00	150.00	2	1	50.00	4900	2300	46.94	1.5	1.W	66.67	23	23	100.60
Column 2, Producing 2	21.2			61500			176			1000			1.50			1			9600			2			22		
Column 2, Consuming 3 Column 2, Consuming 3	1.0	0.1	la m	72300	72700	02.07	6	2	100.00	240	250	210 75	0.25	0 50	200.00	1		100 00	36500	33500	01 79	2.5	0.25	la m	47 56	55	09 21
Column 2, Consuming 3	1.0	0.1	10.w	79400	12100	92.91	14	2	100.00	420	550	214.75	0.25	0.50	200.00	1	,	100.00	18300	~~~~	01.70	2.5	0.25	10.w	60	55	70.21
Column 2, Consuming 3																											
Column 3, Consuming 1	1.0	0.1	10.00	66400	C0000		6			120	4000		0.25			1			47100	00000		0.5	0.05	400.00	56	53	04.00
Column 3, Consuming 1 Column 3, Consuming 1	1.0	0.1	10.00	70800	06600	97.16	m 40	16	80.00	700	1200	193.55	0.25	0.50	200.09	1	1	100.00	30500	29300	96.07	0.25	0.25	100.00	38 99	53	91.38
Column 3, Consuming 1	0.0			14500			40			790			0.28			1						1.5			,,,		
Column 3, Producing 2																											
Column 3, Producing 2	12.0	3.0	25.00	49800	47000	94.38	150	164	109.33	680	710	104.41	0.50	1.50	3w.w	2	1	50.00	4600)	7600	69.09	2	0.50	25.00	19	17	69.47
Column 3, Producing 2 Column 3, Producing 2	11.4	13.6	119.36	a5600 65700	a2000	96.73	196	186	94.90	210	520	247.62	2.50	2.56	100,00	1	I	160.00	8400	1900	41.30	1.5	2.60	133.33	26 22	m	76.92
Column 3, Consuming 3	0.1			67700			102			60			0.25			1			33800			2.5			52		
Column 3, Consuming 3	4.6	0.1	2.17	73800	78000	10569	16	14	67.56	480	460	95.83	0.25	0.50	200.00	1	1	100.00	37100	19200	51.75	2	0.25	12.50	53	61	115.09
Column 3, Consuming 3 Column 3, Consuming 3	1.5			80600			52			1630			0.50			1			15200			0.5			00		
Column 3, Producing 4	300	13.2	44.00	41100	67800	164.96	176	176	96.88	500	440	88.00	0.50	2.W	400.00	8	1	12.50	16100	5000	31.06	2	2.00	100.00	18	16	100.00
Column 3, Producing 4	156	14.2	91.03	694 W	43600	62.82	202	146	7327	240	1190	495.83	1.50	1.00	66.67	2	8	4 w.w	8300	8800	106.02	2	1.50	75.00	23	la	78.26
Column 3, Producing 4	13.4			60700 76600			176			320			1.50			2			9900			2			21		
Column 3, Consuming 5	02	0.1	50.00	79500	75100	94.47	4 10	2	20 w	200	140	70.00	0.25	0.50	200.00	1	1	100.00	32500	26000	80.00	0.25	0.25	100.00	50 56	55	98.21
Column 3, Consuming 5	06			81600			16	-	20."	390		/0.00	0.25			1	-		20500			0.25		100.00	65		
Column 3, Consuming 5																~						0.7					
Original MAG	1.2			64400 70800			132			350 1370			1.50			1			9900			05			27		
Column 1, Original PAG	00			10000			70			1370			0.50			•			44000			1.5			51		
Column 1, Original PAG	1.2			51100			226			730			0.50			1			13700			0.5			21		
Column 1, Original PAG	7.4			67000			166			590			1.50			2			3900			0.25			14		
Column 4, Original MAF	1/.4			90200			346			310			2.50			0			1000			0.23			10		
Column 4, Original MAF	1.0			74400			16			260			025			1			38900			0.25			53		
Column 4, Original MAF	1.0			75300			8			880			0.25			1			46800			0.25			54		
Column 4, Onginal MAP Column 5	1.0			80600 67700			22			550			0.25			1			39200 5500			0.25			60 10		
Column 5	12.4			07700			132			220			1.50			2			0,00			0.25			10		
Column 5																											
Column 5 Column 6 MAF (Too)	0.2			73500			124			270			0 50			1			31800			6.5			44		
Column 6, MAF (Top)	1.2						124			270			0.50			1			01000			0.5					
Column 6, MAF (Top)																											
Column 6, MAF (Top)				67200															43000						20		
Column 6, PAG (Bottom)	1.4			61300			126			240			1.50			I			13900			0.25			20		
- Column 6, PAG (Bottom)																											
Column 6, PAG (Bottom)																											
Maximum	30.0	44.0	309.86	90200	89200 1	64 96	346	186	116 22	1630	1200	495.83	2 50	3.09	400.00	6	6	400 00	50900	33500	166 02	6.5	3.00	1200.00	99	61	115 09
Minimum	0.1	0.1	2.17	41100	43100	62.82	2	2	20.00	60	140	58.14	0.26	0.50	66.67	1	1	12.50	1600	1so0	31.06	0.25	0.25	10.00	10	ĬŻ	76.92
Mean Classification	6.3	92	67.97	70734	67382 1	00.20	93	98	as.09	499	633	173.72	0.76	1.23	ml.52	2	2	110.23	22957	15664	71.45	1.28	1.02	170.23	43	36	94.90
Sumara Deviation	7.5	13.2	2 50	54940	15874 43600	24.62	<u>68</u>	- 84	26.35	194	329	129.72	0.70	0.90	89.58 100.00		2	100.75 50.00	15234 5140	12621 2300	25.27	0.25	0.96	343.87 12 50	22	1 S	1073
Median	1.4	3.0	44.00	73000	72700	96.73	52	148	94.96	399	520	104.41	0.50	1.00	200.00	1	1	100.00	17209	8800	77.55	0.5	0.50	75.60	50	23	98.21
so Precentile	15.3	14.2	119.30	a1200	a2800	108.38	197	178	110.00	910	1190	253.1	1.50	2.50	300.00	2	2	100.00	44446	33300	96.07	2.5	2.00	133.33	63	65	100.00
Count	35	11	11	35	11	11	35	11	11	36	11	11	35	11	11	35	11	II	35	11	11	35	11	11	36	11	11

% Remaining After Acid Rinse Test = (Original (ppm) / Acid Rinse (ppm)) * 100

Column Test Samples

Sample	Cr (miqu) marine	Cr (ppm) Acid Turrey	CF % Remaining rates cove Fanse Test	Cu (ppm) Vityma	Cu (ppm) Acid runiar	Cu % Romaining rom rom Rime Test	Fe (ppm) Vignom	Fe (ppm) Acid : wire	Fe % Remaining rains rains rainse Teas	Hg (ppm) vingenm	Hg (ppm) Acid runne	Hg s. Remaining relations flanse Test	K (ppm) Vingenae	K (ppm) Acid runav	Ks. Romaining com runs Rinse Test	Mg (ppm) vrigeran	Mg (ppm) Aclei runne	Mg % Romaining rann room Rinse Test	Mn (ppm) vingenee	Mn (ppm) Acid Turrer	Min % Remaining Fanse Test	Mo (ppm) Singereer	Mo (ppm) Actel Thirty	MO % Remetiding Failer Faile Ranse Test	Na (ppm)	Na (ppm) Acid Turre	Na si Remaining Rinse Testi
Column 2, Consuming 1 Column 2, Consuming 1 Column 2, Consuming 1 Column 2, Consuming 1	467 493 602	515	104.46	102 129 124	93	72.09	71300 72700 80000	75tm	103.30	0.005 0.060 0.100	0.05	63.33	1000 2700 5300	2500	92.59	66200 62700 65300	62000	98.88	1355 1295 1795	1250	86.53	1.0 0.5 5.0	2	400.00	24200 21300 18200	19800	92.96
Column 2, Producing 2 Column 2, Producing 2 Column 2, Producing 2 Column 2, Producing 2 Column 2, Consuming 3	215 170 265 547	289 322	134.42 189.41	174 188 240 90	382 175	219.54 93.09	39800 47800 44500 a9900	40500 54100	101.76 113.18	0.930 0.560 0.520	1. 01 0.74	108.60 132.14	16400 28000 20100 1000	14200 30900	86.59 110.	12400 3 6 94 12300 67900	11700 100 8900	94.35 94.68	745 560 790 1170	610 305	81.88 54.46	15.0 19.0 24.0 1.0	24 21	i 60 .m 110.53	2700 4300 3206 227m	1700 4200	62.96 97.67
Column 2, Consuming 3 Column 2, Consuming 3 Column 2, Consuming 3 Column 3, Consuming 1	57a 616	556	96.19	I m 110	106	t06.m	83300 87300	76400	91.72	0.005	0.005	100.00	to00 1500	1000	100.00	74000 6 72000	4900	87.70	1270 1455	1185	93.31	0.5 1.0	1	200.00	21700 22500	24600	114.29
Column 3, Consuming 1 Column 3, Consuming 1 Column 3, Consuming 1 Column 3, Consuming 1	439 500	537	122.32	87 137	97	111.49	74800 81300	78200	104.55	0.010 0.070	0.01	100.00	1 400 2600	1500	107.1	4 6640 69000	0 62300	93.63	1465 1445 2396	1110	76.82	0.3 2.0 4.0	1	50.00	talm 18800	18700	103.31
Column 3, Producing 2 Column 3, Producing 2 Column 3, Producing 2 Column 3, Producing 2 Column 3, Consuming 3	200 131 170	249 285	124.50 217.56	146 148 175	al 173	55.48 116.89	39800 49400 44900 76400	41700 49600	104.77 100.40	0.440 0.790 0.600	0.5 1. 39	113.64 175.95	14700 29200 22000	16200 28400	110.20 97.26	15600 9900 12300	97m a400	62.18 84.85	765 560 750	530 235	69.28 41.96	14.0 21.0 23.0	8 18	57.14 85.71	2600 4500 3600	2300 4100	88.46 91.11
Column 3, Consuming 3 Column 3, Consuming 3 Column 3, Consuming 3 Column 3, Consuming 3	456 612	659	143.69	128 154	149	54.61	76400 82000	87700	114.79	0190 0.130	0.005	2.63	2300 5100	1300 231m	56.52	66800 66000	70800	105.99	1260 2220	1150	91.27	1.0 1.0 2.0	3	300.m	21100 18300	16800	79.62
Column 3, Producing 4 Column 3, Producing 4 Column 3, Producing 4 Column 3, Consuming 5	164 212 521	298	203.42 tat.71	la4 160 80	166	90.22	48600 45500 74500 82300	39700	81.69	0.410 0.520 0.010	0.53	129.27	23000 19300 am	13800	60.00	12500 14000 69500 743m	12700	101.60	640 766 1115	676	105.47	18.0 20.0 1.0	14	77.78	4200 3700 25100 21500	2600	61.90
Column 3, Consuming 5 Column 3, Consuming 5 Original PAG Original MAE	677 197 478	555	111.20	124 92	102	112.00	88400 43400 67000	11000	34.23	0.040	0.000	uniin	1700 19306		40.15	75500 10100 52600	00000	0.51	1565 660 1300	1105	00.00	1.0 9.0	·	2	21100 4mo 15800		100.04
Column 1. Original PAG Column 1. Original PAG Column 1. Original PAG Column 1. Original PAG	290 177 190			74 1o3 238			47000 43900 59900			0.160 0.440 0.770			13800 22200 30700			18700 9400 8500			1140 405 300			5.0 10.0 29.0			3200 3600 4500		
Column 4, Original MAF Column 4, Original MAF Column 4, Original MAF Column 4, Original MAF	568 584 683			76 123 177			75700 77800 85800			0.005 0.005 0.060			1200 1300 1900			68200 69900 74tm			1185 1275 1305			0.5 0.5 0.5			21700 22000 20500		
Column 5 Column 5 Column 5 Column 5 Column 5	192			220			32400			0.390			22100			10400			620			11.0			4500		
Column 6, MAF (Top) Column 6, MAF (Top) Column 6; MAF (Top) Column 6, MAF (Top)	489			1510			71600			1.310			7400			53500			1105			11.0			14000		
Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom)	la2			80			40100			0.080			21000			10800			675			1.0			3900		
Maximum Minimum Mean Standard o&anon	683 131 389 162	659 249 422 150	217.56 96.19 148.23 42.81	1510 74 178 238	382 81 154 84	219.54 54.61 104.35 44.63	88400 32400 63371 17743	87700 39700 60864 tat40	127.01 61.69 103.41 12.20	1.310 0.005 0.269 0.326	1.39 0.005 0.449 0.479	1 7 5 . 9 2.63 1 06.89 42.50	5 3070 600 10331 10056	0 30900 600 12136 11579	195.76 46.15 96.60 39.92	75500 a500 43577 28017	70800 8400 35409 28792	105.99 62.18 89.28 t3.u	2390 300 1110 468	1250 236 779 387	105.47 40.59 76.33 22.19	29.0 0.5 7.7 8.6	24 1 10 9	4 o o .m 50.00 161.76 108.74	25100 2400 13163 a633	24800 1700 11109 9449	158.33 61.90 96.31 26.56
10 Percentile Median Qo Precentile Count	170 440 608 35	285 341 593 11	104.46 134.42 205.42 11	63 128 231 35	93 149 175 11	55.48 106.00 116.89 11	39920 71300 82900 35	40500 54100 78200 11	91.72 103.30 114.79 11	0.005 0.100 0.702 3 5	0.005 0.5 1.01 11	63.33 108.60 132.14 11	looo 5300 22680 35	tmo 13800 28400 11	56.52 97.26 110.36 11	9980 61600 73200 35	8900 12700 66600 11	68.07 93.83 101.66 11	584 1170 1533 35	305 675 1185 11	41.66 81.88 96.53 11	0.5 3.0 20.6 35	1 8 21 11	57.14 138.46 300.00 11	3200 15800 22306 35	2300 4200 23406 11	62.96 92.96 114.29 11

%, Remaining After Add Rinse Test # (Original (ppm) / Add Rinse (ppm)) * 100

Column Test Samples

Sample	Ni (ppm) Original	Ni (ppm) Acid Rinse	Ni % Romaining After Acid Rinse Test	P (ppm) Original	P (ppm) Acid Rinse	P % Remaining After Acid Rinse Test	Pb (ppm) Original	Pb (ppm) Acid Rinse	Pb % Remaining After Acid Rinse Test	Sb (ppm) Original	Sb (ppm) Acid Rinse	SD % Romaining Mior Acid Ringo Tosi	Se (ppm) Original	Se (ppm) Acid Rinso	Se % Romaining Mior Acid Rinso Tool	Sr (ppm) Original	Sr (ppm) Acid Rinse	Sr % Romaining Alter Acid Rinse Test	Ti (ppm) Original	Ti (ppm) Acid Rinse	Ti % Romaining Aller Acid Rinae Teal	V (ppm) Original	V (ppm) Acid Rinse	V % Romaining Atler Acid Rinse Test	W (ppm) Original	W (ppni) Acid Rinse	W % Romaining After Acid Fanse Test
Column 2, Consuming 1 Column 2, Consuming 1 Column 2, Consuming 1 Column 2, Consuming 1	239 233 304	232	99.57	620 670 770	600	89.55	1 1 40	1	1w.w	0.2 20.0 9.8	3.8	19.00	3 1	1	1W.W	216 137 69	151	110.22	6500 7200 7700	7300	101.39	204 205 230	208	101.46	10 10 10	5	50.00
Column 2, Producing 2 Column 2, Producing 2 Column 2, Producing 2 Column 2, Producing 2 Column 2, Consuming 3	57 66 72 225	69 65	121.05 98.48	590 610 550	430 640	72.88 104.92	62 126 190	500 120	806.45 96.24	82.0 98.0 120.0	220.0 74.0	268.29 76.51	1 3 1	5 1	500.00 33.33	71 68 73	74 62	1 04.23 91.18	1000 1800 1500	1200 2600	120.w 144.44	91 170 122 208	8 5 189	93.41 111.18	5 5 10	5 5	1w.w 1w.w
Column 2, Consuming 3 Column 2, Consuming 3 Column 2, Consuming 3 Column 2, Consuming 3 Column 3, Consuming 1	223 260 271 240	238	91.54	740 830	550	74.32	1 8 1	1	1w.w	0.1 0.1 1.2 01	2.4	2400.00	2 5	2	100.00	157 58 166	110	70.08	8400 8900	7800	92.86	234 246 210	224	95.73	20 10	5	25.w
Column 3, Consuming 1 Column 3, Consuming 1 Column 3, Consuming 1 Column 3, Producing 2	255 346	244	9569	660 740	570	88.36	20	14	14w.w	02 4.8	2.2	11w.w	2 1	1	50.00	133 70	111	8346	7000 7900	7400	105.71	208 225	215	104.37	10 5	5	50.00
Column 3, Producing 2 Column 3, Producing 2 Column 3, Producing 2 Column 3, Consuming 3	a1 72 73 245	58 61	71.60 84.72	500 700 600 740	380 630	76.00 90.00	100 136 230 2	108 130	106.00 95.59	56.0 66.0 76.0 0.6	17.5 57.0	31.25 88.38	1 7 4 2	2 4	200.00 67.14	72 65 72 161	71 54	98.61 83.08	1200 2100 1800 7500	1600 2300	133.33 109.52	100 183 137 220	a3 179	83.00 97.81	5 5 5 10	5 5	1w.w 1w.w
Column 3, Consuming 3 Column 3, Consuming 3 Column 3, Consuming 3 Column 3, Producing 4	248 297 73	281	93.15	7 w 800 460	680 530	97.14 115.22	80 46 144	1 94	1.25 65.28	24.0 0.2 1600	1.4 53.0	5.83	1 1 3	1	100.w	157 65 93	a7 61	55.41 6559	7500 7600 1300	8100 2300	108.00 176.92	217 234 83	241 143	111.06 172.29	10 5 5	5	50.00 1w.w
Column 3, Producing 4 Column 3, Producing 4 Column 3, Consuming 5 Column 3, Consuming 5	70 224 264 280	250	95.71 94.70	550 550 730 830	430 570	78.08	80 1 1	1	100.00	66.0 0.6 04 22	0.4	00.12 100.00	2 3 1 1 1	1	190.00	73 74 122 136 74	85 93	68.38	1900 1800 7500 8300 8600	7600	91.57	124 204 232 247	219	94.40	5 5 10 10	5	1W.W
Column 3, Consuming 5 Original PAG Original MAF Column 1, Original PAG	75 217			640 670			52 88			92 42			1 2			80 203			1900 5000			144 187			5 10		
Column 1, Original PAG Column 1, Original PAG Column 1, Original PAG Column 4, Original MAF	107 51 54			430 690 890			100 54 230			10.5 46.0 140.0			2 1 5			60 57 62			1400 1500 2200			103 126 197			5 5 5		
Column 4, Original MAF Column 4, Original MAF Column 5 Column 5 Column 5	244 245 266 38			710 820 500			8 1 6 980			0.2 12 700			1 2 5			213 175 57			7800 8500 14w			214 223 242 129			10 10 10 20		
Column 5 Column 6, MAF (Top) Column 6, MAF (Top) Column 6, MAF (Top) Column 6, MAF (Top)	227			820			1000			38.0			2			116			5700			193			10		
Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom)	63			510			4			10.0			1			102			17w			142			5		
Maximum Minimum Mean Standard Deviation TUPercentile	346 3a 176 98	281 58 148 97	121.05 71.60 96.32 13.03 84 72	890 430 658 112	6ao 380 546 98 4 30	115.22 71.67 88.92 14.26 72.88	1000 1 112 229	500 1 106 147	14w.w 1.25 279.07 430.97	160.0 0.1 34.6 45.0	220.0 0.4 44.3 648	2400.00 5.83 380.41 740.27	7 1 2 2	5 1 2 1	5W.W 33.33 132.47 130.69	216 57 110 51	151 54 a5 29	110.22 55.41 83.57 17.26	8900 1000 4940 3002	8100 1200 4509 3032	176.92 73.68 114.31 28.56	247 83 1a2 50	241 83 170 60	172.29 61.81 102.41 26.97	20 5 8 4	5 8 5 0	1 w . w 25.W 75 . w 23.58
Median 90 Precentile "Count	225 276 35	69 250	95.69 113.31	660 812 35	570 640	86.36 104.92	46 214 35	94 200	1w.w 80645	9.8 93.2 35	17.5 74.0 11	75.51 11w.w	1 5 35	2 4 11	1w.w 200.00 11	80 179 35	61 74 111 11	83.46 104.23	6500 a380 35	1400 2600 7800 11	91.57 108.00 14444 11	204 234 35	189 224 11	97.81 111.18 11	5 10 <u>10</u> 35	5 11	50.W 1w.w 100.00 11

% Remaining After Acid Rinse Test = (Original (ppm) / Acid Rinse (ppm)) * 100

......

Column Test Samples

	Zn	Zn	Zn 🐝 🕓
Sample	(ppm) Ortoinal	(ppm) Acid Rinne	Romaining Aller Acid
-	Cingeria:	14110	Rinse Test
Column 2, Consuming 1	122		
Column 2, Consuming 1	140	116	62.66
Column 2, Consuming 1	306		
Column 2, Consuming 1			
Column 2, Producing 2			
Column 2, Producing 2	212	736	341.17
Column 2, Producing 2	3/8	466	123.61
Column 2, Producing 2	440		
Column 2, Consuming 3	92	112	101 (2
Column 2, Consuming 3	122	112	101.02
Column 2, Consuming 3	152		
Column 3 Consuming 1	136		
Column 3. Consuming 1	162	126	69.23
Column 3 Consuming 1	394	120	07.25
Column 3. Consuming 1			
Column 3. Producing 2			
Column 3, Producing 2	604	320	52.96
Column 3, Producing 2	432	566	131.46
Column 3, Producing 2	444		
Column 3, Consuming 3	110		
Column 3, Consuming 3	500	140	26.00
Column 3, Consuming 3	256		
Column 3, Consuming 3			
Column 3. Producing 4	550	536	97.45
Column 3, Producing 4	544	526	95.59
Column 3, Producing 4	450		
Column 3, Consuming 5	110	102	02 72
Column 3, Consuming 5	162	102	92.75
Column 3, Consuming 5	102		
	202		
Original MAF	256		
Column 1. Original PAG	250		
Column 1, Original PAG	206		
Column 1, Original PAG	166		
Column 1. Original PAG	366		
Column 4, Original MAF			
Column 4. Original MAP	96		
Column 4, Original MAF	96		
Column 4, Original MAF	132		
Column 5	256		
Column 5			
Column 5			
Column 5			
Column 6, MAF (Top)	1990		
Column 6, MAF (100)			
Column 6. MAF (10p)			
Column 6, MAP (10p)	170		
Column 6 BAC (Boltom)	170		
Column 6 PAG (Bofforn)			
Column 6 PAG (Bottom)			
Maximum	1990	736	347.17
Minimum	90	102	26.00
Mean	310	340	111.19
Standard Deviation	331	233	63.66
10 Percentile	103	112	52.96
Median	203	326	95.59
<u>90-b</u>	526	568	131.46
Count	35	11	11

% Remaining After Acid Rins

A3. Graphs of ABA Results for Columns by Grain Size

A3.1. Column 2

Minesite Drainage Assessment Group

A3.2. Column 3

A3.3. Columns 1, 4, and 5

A5.1. Column 2

···· T.

A3.4. Column 6

a a substantia de la companya a companya a companya de la companya de la companya de la companya de la company

A4. Graphs of Whole-Rock Composition for Columns by Grain Size

A4.1. Column 2

NAMERIAN CONTRACTOR OF STREET

اشهبایها وب با منظر با ا

A4.2. Column 3

.

1

A4.3. Columns 1, 4, and 5

٦.

A4.4. Column 6

A5. Graphs of Total-Metal Contents for Columns by Grain Size

TRANSPORT OF A

Aluminum vs Size Fraction

Vanadium vs Size Fraction

A5.2. Column 3

Minesite Drainage Assessment Group

....

e en anticipat de la companya de la

開閉用

A5.3. Columns 1, 4, and 5

		Dissolve	d Meta	s*:						<u>Metai Le</u>	ach Rate	.				· · ·		Cumula	tive Meta	Leach F	(ates:				
		Antimony	Arsenic	Copper	Iron	Lead	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	Iron	Lead	Manganese	Silver	Zinc	Antimony	Arsenic	Соррег	Iron	Leed	Manganese	Silver	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/tg/wic)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
132	21-Aug-91																	2.1E-01	2.4E-01	6.9E+00	2.9E+02	1.6E-01	1.9E+02	4.2E-02	3.0E+01
133	28-Aug-91																	2.1E-01	2.5E-01	7.3E+00	3.2E+02	1.6E-01	1.9E+02	4.3E-02	3.0E+01
134	4-Sep-91		0.15	2.4	285		15	0.004	1.3		4.2E-02	6.6E-01	7.9E+01		4.2E+00	1.1E-03	3.6E-01	2.1E-01	2.9E-01	7.9E+00	4.0E+02	1.6E-01	2.0E+02	4.4E-02	3.0E+01
135	11-Sep-91			ļ											——————————————————————————————————————			2.1E-01	3.0E-01	8.2E+00	4.36+02	1.6E-01	2.0E+02	4.5E-02	3.1E+01
137	25-Sep-91																	2.2E-01	3.2E-01	8.7E+00	4.9E+02	1.7E-01	2.0E+02	4.6E-02	3.2E+01
138	2-Oct-9		0.003	0.66	50		4.9	0.003	1.6		2.0E-03	3.9E-01	3.3E+01		3.3E+00	2.0E-03	1.1E+00	2.2E-01	3.2E-01	9.1E+00	5.2E+02	1.7E-01	2.0E+02	4.8E-02	3.3E+01
139	9-Oct-91																	2.2E-01	3.2E-01	9.2E+00	5.3E+02	1.7E-01	2.1E+02	4.9E-02	3.3E+01
140	16-Oct-91																	2.2E-01	3.3E-01	9.3E+00	0.4E+02	1.75-01	2.1E+02	9.9E-02	3.3E+01
142	30-Oct-91	ľ																2.2E-01	3.3E-01	9.6E+00	5.6E+02	1.8E-01	2.1E+02	5.1E-02	3.4E+01
143	6-Nov-91		0.002	0.41	26		3.4	0.002	1		1.3E-03	2.7E-01	1.7E+01		2.2E+00	1.3E-03	6.6E-01	2.2E-01	3.3E-01	9.9E+00	5.8E+02	1.8E-01	2.1E+02	5.2E-02	3.5E+01
144	13-Nov-91			0														2.3E 01	3.3E-01	1.0E+01	5.8E+02	1.8E-01	2.1E+02	5.3E-02	3.5E+01
145	20-Nov-91																	2.3E-01	3.3E-01	1.0E+01	5.9E+02	1.8E-01	2.1E+02 2.1E+02	5.3E-U2	3.5E+U1
147	4-Dec-91		IO.001	0.37	20		3.1	0.001	0.94		6.6E-04	2.4E-01	1.3E+01		2.0E+00	6.6E-04	6.2E-01	2.3E-01	3.3E-01	1.1E+01	6.1E+02	1.9E-01	2.2E+02	5.4E-02	3.6E+01
148	11-Dec-91				<u>ا</u>						l							2.3E-01	3.3E-01	1.1E+01	6 7F+07	1 9F_01	2 2E+02	5 5F-02	37F+01
149	18-Dec-91								L							· · · · · ·		2.3E-01	3.3E-01	1.12+01	6.2E+02	1.9E-01	2.2E+02	5.5E-02	3.7E+01
150	25-DeC-91 1- Jan-92	· · ·	0.001	02	83	<u> </u>	19	0.001	0.69		6 8E-04	1.4E-01	5.7E+00		1.3E+00	6.8E-04	4.7E-01	2.3C-01	3.3E-01	1.1E+01	6.3E+02	1.9E-01	2.2E+02	5.6E-02	3.8E+01
152	8-Jan-92		2.001															2.4E-01	3.3E-01	1.1E+01	6.4E+02	2.0E-01	2.2E+02	5.6E-02	3.8E+01
153	15-Jan-92																	2.4E-01	3.3E-01	1.1E+01	6.4E+02	2.0E-01	2.2E+02	5.7E-02	3.8E+01
154	22-Jan-92		0.001	0.22	0.5		24	0.001	0.77		S SE M	1.55.01	6 35-100		1 45+00	6 6E-04	5 1E-01	2.4E-01	3.3E-01	1.1E+01	6.4E+02	2.0E-01	2.2E+02	5.7E-02	3.8E+01
155	29-Jan-92 5-Feb-92		0.001	0.22	9.5		2.1	0.001	0.77		0.02-04	1.5E-01	0.36700		1.40700	0.02-04	0.1E=01	2.4E-01	3.3E-01	1.1E+01	6.5E+02	2.0E-01	2.2E+02	5.8E-02	3.9E+01
157	12-Feb-92																	2.4E-01	3.3E-01	1.1E+01	6.5E+02	2.1E-01	2.2E+02	5.8E-02	3.9E+01
158	19-Feb-92																	2.4E-01	3.3E-01	1.1E+01	6.6E+02	2.1E-01	2.2E+02	5.9E-02	3.9E+01
159	26-Feb-92		0.001	0.17	4.9		1.7	0.001	0.56		6.7E-04	1.1E-01	3.3E+00		1.1E+00	6.7E-04	3.7E-01	2.5E-01	3.4E-01	1.2E+01	6.6E+02	2.1E-01	2.3E+02	5.9E-02	4.0E+01
161	11-Mar-02		H		j			1			1	1						2.5E-01	3.4E-01	1.2E+01	6.6E+02	2.1E-01	2.3E+02	6.0E-02	4.0E+01
162	18-Mar-92																	2.5E-01	3.4E-01	1.2E+01	6.6E+02	2.2E-01	2.3E+02	6.0E-02	4.0E+01
163	25-Mar-92		0.001	0.18	4.9		2.1	0.001	0.65		6.9E-04	1.2E-01	3.4E+00		1.4E+00	6.9E-04	4.5E-01	2.5E-01	3.4E-01	1.2E+01	6.7E+02	2.2E-01	2.3E+02	6.1E-02	4.1E+01
164	1-Apr-92												-					2.5E-01	3.4E-01	1.2E+01	6.7E+02	2.2E-01	2.3E+02 2.3E+02	6.1E-02	4.1E+01
165	15 Apr 92	-									-							26E-01	3.4E-01	1.2E+01	6.7E+02	2.2E-01	2.3E+02	6.2E-02	4.1E+01
167	22-Apr-92		0.001	0.16	3.2		2	0.001	0.52		6.6E-04	1.1E-01	2.1E+00		1.3E+00	6.6E-04	3.5E-01	2.6E-01	3.4E-01	1.2E+01	6.7E+02	2.3E-01	2.3E+02	6.3E-02	4.2E+01
168	29-Apr-92																	2.6E-01	3.4E-01	1.2E+01	6.7E+02	2.3E-01	2.3E+02	6.3E-02	4.2E+01
169	6-May-92 13 May 92																	2.0E-01 2.6E-01	3.4E-01	1.2E+01	6.8E+02	2.3E-01	2.3E+02	6.4E-02	4.2E+01
171	20-May-92		0.002	0.17	2.5		1.9	0.001	0.46		1.3E-03	1.1E-01	1.6E+00		1.2E+00	6.5E-04	3.0E-01	2.6E-01	3.4E-01	1.2E+01	6.8E+02	2.3E-01	2.4E+02	6.4E-02	4.3E+01
172	27-May-92																	2.6E-01	3.4E-01	1.3E+01	6.8E+02	2.4E-01	2.4E+02	6.5E-02	4.3E+01
173	3-Jun-92											· · · · · · · · ·						2.6E-01	3.4E-01	1.3E+01	6.8E+02	2.4E-01	2.4E+02	6.5E-02	4.3E+01
1/4	10-Jun-92		0.001	0.16	22		22	0.001	0.55		6.9E-04	1 1E-01	1.5E+00		1.5E+00	6 9E-04	3.8E-01	2.7E-01	3.4E-01	1.3E+01	6.8E+02	2.4E-01	2.4E+02	6.6E-02	4.3E+01
176	24-Jun-92		0.001	0.10	<u></u>			0.001	0.00		0.02-04	1.12 21			1.02.00	0.02 01		2.7E-01	3.4E-01	1.3E+01	6.8E+02	2.4E-01	2.4E+02	6.6E-02	4.4E+01
177	1-Jul-92				ļ										1			2.7IE-01	3.4E-01	1.3E+01	6.8E+02	2.5E-01	2.4E+02	6.7E-02	4.4E+01
178	6-Jul-92	{	0.001	0.4				0.001	0.24		6.6E-04	6.6E-02	6 15-01		9.2E.04	6.6E-04	2.2E-01	2.7E-01	3.4L-01	1.3E+01	6.8E+02	2.5E-01	2.4E+02	6.7E-02	4.4E+01
180	22-Jul-92		0.001	V. I	0.93			0.001	0.54		0.02-04	0.0L-02	0.12-01		5.46-01	0.02-04	a.25-V1	2.7E-01	3.5E-01	1.3E+01	6.8E+02	2.5E-01	2.4E+02	6.8E-02	4.4E+01
181	29-Jul-92												-					2.7E-01	3.5E-01	1.3E+01	6.8E+02	2.5E-01	2.4E+02	6.8E-02	4.4E+01
182	5-Aug-92																	2.8E-01	3.5E-01	1.3E+01	6.8E+02	2.6E-01	2.4E+02	6.9E-02	4.5E+01
183	12-Aug-92		0.001	0.18	1.4		2	0.001	0.51		6.7E-04	1.2E-01	9.4E-01		1.32+00	0.7E-04	3.4E-01	2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.6E-01	2.5E+02	7.0E-02	4.5E+01
185	26-Aug-92					<u> </u>				· · · ·			<u> </u>					2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.6E-01	2.5E+02	7.0E-02	4.5E+01
186	2-Sep-92					ļ												2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.6E-01	2.5E+02	7.0E-02	4.5E+01
187	9-Sep-92		0.001	0.12	0.67		1.1	0.001	0.35		6.4E-04	7.7E-02	4.3E-01		7.0E-01	6.4E-04	2.2E-01	2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.7E-01	2.5E+02	1.1E-02	4.6E+01
188	10-Sep-92 23_Sep_02																	2.0C-01	3.5E-01	1.4E+01	6.9E+02	2.7E-01	2.5E+02	7.2E-02	4.6E+01
190	30-Sep-92																	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.7E-01	2.5E+02	7.2E-02	4.6E+01
191	7-Oct-92		0.001	0.17	0.45		1.1	0.001	0.27		6.6E-04	1.1E-01	3.0E-01		7.3E-01	6.6E-04	1.8E-01	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.7E-01	2.5E+02	7.3E-02	4.6E+01
192	14-Oct-92						7							1			r	2.9E-01	3.0E-U1	1.4E+01	0.9E+02	2.86-01	2.55402	1.3E-02	4.6E+01
194	28-Oct-92																	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.8E-01	2.5E+02	7.4E-02	4.6E+01
195	4-Nov-92		0.001	0.17	0.52		0.89	0.001	0.21		6.7E-04	1.1E-01	3.5E-01		6.0E-01	6.7E-04	1.4E-01	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.8E-01	2.5E+02	7.4E-02	4.6E+01
196	11-Nov-92																	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.8E-01	2.5E+02	7.5E-02	4.7E+01
107	18 Nov.02													1				< ()+_))[-s be-risi	1 4 - + 11	n 9E H 121	2 SE-111	7.0P+0721	7.00-2121	# / H+U11

ŝį

MARKING SALAN SHE PLAN I

A5.4. Column 6

Aluminum vs Size Fraction

Samatosum Mine Humidity Cell Data -Column 2 (Encapsulated 3 Layers)

	ļ			[ļ	· · · · · ·																
		Analytical	Regults;				<u> </u>				SUIDNAIA	Production	·	By Surface /	l	Ratio:	Theoretical	Empirical		Remaining	Theoretical		Remaining
			·						Acidity	Alkalinity	S04	Cumulative	Remaining	S04	Cumulative		NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekly			Acidity	Alkalinity	Sulphate	Production	Production	Production	\$04	S	Production	S04	Alk	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Week No.	Date	Recovered	pH (ald unite)	Conductivity	Eh	(CaCO3	(CaCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate (modm24ut)**	Production (molm?)	/504	At pH 6	At Measured pH	Open-System (makalutr)	System (%)	Above pH 6.5	Closed-System (mo/ko/wk)	System (%)
	<u> </u>	(mc)	(pri units)	(united and my	(***)	ingrc)	ingr.)		(index and in the second	(ingragenes)	(ing agent)	(myns)	unginary	(ingritating)	(ingritik)		(
198	25-Nov-92	18200	7.48	200					1.26	14.92	26.8	9484	87.04	17.6	6238		27.9	41.6	13683	82.50	54.6	19529	75.03
199	02-Dec-92	19300	7.47	188	440	3	36	64	1.25	15.05	26.8	9511	87.01	17.6	6256	0.540	27.9	41.7	13725	82.40	53.7	19584	74.90
200	16-Dec-92	19600	7.53	170					1.26	13.83	26.0	9563	86.94	17.1	6290	1	27.1	39.6	13805	82.35	52.9	19690	74.82
202	23-Dec-92	19000	7.4	170					1.26	13.22	25.6	9588	86.90	16.8	6307		26.7	38.6	13844	82.30	52.1	19742	74.75
203	30-Dec-92	19400	7.42	170	450	3	30	60	1.26	12.61	25.2	9614	86.87	16.6	6324	0.480	26.3	37.6	13881	82.25	<u>61.3</u>	19793	74.69
204	06-Jan-93	19300	7.4	125					1.36	12.49	25.9	9640	86 79	17.0	6358		27.0	38.6	13958	82.15	54.0	19900	74.55
205	20-Jan-93	19100	7.18	175					1.57	12.25	27.3	9694	86.76	18.0	6376		28.5	39.1	13997	82.10	55.3	19955	74.48
207	27-Jan-93	19300	7.33	173	450	4	29	67	1.67	12.13	28.0	9722	86.72	18.4	6394	0.415	29.2	39.6	14037	82.05	56.7	20012	74.41
208	03-Feb-93	19200	7.15	168					1.86	11.52	28.0	9750	86.68	18.4	6413		29.2	38.8	14076	82.00	56.5	20069	74.34
209	10-Feb-93	19000	7.14	1/8					2.05	10.92	28.0	9//8	86.60	18.4	6450	<u> </u>	29.1	37.2	14151	81.90	56.0	20125	74.19
211	24-Feb-93	18700	7.45	180	430	6	24	69	2.43	9.72	28.0	9833	86.57	18.4	6468	0.334	29.1	36.4	14187	81.86	55.8	20237	74.12
212	03-Mar-93	19000	7.05	152					3.15	9.53	30.0	9863	86.53	19.8	6488		31.3	37.7	14225	81.81	59.4	20296	74.05
213	10-Mar-93	19200	7.2	155					3.86	9.34	32.1	9896	86.48	21.1	6509	I	33.4	38.9	14264	81.76	63.0	20359	73.97
214	17-Mar-93	19100	7.02	160	610	12		80	4.58	9.15	34.2	9930	86.43	22.5	6555	0 237	30.6	40.2	14304	81.71	70.2	20426	73.79
215	31-Mar-93	17400	7.05	160		13			4.39	9.35	33.6	10000	86.34	22.1	6577	0.201	35.0	40.0	14385	81.60	65.6	20562	73.71
217	07-Apr-93	20000	7.32	150					3.49	9.73	30.9	10031	86.30	20.4	6598		32.2	38.5	14424	81.56	61.0	20622	73.63
218	14-Apr-93	19600	7.33	190					2.58	10.12	28.3	10059	86.26	18.6	6616		29.5	37.0	14461	81.51	56.4	20679	73.56
219	21-Apr-93	19400	7.19	162	420	4	25	61	1.68	10.51	25.6	10084	86.22	16.9	6633	0.393	26.7	30.0	14496	81.45	52.0	20731	73.49
220	28-Apr-93	18900	7.11	194					1.70	10.35	20.0	10136	86.15	17.1	6667	<u> </u>	27.1	35.4	14567	81.37	52.3	20835	73.36
222	12-May-93	19700	7.07	147					1.96	10.04	26.2	10162	86.12	17.2	6684		27.3	35.3	14603	81.33	52.5	20887	73.29
223	19-May-93	19000	7.02	184	460	5	24	64	2.06	9.88	26.3	10189	86.08	17.3	6702	0.360	27.4	35.3	14638	81.28	52.8	20940	73.22
224	26-May-93	19000	7.37	188					2.07	10.02	27.4	10216	86.04	18.0	6720	I	28.5	36.5	146/4	81.23	55.0	20995	73.15
225	02-Jun-93	19200	7.15	188					2.07	10.17	28.4	10245	85.00	19.7	6758		30.7	38.9	14751	81.14	59.3	21112	73.00
227	16-Jun-93	19300	7.06	180	410	5	25	.73	2.09	10.45	30.5	10305	85.92	20.1	6778	0.329	31.8	40.2	14791	81.09	61.5	21173	72.92
228	23-Jun-93	19300	7.25	182					1.88	10.45	30.8	10335	85.88	20.3	6798		32.1	40.7	14832	81.03	62.4	21236	72.84
229	30-Jun-93	19700	7.4	195					1.67	10.45	31.1	10367	85.84	20.5	6819		32.4	41.2	148/3	80.98	63.2	21299	72.68
230	14. http3	19500	7 32	170	370	3	- 25	76	1.40	10.45	31.5	10398	85 75	20.7	6860	0.316	33.1	42.3	14957	80.87	64.9	21428	72.60
232	21-Jul-93	20000	7.3	178					1.27	10.11	30.5	10460	85.71	20.1	6880		31.8	40.7	14998	80.82	62.4	21490	72.52
233	28-Jul-93	19700	7.22	168					1.28	9.78	29.3	10490	85.67	19.3	6900		30.5	39.0	15037	80.77	59.8	21550	72.44
234	04-Aug-93	18000	7.2	160		L			1.29	9.44	28.1	10518	85.63	18.5	6918	0.326	29.3	37.4	15074	80.72	57.2	21607	72.37
235	11-Aug-93	20000	7.25	130	410	3	- 21	62	1.30	9.10	20.9	10545	85.59	17.8	6954	0.325	28.0	36.5	15110	80.63	55.1	21717	72.23
237	25-Aug-93	19000	7.15	160					1.28	10.01	27.3	10599	85.52	18.0	6972		28.4	37.2	15184	80.58	55.6	21773	72.16
238	01-Sep-93	19200	7.12	168					1.27	10.47	27.5	10627	85.48	18.1	6990		28.7	37.9	15222	80.54	56.1	21829	72.09
239	08-Sep-93	19400	7.25	150	410	3	26	66	1.26	10.93	27.7	10654	85.44	18.2	7008	0.378	28.9	38.6	15260	80.49	56.5	21885	72.01
240	15-Sep-93	19400	7.18	168					1.26	10.88	27.5	10682	85.41	18.1	7044		28.7	38.3	15290	80.44	<u> </u>	21997	71.84 71.87
241	22-Sep-93	19000	7.24	153					1.25	10.04	27.1	10736	85.33	17.8	7062		28.2	37.8	15374	80.34	55.2	22052	71.80
243	06-Oct-93	19100	7.33	152	350	3	26	65	1.24	10.76	26.9	10763	85.30	17.7	7080	0.384	28.0	37.5	15412	80.29	54.8	22107	71.73
244	13-Oct-93	18900	7.18	160					1.24	10.56	27.9	10791	85.26	18.3	7098	[29.0	38.3	15450	80.24	56.8	22164	71.66
245	20-Oct-93	19100	7.32	162					1.24	10.37	28.8	10820	85.22	19.0	7117	Į	30.0	39.2	15489	80.19	58.8	22223	71.58
246	27-001-93 03-Nov-93	19000	7.04	162	370	3	24	74	1.20	9.08	29.8	10850	85.18 85.14	20.2	7157	0.311	32.1	40.0	15570	80.09	62.9	22346	71.42
248	10-Nov-93	19000	7.4	146	370				1.24	9.75	28.8	10909	85.10	19.0	7176		30.0	38.6	15609	80.04	58.9	22405	71.35
249	17-Nov-93	19200	6.94	126					1.24	9.52	26.9	10936	85.06	17.7	7193		28.0	36.3	15645	79.99	54.8	22460	71.28
250	24-Nov-93	19100	7.43	148	074				1.24	9.29	25.0	10961	85.03	16.4	7210	0.077	26.0	34.1	15679	79.95	50.8	22511	71.21
251	08-Dec-93	19000	7.39	147	270	3	22	56	1.23	9.06	23.1	10984	84.99	15.2	7241	0.311	24.0	32.3	15743	79.91	48.2	22506	71.09
253	15-Dec-93	19200	7.08	134					1.24	8.48	24.4	11032	84.93	16.1	7257		25.4	32.7	15776	79.83	49.6	22655	71.03
254	22-Dec-93	18800	7.04	146					1.24	8.19	25.1	11057	84.89	16.5	7273		26.1	33.1	15809	79.78	51.1	22707	70.96
255	29-Dec-93	19200	7.28	154	280	3	19	62	1.25	7.90	25.8	11083	84.86	17.0	7290	0.294	26.9	33.5	15842	79.74	52.5	22759	70.90
256	12-jan-94	19400	7.34	136					0.83	8.55	25.9	11135	84 79	17.1	7324	[27.2	34.9	15911	79,65	53.5	22865	70.76
258	19-Jan-94	20000	7.7	173					0.63	8.87	26.2	11161	84.75	17.2	7342		27.3	35.5	15947	79.61	54.0	22919	70.69
259	26-Jan-94	19300	7.71	173	280	1	22	63	0.42	9.20	26.3	11188	84.72	17.3	7359	0.335	27.4	36.2	15983	79.56	54.5	22974	70.62
260	02-Feb-94	19600	7.63	157					0.63	9.42	25.7	11214	84.68	16.9	7376		26.8	35.6	16019	79.52	53.0	23027	70.00
261	16-Feb-94	18900	7.54	165			<u> </u>		1.05	9.86	23.1	11263	84.61	16.1	7409		25.6	34.4	16088	79.43	50.1	23129	70.42
263	23-Feb-94	19400	7.67	168	320	3	24	57	1.26	10.09	24.0	11287	84.58	15.8	7424	0.404	25.0	33.8	16122	79.38	48.6	23177	70.36

🔹 Hyrakine war op an de 1900 Color (polity 1/10 fre dekodian ling is channa in Haling and was used in subsequent n-boulations

Samatosum Mine Humidity Cell Data - Column 2 (Encapsulated 3 Layers)

<u> </u>	1			T	1	<u> </u>						1		1	r		1	· · · · · · · · · · · · · · · · · · ·			1		
· · · · · · · · · · · · · · · · · · ·		Anahtical	Results:								Sulphate	Production				Molar	NP Consum	otion;					
												1		By Surface A	rea:	Ratio:	Theoretical	Empirical		Remaining	Theoretical		Remaining
									Acidity	Alkalinity	\$04	Cumulative	Remaining	\$04	Cumulative		NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekly		L	Acidity	Akalinity	Suphate	Production	Production	Production	S04	5	Production	S04	AK	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Week No.	Date	Recovered	PH	Conductivity	Eh	(CeCO3	(CeCO3	(\$04	Rate	Rate	Rate	Production	(% %	Rate	Production	/504	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
		(mL)		(UNINGERCHI)	(-N)	inga.)		<u></u>	(where the second secon	(mg/kg/wik)	fundak@wwd	(=9×9)	onginaij	(mg/m/2/w/k)**	(mganiz)		(mg/mg/wit)	(mg/sg/min)	(mgragrant)	(1)	(inderthese)	(mgr.grwc)	<u> </u>
132	21-Aug-91	19800	7.9	322					0.64	10.05	41.2	7397	89.89	27.1	4866		42.9	52.4	10732	86.28	85.3	15271	80.47
133	28-Aug-91	19500	7.1	285					0.57	7.46	35.0	7432	89.85	23.0	4889		36.5	43.4	10775	86.22	72.3	15344	80.38
134	04-Sep-91	7500	7.5	438	282	3	30	177	0.49	4.87	28.8	7461	89.81	18.9	4907	0.163	30.0	34.3	10810	86.18	59.4	15403	80.30
135	11-Sep-91	19000	7.1	258					0.68	7.86	29.7	7491	89.77	19.5	4927		30.9	38.1	10848	86.13	61.1	15464	80.22
136	18-Sep-91	19500	7.7	260					0.87	10.84	30.6	7521	89.73	20.1	4947		31.8	41.8	10889	86.07	62.8	15527	80.14
137	25-Sep-91	19800	7.7	221					1.07	13.83	31.5	7553	89.68	20.7	4968		32.8	45.5	10935	86.02	64.5	15591	80.06
138	02-Oct-91	19400	7.9	232	180	3 .	40		1.26	16.81	32.4	7585	89.64	21.3	4989	0.499	33.7	49.3	10984	85.95	66.2	15658	79.98
139	16 0 01	19300	7.0	218	280				1.81	20.85	32.3	7617	89.59	21.2	5010		33.6	52.7	11037	85.89	0.0	10/23	79.89
141	23.0-1.01	19200	76	219					2.30	29.09	32.2	7682	89.55	21.2	5053		33.0	59.5	11152	85.74	64.0	15852	79.73
142	30-Oct-91	19300	7.6	218					3.45	32.96	32.1	7714	89.46	21.1	5074		33.4	62.9	11215	85.66	63.3	15915	79.65
143	06-Nov-91	19800	7.5	235	300	4	37		4.00	37.00	32.0	7746	89.42	21.0	5095		33.3	66.3	11282	85.57	62.6	15978	79.57
144	13-Nov-91	19700	7.3	212					3.42	31.81	31.9	7777	89.38	21.0	5116		33.2	61.6	11343	85.49	63.1	16041	79.49
145	20-Nov-91	19200	7.4	210					2.83	26.61	31.8	7809	89.33	20.9	5137		33.2	56.9	11400	85.42	63.5	16104	79.41
146	27-Nov-91	19500	7.7	195					2.25	21.42	31.8	7841	89.29	20.9	5158		33.1	52.3	11453	85.35	63.9	16168	79,32
147	04-Dec-91	19200	7.5	210	320	4		76	1.66	16.22	31.6	7873	89.24	20.8	5178	0.492	32.9	47.5	11500	85.29	64.2	16232	79.24
148	11-Dec-91	19500	/.5	208					1.6/	14.90	29.9	7903	89.20	19.7	5198	·	31.2	44.4	11544	85.24	60.6	16293	79.10
150	25-Dec-91	19300	7.6	155					1.67	12.01	26.2	7967	89 13	17.4	5234		27.8	38 7	11674	85 14	53.5	16404	79.02
151	01-Jan-92	19400	7.2	162	300	4	26	59	1.68	10.93	24.8	7982	89.10	16.3	5250	0.423	25.8	35.1	11659	85.09	50.0	16454	78.96
152	08-Jan-92	19300	7.0	180					1.57	10.48	25.5	8008	89.06	16.7	5267		26.5	35.4	11694	85.05	51.5	16505	78.89
153	15-Jan-92	19100	7.0	180					1.46	10.04	26.1	8034	89.03	17.2	5284		27.2	35.8	11730	85.00	53.0	16558	78.83
154	22-Jan-92	19700	7.4	162					1.36	9.59	26.8	8060	88.99	17.6	5302		27.9	36.1	11766	84.95	54.5	16613	78.76
155	29-Jan-92	19200	7.5	165	310	3	22	66	1.25	9.15	27.5	8088	88.95	18.1	5320	0.320	28.6	36.5	11803	84.91	55.9	16669	78.68
156	05-Feb-92	19400	7.1	170				,	1.15	8.99	27.1	8115	88.91	17.8	5338		28.2	36.0	11839	84.86	55.2	16724	78.61
157	12-Feb-92	19200	7.3	188					1.05	8.82	26.7	8142	88.88	17.5	5355		27.8	35.6	118/4	84.82	54.0	10//8	70.04
100	19-Feb-92	19700	76	161	200		- 20	61	0.95	8.00	20.3	8104	88.81	17.0	5300	0.315	27.0	301	11044	84 73	53.1	16685	78.41
160	04-Mar-92	19000	74	170	2.00	····		<u>_</u>	0.84	833	27.9	8222	88 77	18.4	5408	0.010	291	36.6	11981	84 68	57.3	16943	78 33
161	11-Mar-92	19100	7.5	190					0.84	8.18	29.9	8252	88.73	19.7	5428		31.2	38.5	12019	84.63	61.5	17004	78.26
162	18-Mar-92	19400	7.9	175					0.83	8.02	31.9	8284	88.68	21.0	5449		33.3	40.4	12060	84.58	65.7	17070	78.17
163	25-Mar-92	19100	7.5	190	390	2	19	82	0.83	7.86	33.9	8318	88.64	22.3	5471	0.222	35.3	42.4	12102	84.52	69.9	17140	78.08
164	01-Apr-92	18000	7.3	225					0.93	8.60	34.5	8352	88.59	22.7	5494		35.9	43.6	12146	84.47	70.9	17210	77.99
165	08-Apr-92	19200	7.2	185					1.04	9.34	35.1	8387	88.54	23.1	5517		36.5	44.8	12190	84.41	72.0	17282	77.90
166	15-Apr-92	19000	7.4	200	470			07	1.14	10.08	35.6	8423	88.49	23.4	5540	0.007	37.1	46.0	12236	84.35	73.1	1/356	77.81
16/	22-Apr-92	19200	7.5	208	430	3	_20	- 87	1.25	10.81	30.2	8405	88.44	23.8	5587	0.287	37.7	41.3	12284	84 23	73.0	17503	77.62
169	06-May-92	19400	76	200					123	9.66	35.0	8530	88.35	23.4	5610		36.6	450	12375	A4 18	71.9	17575	77.53
170	13-May-92	19000	7.4	191					1.22	9.08	34.6	8564	88.30	22.7	5633	······	36.0	43.9	12419	84.12	70.8	17645	77.44
171	20-May-92	18700	7.3	204	380	3	21	84	1.22	8.51	34.0	8598	88.25	22.4	5656	0.240	35.4	42.7	12461	84.06	69.7	17715	77.35
172	27-May-92	19200	7.2	185					1.33	8.89	34.2	8632	88.21	22.5	5678		35.6	43.2	12505	84.01	69.9	17785	77.26
173	03-Jun-92	19100	7.3	210					1.44	9.27	34.4	8667	88.16	22.6	5701		35.8	43.6	12548	83.95	70.2	17855	77.17
174	10-Jun-92	19200	7.2	190					1.56	9.65	34.5	8701	88.11	22.7	5723		36.0	44.1	12592	83.90	70.4	17926	77.08
172	24. 10 02	19300	-1.2	220	420			03	1.6/	10.03	34.7	8770	88.02	22.6	5760	0.278	30.1	C.PP	1203/	83 70	60 9	18066	76.00
177	01-Jul-92	19200	7.5	240					1.4/	10.29	33.7	8804	87 97	22.2	6791		35.0	44 4	12726	83.73	68.9	18135	76.81
178	08-Jul-92	19500	7.3	195					1.06	10.79	33.2	8837	87.93	21.8	5813		34.6	44.3	12770	83.67	68.1	18203	76.72
179	15-Jul-92	19600	7.4	182	400	2	26	77	0.85	11.04	32.7	8870	87.88	21.5	5834	0.324	34.1	44.2	12814	83.61	67.3	18270	76.64
180	22-Jul-92	19200	7.6	225					0.96	12.29	33.4	8903	87.84	22.0	5856		34.8	46.1	12860	83.55	68.6	18339	76.55
181	29-Jul-92	18600	7.5	232					1.07	13.54	34.1	8937	87.79	22.4	5879		35.5	48.0	12908	83.49	70.0	18409	76.46
182	05-Aug-92	12900	7.3	340					1.19	14.78	34.8	8972	87.74	22.9	5902		36.3	49.9	12958	83.43	71.4	18480	76.37
183	12-Aug-92	20000	7.4	205	380	3	37	82	1.30	15.03	35.5	9008	87.69	23.4	5925	0.433	37.0	51,7	13010	83.36	72.7	18553	76.27
185	26-Aug-92	19200	7 42	230					1.19	11.00	34.9	9043	87.60	22.9	5948		30.3	49./	13060	83.30	703	18605	76.18
186	02-Sen-92	19000	7.18	222					0.96	11 61	336	9110	87.55	221	5992		35.0	45.6	13153	83.18	69.0	18764	76.01
187	09-Sep-92	19500	7.4	186	460	2	24	78	0.84	10.14	33.0	9143	87.51	21.7	6014	0,295	34.3	43.6	13197	83.12	67.8	18832	75.92
188	16-Sep-92	19000	7.54	204					0.84	10.59	33.7	9177	87.46	22.1	6036		35.1	44.8	13241	83.07	69.3	18901	75.83
189	23-Sep-92	19200	7.43	187					0.83	11.04	34.4	9211	87.42	22.6	6059		35.8	46.0	13287	83.01	70.8	18972	75.74
190	30-Sep-92	19100	7.54	200					0.83	11.49	35.1	9247	87.37	23.1	6082		36.6	47.2	13335	82.95	72.3	19044	75.65
191	07-Oct-92	19000	7.62	222	460	2	29	87	0.82	11.94	35.8	9282	87.32	23.6	6106	0.320	37.3	48.4	13383	82.89	73.8	19118	75.55
192	14-UCI-92	19100	1.33	212			·		0.94	12.58	33.6	9316	8/.27	22.1	6128		35.0	46.6	13430	82.83	64.2	19167	/0.45
194	28-Oct-92	19200	7.52	206					-1.17	13.22	291	9376	87.19	19.2	6167		303	430	13518	- 12 71	59.5	19310	75.30
195	04-Nov-92	19700	7.46	180	480	3	34	63	1.28	14.51	26.9	9403	87.15	17.7	6185	0.518	28.0	41.2	13559	82.66	54.7	19365	75.24
196	11-Nov-92	19100	7.58	192					1.27	14.65	26.9	9430	87.12	17.7	6203		28.0	41.3	13600	82.61	54.7	19420	75.17
197	18-Nov-92	19500	75	182					127	14 78	26.8	9457	87.08	17.6	6220		27.9	415	13642	82.56	54.6	19474	75 10

* Assakses were consider a confection limit, 9/2 the detection limit to shown to belies and was used in subsequent calculations

i an

Carl and a second s

Column Test Samples

Sample	Al ₂ O ₃ (%) XRF	Al XRF Equivalent (ppm)	Al ICP (ppm)	Al (%) Difference	CaO (%) XNF	Ca XPF Equivalent (ppm)	Ca ICP (ppm)	Ca (%) Difference	Cr ₂ O ₃ (%) XMF	Cr XNF Equivalent (ppm)	Cr ICP (ppm)	Cr (%) Difference	Fe ₂ O ₃ (%) <i>XN</i> F	Fe XVF Equivalent (ppm)	Fe ICP (ppm)	Fe (%) Difference	K2O (%) XMF	K XMF Equivalent (ppm)	K ICP (ppm)	K (%) Difference
Column 2, Consuming 1	13.16	34676	73000	52.22	7.66	54746	50900	-7.56	0.01	54	467	65.45	11.35	36629	71300	45.54	0.07	261	73000	99.60
Column 2, Consuming 1	13.72	36305	73400	50.54	5.46	39166	35300	-10.66	0.01	54	493	69.06	11.81	40403	72700	44.43	0.31	1267	73400	96.25
Column 2, Consuming 1	15.01	39718	80000	50.35	2.37	16938	15100	-12.17	0.01	54	602	91.04	12.66	44439	80000	44.45	0.69	2864	80000	96.42
Column 2, Consuming 1																				
Column 2, Producing 2 Column 2, Producing 2	0.66	25207	50700	50 10	1.43	10220	9800	_1 20	0.01	54	215	7/ 01	6.05	20697	39800	46 W	2 15	8924	50700	82 40
Column 2, Producing 2	9.00 17.07	45170	82300	45 12	0.79	5646	4900	-4.29	0.01	54	170	68.27	7.56	25932	47600	45.75	4.11	17059	82300	79.27
Column 2, Producing 2	11.57	30616	61500	50.22	1.34	9577	9600	0.24	0.01	54	265	79.65	6.71	22955	44500	46.42	2.70	11207	61500	61.76
Column 2, Consuming 3	13.13	34744	72306	51.95	6.84	48885	44200	-10.60	0.01	54	547	90.14	11.38	38932	69900	44.30	0.06	249	72300	99.66
Column 2, Consuming 3	14.15	37443	76206	52.12	5.66	40452	36500	-10.83	0.01	54	576	90.67	13.36	45705	63300	45.13	0.06	249	78200	99.68
Column 2, Consuming 3	14.69	36401	79400	50.38	2.92	20669	16300	-14.04	0.01	54	616	91.24	14.16	48442	67300	44.51	0.13	540	79400	99.32
Column 2, Consuming 3	12 71	22622	66400	40.25	7.40	52887	471W	12 20	0.01	54	419	87 10	12 14	41532	74000	43 88	0.05	249	66400	99 62
Column 3, Consuming 1	13.30	35194	70a00	50.29	4 84	34591	30500	-12.29	0.01	54	439	67.71	12.14	42011	74600	43.64	0.17	706	70800	99.00
Column 3, Consuming 1	14.26	37734	74306	49.21	2.76	19868	17200	-15.51	0.01	54	500	89.21	13.46	46047	81300	43.38	0.30	1245	74300	98.32
Column 3, Consuming 1																				
Column 3, Producing 2																				
Column 3, Producing 2	9.34	24715	49800	50.37	1.59	11364	11060	-3.31	0.01	54	200	73.03	6.07	20765	39800	47.82	1.92	7969	49800	84.00
Column 3, Producing 2	17.10	45249	65606	47.14	0.08	9660	4600	-5.65	0.01	27	131	79.41	7.31	25009	49400	49.30	4.14	12403	65700	79.93
Column 3, Producing 2 Column 3, Consuming 3	13.01	34420	677W	4/.00	5 33	38093	22600	-4.05	0.01	54	1/0	67 74	0.82	42592	76400	44.25	3.01 0.05	2495	67700	99.63
Column 3, Consuming 3	13.91	36808	73800	50.13	5.62	41595	37100	-12.12	0.01	54	458	M.22	12.45	42592	76400	44.25	0.22	913	73800	90.76
Column 3, Consuming 3	15.51	41042	80600	4906	2.48	17724	15200	-16.61	0.01	54	612	91.19	13.66	46732	62000	43.01	0.63	2615	50600	96.76
Column 3, Consuming 3																				
Column 3, Producing 4	7.80	20640	41100	49.78	234	16724	16100	-3.87	0.01	27	166	83.75	5.67	20082	38500	47.64	1.55	6433	41100	84.35
Column 3, Producing 4	14.02	37099	69400	46.54	1.25	6934	8300	-7.63	0.01	54	164	67.11	7.51	25692	48600	47.14	3.26	13031	69400	60.50
Column 3, Producing 4	11.55	36661	75600	49.1/	1.40 5.80	10435	36000	-5.40	0.01	54	521	14.00 89.65	0.95	23776 41463	45500	4/./4	2.59	291	75600	99 62
Column 3, Consuming 5 Column 3, Consuming 5	13.39	34676	79506	56.13	466	33305	32500	-2.48	0.01	54	533	89.88	12.12	41429	82300	49.66	0.07	249	79500	99.69
Column 3, Consuming 5	14.44	38210	81600	53.17	3.14	22441	20500	-9.47	0.01	54	677	92.03	13.65	47382	88400	46.40	0.14	661	81600	99.29
Column 3, Consuming 5																				
Original PAG	12.37	32733	64400	49.17	1.41	10077	9900	-1.79	0.01	54	197	72.62	6.49	22203	43400	48.64	2.57	10667	644W	63.44
Column 1 Original PAG	12.93	34215	70800	51.6/	6.69	49242	44600	-10.41	0.01	54	4/8	1.72	10.8/	3/15/	67000	44.50	0.62	3403	/0600	95.19
Column 1, Original PAG	9.18	24292	51100	52 46	1 92	13722	13700	-0.16	0.02	108	290	62.80	6.91	23639	47000	49.70	f.73	7180	51100	65.95
Column 1, Original PAG	12.44	32916	67000	50.87	0.55	3931	3900	-0.79	0.01	27	177	84.76	6.29	21518	43900	50.96	2.67	11912	67000	62.22
Column 1. Original PAG	17.77	47022	90200	47.87	0.26	1656	1600	-16.14	0.01	27	190	65.61	6.60	29421	59900	50.56	4.22	17515	90200	60.56
Column 4, Original MAF		255 10	74400	F 4 0F		12520									76700	44 10	a a -		744	00 (1
Column 4, Original MAP	13.51	35749	75200	51.95 53 10	6.12 7.16	43/39	36900	-12.44	0.01	04 84	565	90.50	12.3/	42316	77800	44.10	0.07	291	744m 75300	99.01 00.61
Column 4, Original MAF	13.52	36993	80600	54 10	5.91	42238	39200	-7.75	0.01	64	683	92.10	13.34	45637	85800	46.61	0.13	540	80600	99.33
Column 5	12.53	33156	67700	51.02	0.76	5432	5500	1.24	0.01	27	192	65.95	4.54	15532	32400	52.06	2.75	11414	677w	83.14
Column 5 Column 5 Column 5																				
Column 6, MAF(Top) Column6, MAF(Top) Column 6, MAF(Top)	13.07	34565	73500	52.95	4.75	33948	31800	-6.75	0.01	54	489	86.97	11.25	38487	71600	46.25	0.87	3611	73500	95.09
Column 6, MAF (Top) Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom) Column 6, PAG (Bottom)	13.10	34664	67300	4a.49	2.05	14651	13900	-5.40	0.01	27	182	85.18	6.14	21005	40100	47.62	2.76	11456	67300	82.98
Maximum	17.77	47022	so200	56.13	7.66	54746	50900	1.24	0.02	109	683	92.10	14.16	48442	88400	52.06	4.22	17515	90200	99.69
Minimum	7.80	20540	41100	45.12	0.26	1656	1600	-16.61	0.01	27	131	62.80	4.54	15532	32400	43.01	0.06	249	41100	79.27
mean Standard Deviation	13.23	35001 5545	70734 10658	2.23	3.52	25149	22957 15234	8.41 5.13	0.01	51	389 182	6 30	9.99 3.07	34179	63371	46.53	1.35	5067	10658	91.61
10 Percentile	10.36	2/425	54940	47.71	0.77	5517	5140	-14.77	0.01	27	170	70.01	6 10	20862	39920	43.96	0.06	249	54940	0.38
Median	13.16	34676	73000	50.37	2.78	19868	17200	-9.34	0.01	54	440	67.74	11.35	36629	71300	46.25	0.69	2664	73000	96.42
90 Precentile	15.31	40512	81200	53.08	6.67	49099	44440	-1.19	0.01	54	606	91.13	13.42	45911	82900	49.69	3.16	13116	81200	99.63
Count	35.w	35	35	35.w	35.00	35	35	35.00	35.w	35	35	35.00	35.00	35	35	35.w	35.00	35	35	35.00

% Difference = ((ICP (ppm) - XRF Equivalent (ppm)) / ICP (ppm)) * 100

APPENDIX

B. Results of Column Tests

 \mathbf{i}

Sample	MgO (%) XMF	Mg JNF Equivalent (ppm)	Mg ICP (spm)	Mg (%) Difference	MnO (%) XRF	Mn Jurer Equivalent (ppm)	Mn ICP (ppm)	Mn (%) Difference	Na ₂ O (%) XNF	Na 11947 Equivalent (ppm)	Na ICP (Ppm)	Na (%) Difference	P ₂ O ₅ (%) XMF	P XNF Equivalent (ppm)	P ICP ((ippm)	P (%) Difference	TiO ₂ (%) XMF	Ti Equivalent (ppm)	Ti ICP ((IPPM)	Ti (%) Difference
Column 2, Consuming 1	11.58	69836	66200	-5.49	0.19	1471	13%	-8.60	2.69	99 78	24200	58.77	0.15	327	620	47.21	1.28	7674	6500	-18.66
Column 2, Consuming 1	11.16	67303	62700	-7.34	0.19	1471	129s	-13.63	2.52	9347	21300	56.12	0.15	327	676	51.15	1.42	8513	7200	-18.23
Column 2, Consuming 1	11.91	71826	65300	-9.99	0.27	2091	179s	-16.49	2.06	7641	18209	58.02	0.17	371	no	61.83	1.62	9712	noo	-26.13
Column 2, Consuming 1																				
Column 2, Producing 2	0.07	12404	12460	0.67	0.11	450				602	-			205					4000	252 50
Column 2, Producing 2 Column 2, Producing 2	2.0/	12484	0400	-0.0/	0.11	85 <u>2</u>	745	-14.35	0.16	1004	2/00	78.02	0.14	305	590	48.w	0.09	3537	1000	-255.70
Column 2 Producing 2	2 10	10755	12200	2.08	0.09	852	700	-24.4/	0.33	1224	3200	/1.03	0.10	349	660	48 42	0.99	4256	TWO	192 76
Column 2 Consuming 3	12 08	72852	67900	-2.98	0.11	1317	1170	-12.63	2.58	9570	2200	67.84	0.15	204	600	40.45	1 22	7913	6800	-16 37
Column 2. Consuming 3	12.98	78279	74000	-5.78	0.17	1394	1270	-9 77	2.30	9014	21700	5646	0.15	371	740	49 AR	1.52	9532	8400	-13.48
Column 2, Consuming 3	13.03	78581	72000	-9.14	0.21	1626	1455	-11.78	2.60	9644	22500	57.14	0.20	436	830	47.42	1.75	16491	6900	-17.88
Column 2, Consuming 3																				
Column 3, Consuming 1	11.37	68570	61600	-11.31	0.22	1704	1485	-14.73	2.59	9607	21400	55.11	0.15	327	640	48.86	1.39	8333	7200	-15.74
Column 3, Consuming 1	12.20	73575	66400	-10.81	0.22	1704	1445	-17.91	2.20	8160	18100	54.92	0.17	371	660	43.80	1.45	8693	7000	
Column 3, Consuming 1	12.47	75204	69000	-8.99	0.36	2788	2390	-16.65	2.24	8309	18800	55.80	0.19	415	740	43.98	1.64	9832	7900	4.0 A.6
Column 3, Consuming 1																				
Column 3, Producing 2																			1200	
Column 3, Producing 2	2.67	16102	15600	-3.22	0.11	852	765	-11.36	0.12	445	2600	82.88	0.10	215	500	56.36	0.63	3777	2100	-214.74
Column 3, Producing 2	1.78	10735	9900	-8.43	0.08	620	560	-10.64	0.29	1076	4500	76.10	0.16	349	700	59.13	1.01	6055		-188.33
Column 3, Producing 2	2.22	13388	12300	-8.85	0.11	652	750	-13.59	0.28	1039	3600	71.15	0.14	305	600	49.09	0.78	4676	1800	-159.78
Column 3, Consuming 3	12.07	72791	66800	-8.97	0.18	1394	1215	-14.73	1.82	6751	15800	57.27	0.18	393	740	46.93	1.42	8513	7500	-13.51
Column 3, Consuming 3	11.00	71525	66800	-7.07	0.18	1394	IWO	-10.64	2.49	9236	21100	66.23	0.17	371	700	47.01	1.48	6873	7000	-18.30
Column 3, Consuming 3	12.41	/4842	00000	-13.40	0.33	2300	2220	-15.12	2.15	1915	10300	55.42	0.21	458	600	42.72	1.09	10132	1000	-33.31
Column 3, Consuming 3	2.86	17248	16600	2.06	0.15	1162	640)	15 02	0.17	621	2.4W	72 72	0.00	1 0	460	57 21	0.59	2477	1300	-167 47
Column 3. Producing 4	2.00	13690	12500	-3.90	0.15	n 4	760	-15.02	0.1/	1335	24w 4200	68 21	0.09	327	600	37.31 45.45	0.38	54//	1900	-180 82
Column 3. Producing 4	2.47	148%	14000	-6.40	0.10	852	700	20 20	0.20 0	927	3700	74.94	0.13	284	560	49.35	0.77	4616	1800	-100.02
Column 3, Consuming 5	12.10	72972	89500	-5.00	0.17	1317	1115	-18.08	2.69	10720	25100	57.29	0.15	327	550	40.49	1.36	8153	7500	-6.6 - 8.1
Column 3, Consuming 5	12.64	72610	74300	2.27	0.17	1317	1255	-4.91	2.16	8012	21500	62.73	0.17	371	730	49.19	1.51	9052	8300	-9.07
Column 3, Consuming 5	13.19	79546	75500	-5.36	0.22	1704	1565	-8.87	2.33	8643	21100	59.04	0.19	415	830	50.05	1.69	10132	8600	-17.81
Column 3, Consuming 5																				
Original PAG	1.71	10313	10100	-2 10	0.10	774	660	-17.34	030	1113	4000	72.18	0.15	327	640	48.86	0.86	5156	IWO	-171.35
Original MAF	9.27	55905	52600	-6.28	0.19	1471	1300	-13.19	1.69	6269	15800	60.32	0.16	349	670	47.89	1.32	7913	5000	-55.27
Column 1, Original PAG																				
Column 1, Original PAG	3.13	188/6	18700	-0.94	0.15	1162	1140	-1.90	0.25	927	3200	71.02	0.10	218	430	49.26	0.58	3477	1400	-148.36
Column 1, Original PAG	1.52	916/	9400	2.48	0.05	465	400	-14.73	0.21	779	3000	78.36	0.10	327	696	52.57	0.76	4550	1000	-203./5
Column 1, Original PAG	1.52	910/	8500	-/.84	0.05	381	300	-29.00	0.38	1410	4000	00.00	0.19	415	690	55.42	1.0/	0415	2200	-191.5/
Column 4, Original MAF	12.05	72671	68200	-6 56	0.17	1317	1185	-11 10	2 /0	0736	21700	57 44	0.17	371	750	50 54	1.52	0112	6800	-34 01
Column 4. Original MAF	12.03	72610	69900	-3.88	0.17	130/	1275	-0.34	2.42	8076	22000	59 20	0.17	3/0	710	50.83	1.32	8753	7800	-12 21
Column 4. Original MAF	12.66	76349	74100	-3.04	0.18	1394	1305	-6.82	2.11	7827	20500	61 82	0.10	393	826	52.10	1.40	9712	8500	-14 26
Column 5	1.61	9710	10400	6.64	0.09	697	620	-12.42	0.41	1521	4500	66.20	0.11	240	500	52.10	0 74	4436	1400	-216.88
Column 5 Column 5																	0.74			
Column 5																				
Column 6, MAF (Too)	9.22	55604	53500	-3 93	0.16	1239	1106	-12 14	1 45	5378	14000	61 68	0.15	377	620	47 21	1 20	7734	67W	-35 68
Column 6, MAF (Top)	J.22	33004		-5.75	0.10	1257	1100	-12.14	1.45	3370	14000	01.00	0.15	327	420	4/.21	1.29	1104	0/"	-33.00
Column 6, MAF (Top)																				
Column 6, MAF (Top)																				
Column 6, PAG (Bottom)	1.83	11036	10800	-2.19	0.10	774	675	-14.73	0.29	1076	3900	72.42	0.12	262	510	48.66	0.88	6276	1700	-210.33
Column 6, PAG (Bottom)																				
Column 6, PAG (Bottom) Column 6, PAG (Bottom)																				
Maximum	13 19	79546	75500	6 64	0.36	2788	2200	1 00	2.60	10720	26100	82 88	0.21	458	800	57 21	1 75	10401	8000	8 71
Minimum	1.52	9167	8500	-14,20	0.05	387	2390	-1.90 -29.08	0 12	445	2400	·54 92	0.21	430	430	37.31 40.49	0.68	3477	0900 1.0w	-0./1
Mean	7.69	46390	43577	-5.70	0.16	1262	1110	-13.36	1.43	5297	13163	64.45	0.15	337	850	48.76	1 10	7136	4940	-94,48
Standard Deviation	4,95	30051	25017	4.45	0.07	533	468	5.15	1.05	3900	8633	8,17	0.03	61	112	3.60	0.38	2292	3002	58.04
10 Percentile	1.74	10481	9986	-10.48	0.09	697	584	-18.01	0.23	838	3200	66.16	0.11	249	504	43.87	0.66	3969	1400	-212.97
Median	11.16	67363	61600	-6.28	0.17	1317	1170	-13.19	1.82	6751	15800	61.58	0.15	327	660	48.86	1.32	7913	6500	-34.01
90 Precentile	12.58	75891	73200	-0.76	0.22	1704	1533	-5.14	2.69	9592	22300	75.63	0.19	415	612	52.36	1.63	9 784	8360	-13.49
Count	35.00	35	35	35.00	35.00	35	35	35.00	35.00	35	35	35.00	3 s. w	35	35	35.W	35.00	35	35	35.W

% Difference = ((ICP (ppm) - XRF Equivalent (ppm)) / iCP (ppm)) * 100

B1. Column 1

Pre-Test ABA & ICP Metals D iamatosum Mine Column 1 (Blend Control)	ata		Piost-Test ABA 8 ICP Metals D amatosum Mine ;olumn 1 (Blend Control)
ritial Sample Weight (dry) (g)		28900	inal Sample Weight (dry) (g)
BA Results:			\BA Results:
Slurry pH		8.3	Paste pH
% S (Total)		3.62	γ6 s (Ťotal)
₭ S (Sulphate)			‰ S (Sulphate)
% S (Sulphide)			% S (Sulphide)
% S (BaS04)			‰ S (BaS04)
TAP (tonne CaCO3/ktonne)		113	TAP (tonne CaCO3/ktonne)
SAP (tonne CaCO3/ktonne)		o	SAP (tonne CaCO3/ktonne)
NP (tonne CaCO3/ktonne)		61.5	NP (tonne CaCO3/ktonne)
			Carbon (%)
CaNP (t CaCO3/ktonne)			CaNP (t CaCO3/ktonne)
INNP (tonne CaCO3/ktonne)		-52	
DNNP (toppo CaCO3/ktoppo)			SNNP (tonne CaCO3/ktonne)
		0 54	
SNPR		0.04	SNDR
RNPR			RNPR
inface Area:			
Surface Area (m2/kg)		1.66	Surface Area (m2/kg)
detals: (ppm)	A 1		detals: (ppm)
Antimony	Al		Antimony
Anumony	20		Anumony
Barium	Ro Ro		Barium
Beryllium	Da Re		Beryllium
Bismuth	Bi		Bismuth
Cadmium	Сd		Cadmium
Calcium	Ca		Calcium
Chromium	Cr	Data	Chromium
cobalt	со	Not	Cobalt
Copper	cu	Available	Copper
Iron	Fe		Iron
Lanthium	La		Lanthium
Lead	Рb		Lead
Lithium	Li		Lithium
Magnesium	Mg		Magnesium
Manganese	Mn		Manganese
	Hg		Melubace
	IVIO		woybaenum Niekol
Phoenhorus	D IN		Phosphorus
Dotassium	r K		Potassium
Selenium	S a		Selenium
Silver	Δn		Silver
Sodium	Na		Sodium
Strontium	Sr		Strontium
Thallium	TI		Thallium
Tin	S n		Tin
Titanium	Ti		Titanium
Tungsten	W		lungsten
Tungsten Vanadium	W V		l ungsten Vanadium

Data Not Availa ble

Data

Not

A vaila ble

NOTE: When metals were reported as \leq detection limit, half the value of the detection limit is shown in *italics*, and Was used in subsequent calculations.

Samatosum Mine Humidity Cell Data -Column 1 (Eland Control)

					· · · · ·									1		1	1						
		Analytical	Results:								Sulphate	Production:				Molar	NP Consume	tion:					
		CONTRACTOR												By Surface	Area:	Ratio;	Theoretical	Empirical		Remaining	Theoretical Closed Sustem	Com NR	Remaining
									Acidity	Alkalinity	SO4	Cumulative	Remaining	\$04	Cumulative		NP	Open-System	Cum NP	NP Onen	NP Consumption	Consumption	Closed
		Leachate	Weekty			Acidity	Akalinity	Sulphate	Production	Production	Production	SO4	S (N of	Production	SO4	AIK	At pH 6	At Measured pH	Consumption	System	Above pH 6.5	Closed-System	System
Week No.	Date	Recovered	pH (attraction)	Conductivity	Eh	(CaCO3	(CeCO3	(SO4	(makahik)**	rcate (mokoluk)**	(mafra/wic)**	(molka)	original)	(mg/m2/wk)**	(mg/m2)	<u> </u>	(mgAcgAvA)	(mg/kg/wk)	(mg/kg/wk)	(%)	(mgAcgAwk)	(mgAgAvik)	(%)
		(mL)	(pri units)	(umruarcm)	(***)	••••		111912/	(ingray may	(,	(Vite											
132	21-Aug-91	19300	2.2.	2640					32.92	0.00	607.3	26483	75.61	366.9	15999		633	600	27632	55.07	1232	54057	12.10
133	28-Aug-91	19000	2.6	2430					19.65	0.00	529.2	27012	75.13	319.7	16318	0.000	551	532	28164	52.45	034	56074	8.82
134	04-Sep-91	8000	2.4	3720	660	23	0	1630	6.37	0.00	451.2	27464	74.71	2/2.6	16970	0.000	470	404	29093	52 69	947	57021	7.28
135	11-Sep-91	19200	2.6	2300					15.24	0.00	401.0	2/920	73.85	285.4	17155		492	468	29561	51.93	960	57981	5.72
136	18-Sep-91	19200	2.4	2150					32.98	0.00	483.0	28881	73.41	291.8	17447		503	470	30032	51.17	973	58954	4.14
138	02-Oct-91	19200	25	1778	580	63	0	743	41.85	0.00	493.6	29374	72.95	298.2	17745	0.000	514	472	30504	50.40	987	59941	2.54
139	09-Oct-91	19000	2.5	1635	630	45	0		29.58	0.00	454.7	29829	72.53	274.7	18020		474	444	30948	49.68	918	60808	1.04
140	16-Oct-91	18600	2.5	1560					27.12	0.00	415.8	30245	72.15	251.2	18271		433	406	31304	49.02	761	62458	-1.56
141	23-Oct-91	19300	2.7	1475		ļ			24.65	0.00	376.9	30622	71.80	221.1	18499		352	330	32052	47.88	682	63140	-2.67
142	30-Oct-91	19300	2.9	1450				466	22.19	0.00	200.1	31250	71.93	180.7	18884	0.000	312	292	32344	47.41	603	63744	-3.65
143	13 Nov-91	19000	2.7	1420	610	30		400	25.31	0.00	295.0	31554	70.94	178.2	19062		307	282	32626	46.95	589	64333	-4.61
145	20-Nov-91	18800	2.7	1330		ł			30.90	0.00	290.9	31845	70.68	175.7	19238		303	272	32898	46.51	575	64908	-0.04
146	27-Nov-91	18900	2.7	1175					36.49	0.00	286.8	32132	70.41	173.3	19411	0.000	299	262	33160	46.08	547	66016	-0.45
147	04-Dec-91	19000	2.7	1220	610	64	0	430	42.08	0.00	282.7	32415	70.15	1/0.8	19582	0.000	254	230	33643	45 30	501	66517	-8.16
148	11-Dec-91	19000	2.7	1180	ļ				40.59	0.00	236.8	320/4	69.91	143.0	19882	 	247	208	33850	44.96	454	66971	-8.90
149	18-Dec-91	19300	27	1225		<u> </u>	t		37 62	0.00	213.8	33125	69.50	129.2	20011		223	185	34035	44.66	408	67379	-9.56
151	01-Jan-92	19700	27	910	590	53	0	280	36.13	0.00	190.9	33316	69.32	115.3	20126	0.000	199	163	34198	44.39	362	67740	-10.15
152	08-Jan-92	19100	2.7	1100					36.06	0.00	195.1	33511	69.14	117.9	20244		203	167	34365	44.12	370	68490	-10.75
153	15-Jan-92	19000	3.0	1070					36.00	0.00	199.4	33710	68.96	120.5	20365		208	176	34713	43.56	388	68878	-12.00
154	22-Jan-92	19100	2.7	872		<u> </u>		- 212	35.94	0.00	203.7	33914	68.58	125.0	20400	0.000	212	181	34894	43.26	397	69276	-12.64
155	29-Jan-92	19200	2.8	930	620	04	0	313	35.88	0.00	194.9	34317	68.40	117.7	20731	0.000	203	158	35052	43.01	361	69637	-13.23
100	12 Eeb 02	19300	2.9	900		<u> </u>			54.00	0.00	181.8	34499	68.23	109.8	20841	1	189	135	35187	42.79	325	69962	-13.76
157	19-Feb-92	19900	2.8	750					63.06	0.00	168.7	34667	68.08	101.9	20943		176	113	35300	42.60	288	70250	-14.23
159	26-Feb-92	19300	2.9	825	620	108	0	233	72.12	0.00	155.6	34823	67.93	94.0	21037	0.000	162	90	35390	42.40	202	70302	-15.09
160	04-Mar-92	19400	2.7	870					63.69	0.00	165.5	34988	67.78	100.0	21137		1/2	109	35626	42.07	310	71093	-15.60
161	11-Mar-92	19400	2.8	862		I	ļ		55.25	0.00	1/0.4	30104	67.45	1120	21243		193	146	35772	41.83	339	71433	-16.15
162	18-Mar-92	19200	2.8	788	660	66		285	39.37	0.00	195.3	35544	67.27	118.0	21473	0.000	203	165	35937	41.57	368	71801	-16.75
164	23-Mar-92	19800	2.0	842	000		<u> </u>	200	38.24	0.00	188.0	35732	67.10	113.6	21586		196	158	36095	41.31	353	72154	-17.32
165	08-Apr-92	19600	2.8	725					38.12	0.00	180.7	35913	66.93	109.1	21695		188	150	36245	41.07	338	72493	-11.8/
166	15-Apr-92	19000	2.8	760					37.99	0.00	173.4	36086	66.77	104.7	21800	0.000	181	143	36523	40.65	308	73124	-18.90
167	22-Apr-92	19200	2.8	827	670	57	0	250	37.87	0.00	162.0	30202	66.47	99.0	21900	0.000	171	139	36662	40.39	310	73434	-19.40
168	29-Apr-92	19100	2.6	760			 		24.82	0.00	161.5	36578	66.32	97.6	22097		168	143	36805	40.15	312	73746	-19.91
170	13.May.92	18900	28	730		<u> </u>	<u> </u>		18.30	0.00	159.2	36737	66.17	96.2	22193		166	148	36953	39.91	313	74059	-20.42
171	20-May-92	18900	3.0	760	640	18	0	240	11.77	0.00	157.0	36894	66.03	94.8	22288	0.000	163	152	37105	39.67	315	74374	-20.93
172	27-May-92	19300	3.0	690	1				12.63	0.00	148.9	37043	65.89	89.9	22378		155	142	37247	39.44	29/	74952	-21.42
173	03-Jun-92	19000	3.0	720	<u> </u>				13.50	0.00	140.8	37184	65.76	85.0	22463		14/	133	37504	39.02	262	75214	-22.30
174	10-Jun-92	10300	2.9	1060	640		1-0-	190	16.30	0.00	124 6	37441	65 52	75.3	22618	0.000	130	115	37619	38.83	244	75458	-22.70
1/5	24. hm.02	19000	2.0	770	1 010		<u>↓</u>	1	14.05	0.00	122.7	37564	65.41	74.1	22692	L	128	114	37732	38.65	242	75699	-23.09
177	01-34-92	19100	2.8	758	<u> </u>	1	1	1	12.87	0.00	120.8	37684	65.30	73.0	22765		126	113	37845	38.46	239	75938	-23.48
178	08-Jul-92	19300	2.8	610	[11.70	0.00	118.9	37803	65.19	71.8	22837	0.000	124	112	37958	38.28	236	76408	-23.00
179	15-Jul-92	19000	2.9	560	650	16	0	178	10.52	0.00	117.0	37920	65.08	70.7	22908	0.000	122	123	38192	37.90	257	76665	-24.66
180	22-Jul-92	18800	3.0	674		 	 		9.62	0.00	139.4	38188	64.84	84.2	23070	t	145	136	38328	37.68	281	76945	-25.11
187	25-30-92	4900	28	1200	<u> </u>	┼──~	I		9.17	0.00	150.6	38338	64.70	91.0	23160	1	157	148	38476	37.44	305	77250	-25.61
183	12-Aug-92	19400	2.84	708	590	13	0	241	8.73	0.00	161.8	38500	64.55	97.7	23258	0.000	169	160	38635	37.18	328	77578	-26.14
184	19-Aug-92	18800	2.85	642					8.63	0.00	144.4	38645	64.42	87.2	23345	ļ	150	142	38777	36.95	292	78126	-20.02
185	26-Aug-92	18900	2.95	608	L		ļ	ļ	8.52	0.00	127.0	38772	64.30	76.7	23422	I	132	106	39007	36.75	220	78346	-27.39
186	02-Sep-92	19000	2.94	590	640	42-	l	144	8.42	0.00	92.2	38973	64.11	55 7	23544	0.000	96	88	39094	36.43	184	78530	-27.69
187	16.Sep.92	18700	3.12	535	040	13	<u>↓ </u>		7.89	0.00	91.9	39065	64.03	55.5	23600	1	96	88	39182	36.29	184	78714	-27.99
189	23-Sep-92	19500	2.95	475	1	1	1	1	7.47	0.00	91.7	39157	63.94	55.4	23655		96	88	39270	36.15	184	78897	-28.29
190	30-Sep-92	19100	3.05	450					7.04	0.00	91.4	39248	63.86	55.2	23710	0.000	95	88	39359	36.00	183	79264	-26.59
191	07-Oct-92	19100	3.04	495	610	10	0	138	6.61	0.00	91.2	39340	63.78	52.4	23/60	0.000	- <u>80</u>	85	39532	35.72	177	79442	-29.17
192	14-001-92	19000	2.96	460	I	<u> </u>	<u> </u>		6.65	0.00	85.5	39514	63.62	51.7	23870	t	89	82	39615	35.59	172	79613	-29.45
193	28-Oct-92	19100	3.07	468	<u> </u>		t	 	6.69	0.00	82.7	39596	63.54	50.0	23920		86	79	39694	35.46	166	79779	-29.72
195	04-Nov-92	19400	3.17	410	620	10	0	119	6.71	0.00	79.9	39676	63.47	48.3	23969	0.000	83	76	39771	35.33	160	79938	-29.98
196	11-Nov-92	18300	3.17	432	I		1		7.17	0.00	76.8	39753	63.40	46.4	24015	 	80	73 60	39844	35.21	146	80238	-30.47
197	18-Nov-92	19000	3.06	490		1	1	1	7.63	0.00	73.8	39827	63.33	44.0	24000	1	I. //	03	39913		1 134		

Samatosum Mine Humidity Call Data -Column 1 (Blend Control)

			1	Γ			Í	Ι	Γ						ļ			
		Analytical	Results:		I						Suiphate	Production:	i		<u> </u>	Molar	NP Consum	otion:
			 		ļ							0	Demololog	By Surface	Area:	Kello:	ND	Empirical Oceo-Sustem
	L			ļ	 		Allentala	Cutobata	Acidity	Akainity	SU4 Descention	Cumulative SO4	remaining	Production	SO4	AK	Consumption	NP Consumption
Week ble	Data	Leachate	VVEEKQ	Conductivity	Eh	Acidity	Alkalinky	(SO4	Rate	Rate	Rate	Production	(% of	Rate	Production	/504	At pH 6	At Measured pH
Week NO.	Date	(ML)	(oH units)	(unhos/cm)	(mV)	mgA.)*	mg/L)*	mg/.)'	(mgAgAvA)**	(mgAcgAwk)**	(mg/kg/wk)**	(mgAcg)	original)	(mg/m2/wk)"	(mg/m2)		(mg/kg/wk)	(mgAcgAvit)
			y															
0	08-Feb-89		Γ						3.76	28.18	266.2	266	99.75	160.8	161	A 400	277	302
1	15-Feb-89	18100	7.5	874	490	6	45	425	3.76	28.18	266.2	532	99.51	160.8	322	0.102	165	302
2	22-Feb-89	17000	7.2	518	480	3	26	269	1./6	10.29	151.2	842	99.30	95.0	509	0.093	158	169
3	01-Mar-89	10200	69	442	470	6	25	225	3.99	17.27	149.5	992	99.09	90.3	599	0.111	156	169
	15-Mar-89	19800	72	443	480	4	30	230	2.74	20.55	157.6	1149	98.94	95.2	694	0.125	164	182
6	22-Mar-89	19500	7.0	495	460	5	27	272	3.37	18.22	183.5	1333	98.77	110.9	805	0.095	191	206
7	29-Mar-89	19400	7.0	464					3.02	18.46	163.2	1496	98.62	98.6	904	0.400	170	185
8	05-Apr-89	19300	7.3	435	475	4	28	214	2.67	18.70	142.9	1639	98.49	80.3	1101	U. 120	199	204
9	12-Apr-89	19000	7.3	662	462		19	338	2.00	12.55	223.4	2046	98.12	134.9	1236	0.054	233	243
11	26-Anr-89	13000	73	630	402				2.62	12.43	206.2	2252	97.93	124.5	1360		215	225
12	03-May-89	18700	7.3	536	480	4	19	292	2.59	12.29	188.9	2441	97.75	114.1	1474	0.062	197	207
13	10-May-89	18800	7.2	626					2.58	12.90	205.8	2647	97.56	124.3	1599		214	225
14	17-May-89	18600	7.2	605	474	4	21	346	2.57	13.52	222.7	2869	97.36	134.5	1/33	0.058	232	243
15	24-May-89	19300	7.2	466	470		20	220	2.04	13.01	222.1	3315	97.15	134.5	2002	0.058	232	243
16	31-May-89	19500		421	4/0		20	330	2 99	15.45	190.2	3505	96.77	114.9	2117		198	210
18	14-Jun-89	19000	72	469	542	5	26	240	3.29	17.09	157.8	3663	96.63	95.3	2213	0.104	164	178
19	21-Jun-89	19000	7.4	386	1	İ .	1		2.30	17.09	150.2	3813	96.49	90.8	2303		156	171
20	28-Jun-89	19000	7.2	445	545	2	26	217	1.31	17.09	142.7	3956	96.36	86.2	2390	0.115	149	164
21	05-Jul-89	19000	7.8	442				-	1.64	16.11	145.0	4100	96.22	87.6	2411	0.000	101	167
22	12-Jul-89	19000	7.1	448	520	3	23	224	1.97	15.12	147.3	4248	90.09	88.1	2000	0.099	152	165
23	26.14.89	19300	7.8	387	490	· · · · · · · · · · · · · · · · · · ·		·	2.31	15.82	144.3	4538	95.82	87.2	2741	I	150	164
25	02-Aug-89	19300	7.4	440	100				2.48	16.17	142.9	4681	95.69	86.3	2828		149	163
26	09-Aug-89	19100	7.4	414	505	4	25	214	2.64	16.52	141.4	4822	95.56	85.4	2913	0.112	147	161
27	16-Aug-89	19100	6.9	461					2.65	15.71	138.3	4961	95.43	83.5	2997		144	10/
28	23-Aug-89	19500	7.2	380	554	I	ļ		2.65	14.90	135.2	5228	95.31	01./ 70.8	3158		138	149
29	30-Aug-89	19300	7.1	419	400	4	20	194	2.65	13.29	128.9	5357	95.07	77.9	3236	0.099	134	145
30	13-Sep-89	19200	7.1	451		<u> </u>			3.15	13.10	129.7	5486	94.95	78.4	3314		135	145
32	20-Sep-89	19800	6.7	439	540				3.64	12.92	130.5	5617	94.83	78.9	3393		136	145
33	27-Sep-89	19000	6.6	317					4.13	12.74	131.4	5748	94.71	79.4	3473	0.001	137	145
34	04-Oct-89	19100	6.7	397	400	7	19	200	4.63	12.56	132.2	0000	94.09	724	3625	0.091	125	134
35	11-Oct-89	19000	67	356	<u> </u>		<u> </u>	<u> </u>	3.68	13.47	107.5	6108	94.38	65.0	3690	1	112	122
30	25-Oct-89	19300	66	277		 			3.21	13.93	95.2	6203	94.29	57.5	3747		99	110
38	01-Nov-89	19800	6.9	288	470	4	21	121	2.74	14.39	82.9	6286	94.21	50.1	3797	0.167	86	98
39	08-Nov-89	19200	6.7	318					2.56	14.52	83.0	6369	94.14	50.2	3848		86	98
40	15-Nov-89	19000	6.8	311	 	ļ	ļ		2.39	14.65	83.2	6452	94.06	50.2	3898	l	87	99
41	22-Nov-89	19000	7.5	307	360	1	22	123	203	14.79	83.4	6819	93.91	50.4	3998	0.172	87	100
42	06-Dec-89	19400	71	273	1.00	⊢ ⊸⊤			2.87	14.71	86.2	6705	93.83	52.1	4051		90	102
44	13-Dec-89	19200	7.2	303	1	1	<u> </u>	1	3.70	14.51	89.0	6794	93.74	53.8	4104		93	104
45	20-Dec-89	19300	7.4	275		1			4.54	14.30	91.8	6886	93.66	55.5	4160		96	105
46	27-Dec-89	19400	6.9	298	520	8	21	141	5.37	14.10	94.7	6981	93.57	57.2	4217	0.143	99	10/
47	03-Jan-90	19000	7.1	309	 	ļ	Į		4.69	14.06	90.3	7167	93.49	04.0 51 0	42/2		894	99
48	10-Jan-90	19900	1-10	201	<u> </u>	<u> </u>		<u> </u>	3.34	13.99	81.5	7238	93.34	49.2	4373	<u> </u>	85	96
49	24_Jan_90	19200	71	261	450	4	21	116	2.66	13.95	77.1	7315	93.26	46.6	4419	0.174	80	92
51	31-Jan-90	19400	7.3	248			1		2.16	12.93	76.5	7392	93.19	46.2	4465		80	90
52	07-Feb-90	19300	6.4	235					1.66	11.91	76.0	7468	93.12	45.9	4511	ļ	79	89
53	14-Feb-90	19100	7.5	223	245		12	144	1.16	10.88	75.5	7543	97.00	45.5	400/	0 126	79	87
54	21-reb-90	19000	7.0	208	340	+		<u> '!₹</u>	0.00	10.08	1 77.7	7696	92.91	46.9	4649	1	81	90
56	07-Mar-90	19100	73	295	ł	t	t	t	1.00	10.30	80.4	7776	92.84	48.6	4698		84	93
57	14-Mar-90	19000	7.0	267					1.17	10.52	83.2	7859	92.76	50.2	4748		87	96
58	21-Mar-90	19400	7.5	282	245	2	16	128	1.34	10.74	85.9	7945	92.68	51.9	4800	0.120	90	99
59	28-Mar-90	19000	7.6	326	 	 	 	 	1.33	10.51	96.3	8133	92.50	58.2	4913		100	109
61	11-Anr-90	19200	1 74	320	<u> </u>	 	<u> </u>	·····-	1.32	10.04	101.4	8234	92.42	61.3	4974		106	114
62	18-Apr-90	18900	7.8	353	220	2	15	163	1.31	9.81	106.6	8341	92.32	64.4	5039	0.088	111	120
63	25-Apr-90	19800	7.6	311	<u> </u>				1.48	9.18	110.7	8451	92.22	66.9	5106		115	123
64	02-May-90	19400	6.9	287	<u> </u>	ļ	 		1.65	8.56	114.8	8566	92.11	09.3 71 8	5247		120	130
65	LINE MINULON	10101	1 89	1 5/76					1 1.02	1 1.33		1 0000			1 9671			

Samatosum Mine Humidity Cell Data - Column 1 (Blend Control)

		Dissolve	id Meta	s*;						Motal Lo	ach Rate	:						Cumula	tive Mete	l Leach I	Rates;				
		Antimony	Amank	Conner	Int	Land	Memoranese	Shor	Zinc	Antimony	Artenic	Contrar	Iron	Laad	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	iron	Lead	Manganese	Silver	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
		(mgA_)	(mg/L)	(mg/L)	(mg/l.)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mgAgAuk)	(10040414)	(mg/rg/wk)	(mghghili)	(mg/rg/wi)	(mg/g/wk)	(mg/kg/wk)	(mgAgAd)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/cg)	((())
0	8-Feb-89																	1.4E-02	7.5E-03	4.4E-03	6.3E-03	6.3E-04	8.9E-01	1.3E-04	5.6E-02
1	15-Feb-89 22-Feb-89	0.023	0.012	0.007	0.01	0.001		2E-04 2F-04	0.09	1.4E-02 8.2E-03	7.6E-03	4.4E-03	6.3E-03 2.9E-03	6.3E-04		1.3E-04 1.2E-04	5.6E-02 4.7E-02	2.9E-02 3.7E-02	2.1E-02	8.8E-03 9.9E-03	1.3E-02 1.5E-02	1.3E-03	2.7E+00	3.7E-04	1.6E-01
3	1-Mar-89	0.008	0.009	0.002	0.01	0.001		2E-04	0.14	4.4E-03	5.0E-03	9.9E-04	2.8E-03	5.5E-04		1.1E-04	7.7E-02	4.1E-02	2.6E-02	1.1E-02	1.8E-02	2.4E-03	3.6E+00	4.8E-04	2.4E-01
4	8-Mar-89	0.006	0.008	0.001	0.02	0.001		2E-04	0.12	4.0E-03	5.3E-03	9.3E-04	1.0E-02	6.6E-04		1.3E-04	8.0E-02 8.9E-02	4.5E-02 5.0E-02	3.1E-02 3.7E-02	1.2E-02 1.3E-02	2.8E-02 3.2E-02	3.1E-03 3.7E-03	4.5E+00 5.4E+00	6.1E-04 7.5E-04	3.2E-01 4.1E-01
6	22-Mar-89	0.004	0.007	5E-04	0.01	0.001		2E-04	0.13	2.7E-03	4.7E-03	3.4E-04	3.4E-03	6.7E-04		1.3E-04	8.8E-02	5.2E-02	4.1E-02	1.3E-02	3.6E-02	4.4E-03	6.2E+00	8.8E-04	4.9E-01
7	29-Mar-89																	5.3E-02	4.3E-02	1.4E-02	3.8E-02 3.9E-02	4.7E-03	7.1E+00 8.0E+00	9.5E-04 1.0E-03	5.3E-01 5.7E-01
9	12-Apr-89																	5.5E-02	4.7E-02	1.5E-02	4.1E-02	5.4E-03	8.9E+00	1.1E-03	6.1E-01
10	19-Apr-89	0.002	0.004	0.004	0.01	0.001		2E-04	0.1	1.3E-03	2.6E-03	2.8E-03	4.0E-03	6.6E-04		1.3E-04	6.6E-02	5.7E-02	5.0E-02	1.8E-02	4.5E-02	6.1E-03	9.8E+00	1.2E-03 1.3E-03	6.7E-01 7 0E-01
11	20-Apr-89 3-May-89																	5.9E-02	6.6E-02	2.2E-02	4.9E-02	7.1E-03	1.2E+01	1.3E-03	7.3E-01
13	10-May-89	_						05.04	0.00		2.05.00	2.05.02	2.05.02	1 35.02		1 35 04	2 05 02	6.0E-02	7.4E-02	2.3E-02	5.1E-02	7.5E-03	1.2E+01	1.4E-03	7.5E-01
14	17-May-89 24-May-89	0.006	0.046	0.006	0.01	0.002		2E-04	0.06	3.9E-03	3.0E-02	3.92-03	3.92-03	1.32-03		1.32-04	3.9E-02	6.6E-02	1.1E-01	2.9E-02	5.7E-02	9.3E-03	1.4E+01	1.6E-03	8.1E-01
16	31-May-89																-	6.9E-02	1.25-01	3.1E-02	5.8E-02	9.8E-03	1.6E+01	17F-03	8 4F-01 8 6F-01
17	7-Jun-89 14-Jun-89	0.005	0.005	0.006	0.01	0.001		2E-04	0.08	3.3E-03	3.3E-03	3.9E-03	3.3E-03	6.6E-04		1.3E-04	5.3E-02	7.3E-02	1.3E-01	3.7E-02	6.4E-02	1.1E-02	1.7E+01	1.9E-03	9.1E-01
19	21-Jun-89																	7.4E-02	1.3E-01	3.8E-02	6.5E-02	1.1E-02	1.8E+01	1.9E-03	9.4E-01
20	28-Jul-89 5-Jul-89															· · · · · · · · · · · · · · · · · · ·		7.7E-02	1.4E-01	4.1E-02	6.8E-02	1.2E-02	2.0E+01	2.1E-03	9.8E-01
22	12-Jul-89	0.004	0.004	0.002	0.01	0.001		2E-04	0.06	2.6E-03	2.6E-03	1.2E-03	3.3E-03	6.6E-04		1.3E-04	3.9E-02	8.0E-02	1.4E-01	4.2E-02	7.2E-02	1.3E-02	2.1E+01	2 2E-03	1.0E+00
23	19-Jul-89 26-Jul-89																	8.3E-02	1.4E-01	5.2E-02	7.6E-02	1.3E-02	2.2E+01	2.3E-03	1.1E+00
25	2-Aug-89																1.05.00	8.4E-02	1.4E-01	5.7E-02	7.9E-02	1.4E-02	2.3E+01	2.4E-03	1.1E+00
26	9-Aug-89	0.005	0.003	0.028	0.01	0.001		2E-04	0.07	3.3E-03	2.0E-03	1.9E-02	5.9E-03	6.6E-04		1.3E-04	4.66-02	8.8E-02 8.9E-02	1.4E-01	7.5E-02 8.0E-02	8.9E-02	1.4E-02	2.5E+01	2 6E-03	1.2E+00
28	23-Aug-89																	9.1E-02	1.5E-01	8.5E-02	9.3E-02	1.5E-02	2.6E+01	2.7E-03	1.2E+00
29	30-Aug-89	0.004	0.002	0.002	0.02	0.001		2E-04	0.06	27E-03	1 3E-03	1 2E-03	1.16-02	6.6E-04		1.3E-04	4.0E-02	9.2E-02 9.5E-02	1.5E-01	9.0E-02 9.1E-02	9.8E-02	1.5E-02 1.6E-02	2.7E+01 2.8E+01	2.7E-03	1.2E+00 1.2E+00
31	13-Sep-89	0.004	0.002	0.002	0.02	0.001			0.00		1.00 20							9.6E-02	1.5E-01	9.2E-02	1.1E-01	1.6E-02	2.9E+01	2.9E-03	1.2E+00
32	20-Sep-89																	9.6E-02 9.7E-02	1.5E-01 1.5E-01	9.2E-02 9.2E-02	1.1E-01 1.2E-01	1.6E-02 1.6E-02	2.9E+01 3.0E+01	2.9E-03 3.0E-03	1.3E+00 1.3E+00
34	4-Oct-89																	9.7E-02	1.5E-01	9.3E-02	1.2E-01	1.7E-02	3.1E+01	3.0E-03	1.3E+00
35	11-Oct-89																	9.8E-02 9.8E-02	1.5E-01 1.5E-01	9.3E-02 9.3E-02	1.2E-01 1.3E-01	1.7E-02 1.7E-02	3.2E+01 3.3E+01	3.0E-03 3.1E-03	1.3E+00 1.3E+00
37	25-Oct-89																	9.9E-02	1.5E-01	9.3E-02	1.3E-01	1.7E-02	3.4E+01	3.1E-03	1.3E+00
38	1-Nov-89	0.003	0.002	0.002	0.02	0.001		2E-04	0.06	2.1E-03	1.4E-03	1.0E-03	1.2E-02	6.9E-04	·	1.4E-04	4.1E-02	1.0E-01	1.5E-01	9.4E-02	1.4E-01	1.8E-02 1.8E-02	3.5E+01 3.6E+01	3.2E-03 3.3E-03	1.3E+00 1.4E+00
40	8-NOV-89																	1.0E-01	1.5E-01	1.2E-01	1.5E-01	1.8E-02	3.7E+01	3.4E-03	1.4E+00
41	22-Nov-89	0.000	0.001	0.07	0.01	0.001		26.04	0 0	5 14E-0	3 6 8E-04	4 75-02	8 1E-03	6 8E-04		1.4E-04	3.4E-02	1.0E-01 1.1E-01	1.5E-01	1.3E-01	1.6E-01	1.9E-02 1.9E-02	3.7E+01 3.8E+01	3.4E-03 3.6E-03	1.4E+00
42	6-Dec-89	0.002	0.001	0.07	0.01	0.001		26-04	0.0		0 0.02-04	4.72-02	0.12-00	0.02-04		1.42.04	0.42-02	1.1E-01	1.5E-01	2.0E-01	1.7E-01	2.0E-02	3.9E+01	3.7E-03	1.5E+00
44	13-Dec-89												·					1.1E-01	1.5E-01	2.3E-01	1.7E-01	2.0E-02 2.0E-02	4.0E+01	3.7E-03	1.5E+00
45	20-Dec-89	0.002	0.001	0.07	0.01	0.001		3E-04	0.0	6 1.3E-0	3 6.7E-04	4.7E-02	3.4E-03	6.7E-04		2.0E-04	4.0E-02	1.1E-01	1.6E-01	3.0E-01	1.8E-01	2.1E-02	4.2E+01	4.0E-03	1.5E+00
47	3-Jan-90																	1.1E-01	1.6E-01	3.1E-01	1.8E-01	2.1E-02	4.3E+01	4.1E-03	1.6E+00
40	17-Jan-90																	1.1E-01	1.6E-01	3.3E-01	1.8E-01	2.2E-02	4.5E+01	4.4E-03	1.6E+00
50	24-Jan-9i i	0.002	0.001	0.001	0.01	0.001		4E-04	0.0	6 1.3 E-0	3 6.6E-04	7.3E-04	3.3E-03	6.6E-04		2.7E-04	4.0E-02	1.1E-01	1.6E-01	3.3E-01	1.9E-01	2.3E-02	4.6E+01	4.6E-03	1.6E+00
51	31-Jan-9U 7-Feb-90								l									1.1E-01	1.6E-01	3.3E-01	1.9E-01	2.3E-02	4.7E+01	4.8E-03	1.7E+00
53	14-Feb-90													0.05.04		4.05.04	1.05.00	1.1E-01	1.6E-01	3.3E-01	1.96-01	2.4E-02	4.8E+01	4.0E 03	1.7E+00
54	21-Feb-90 28-Feb-90	0.002	0.001	7E-04	0.01	0.001		2E-04	0.07	1.3E-03	0.0E-04	4.0E-04	3.3E-03	0.0E-U4		1.35-04	4.9E-02	1.2E-01	1.0C-U1 1.6E-01	3.3E-01	2.0E-01	2.4C-02 2.5E-02	5.0E+01	5.3E-03	1.8E+00
56	7-Mar-90																	1.2E-01	1.6E-01	3.3E-01	2.0E-01	2.5E-02	5.1E+01	5.5E-03	1.8E+00
57	14-Mar-90	0.002	0.002	0.001	0.01	0.001		0.001	0.06	13E-03	1.3F-03	6.7E-04	3.4E-03	6.7E-04		6.7E-04	4.0E-02	1.2E-01 1.2E-01	1.6E-01	3.3E-01 3.4E-01	2.0E-01 2.0E-01	2.0E-02 2.6E-02	5.3E+01	5.7E-03 6.3E-03	1.8E+00
59	28-Mar-90	0.004	9.002	0.001	<u></u>	0.001		0.001	0.00									1.2E-01	1.6E-01	3.4E-01	2.0E-01	2.7E-02	5.4E+01	6.7E-03	1.9E+00
60	4-Apr-90																	1.2E-01	1.6E-01	3.4E-01	2.1E-01 2.1E-01	2.7E-02 2.8E-02	5.5E+01	7.3E-03	1.9E+00
62	18-Apr-90	0.002	0.001	0.01	0.01	0.002		0.001	0.07	1.3E-03	6.5E-04	6.5E-03	3.3E-03	1.3E-03		6.5E-04	4.6E-02	1.2E-01	1.6E-01	3.5E-01	2.1E-01	2.9E-02	5.6E+01	8.0E-03	2.0E+00
63	25-Apr-90																	1.2E-01 1.2E-01	1.6E-01	3.5E-01 3.5E-01	2.1E-01 2.1E-01	2.9E-02 3.0E-02	5.8E+01	8.6E-03	2.0E+00
- 65	2-may-90																	1.2E-01	1.7E-01	3.5E-01	2.2E-01	3.0E-02	5.9E+01	1.0E-02	2.0E+00

. 122

1
Samatosum Mine Humidity Cell Data -Column 1 (Bland Control)

						1																	
		Analytical	Results:								Sulphate	Production:				Molar	NP Consume	tion:		O			8-mainlana
					ļ	ļ			Auldiu	Allentinites		Curren dantin un	Permining	By Surface	Vea: Currulation	Katio:	NP	Empirical Open-System	Cum NP	NP	Closed-System	Cum NP	NP
··		Lonchate	Maaldy			Acidity	Alkalinity	Suinhate	Production	Production	Production	SO4	Nenaming S	Production	SO4	Alk	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Neek No	Date	Recovered	oH	Conductivity	Eh	(CaCO3	(CaCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	/504	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
		(mL)	(pH units)	(umhos/cm)	(mV)	mg/L)'	mg/L)*	mgA.)'	(mgAcgAwk)"	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg)	original)	(mg/m2/wk)**	(mg/m2)		(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(%)	(mg/kg/wk)	(mg/kg/wk)	(%)
	40.14	10000		260	010			106	100	7.24	122.0		01.80	74.2	6321	0.067	128	133	9944	83.83	254	18176	70.45
66	16-May-90 23-May-90	19200	<u>5.7</u>	300	210			100	2.32	7.46	122.5	8928	91.78	72.6	5393	0.001	125	130	10074	83.62	248	18424	70.04
68	30-May-90	19700	74	285		<u> </u>			2.65	7.62	117.3	9045	91.67	70.9	5464	l	122	127	10202	83.41	242	18666	69.65
69	06-Jun-90	19000	7.2	257					2.98	7.78	114.5	9160	91.57	69.2	5534		119	124	10326	83.21	236	18901	69.27
70	13-Jun-90	19100	7.2	348	230	5	12	169	3.30	7.93	111.7	9272	91.46	67.5	5601	0.068	116	121	10447	83.01	229	19131	66.69
71	20-Jun-90	19100	7.3	351	I				2.97	7.60	116.8	9388	91.36	70.6	5672		122	120	103/3	82.61	240	19371	68.00
72	27-Jun-90	19200	7.1	398	 	<u> </u>			2.64	6.04	121.9	9510	91.24	76.8	5822		132	137	10703	82.37	262	19885	67.67
74	04-JU-90	19300	74	401	280	3	10	200	1.98	6.61	132.2	9770	91.00	79.9	5902	0.048	138	142	10984	82.14	273	20158	67.22
75	18-Jul-90	19000	6.9	467	200		-12		2.14	5.78	154.4	9924	90.86	93.2	5995		161	164	11148	81.87	319	20478	66.70
76	25-Jul-90	19200	6.6	462					2.31	4.95	176.5	10100	90.70	106.6	6102		184	187	11335	81.57	365	20843	66.11
77	01-Aug-90	19000	7.5	507					2.47	4.12	198.7	10299	90.52	120.0	6222		207	209	11544	81.23	412	21200	64 70
	08-Aug-90	19000	7.3	585	292	4	5	336	2.63	3.29	220.9	10520	90.31	133.4	6491	0.014	230	231	11992	80.50	430	22142	64.00
- 79	15-Aug-90	19100	60	570					1 99	5.00	194.4	10922	89.94	117.4	6598		202	205	12198	80.17	403	22545	63.34
81	22-Aug-90	19200	7.3	533	<u>}</u>				1.66	5.86	181.1	11103	89.78	109.4	6707		189	193	12391	79.85	376	22921	62.73
82	05-Sep-90	19400	7.3	470	310	2	10	250	1.34	6.71	167.8	11271	89.62	101.4	6809	0.038	175	180	12571	79.56	348	23269	62.16
83	12-Sep-90	19400	6.7	517					1.50	5.86	177.6	11449	89,46	107.3	6916		185	189	12760	79.25	368	23638	60.02
84	19-Sep-90	19000	6.8	573	ļ		ļ		1.66	5.01	187.3	11636	89.29	113.2	7029		205	198	13166	78.59	409	24435	60.27
85	26-Sep-90	19100	6.1	567	350		5	313	1.62	4.10	206.9	12040	88.91	125.0	7273	0.015	215	217	13383	78.24	429	24864	59.57
87	10-Oct-90	19100	6.9	509	330	<u>├</u>	<u> </u>		1.99	3.64	195.5	12235	88.73	118.1	7391		204	205	13588	77.90	405	25269	58.91
88	17-Oct-90	19200	7.4	503					1.99	3.98	184.2	12419	88.56	111.2	7503		192	194	13782	77.59	382	25651	58.29
89	24-Oct-90	19400	7.0	452					1.99	4.31	172.8	12592	88.40	104.4	7607		180	182	13965	77.29	358	26009	57.17
90	31-Oct-90	19200	6.3	456	338	3	7	243	1.99	4.65	161.4	12754	88.26	97.5	7805	0.028	108	1/1	14135	7673	344	26688	56.61
91	0/-Nov-90	19200	6.3	<u>540</u>		<u> </u>			2.00	4.50	171 1	13091	87.95	103.4	7908		178	181	14492	76.44	355	27042	56.03
93	21-Nov-90	19000	7.0	488					2.02	4.20	176.0	13267	87.78	106.3	8015		183	185	14677	76.13	365	27407	55.44
94	28-Nov-90	19500	6.8	582	280	3	6	268	2.02	4.05	180.8	13448	87.62	109.2	8124	0.021	188	190	14868	75.83	375	27782	54.83
95	05-Dec-90	19100	6.9	680					2.02	3.70	170.3	13618	87.46	102.9	8227		177	179	15047	75.53	353	28135	54.20
96	12-Dec-90	19500	6.9	502					2.01	3.36	159.9	13778	87.31	96.6	8323		167	168	15215	75.20	309	28775	53.21
97	19-Dec-90	19400	7.3	665	240			208	2.01	2.02	138.9	13926	87.05	83.9	8498	0.018	145	145	15517	74.77	287	29062	52.74
99	02-Jan-91	15800	5.7	670	270	-		200	2.34	3.17	143.6	14210	86.92	86.7	8584		150	150	15667	74.53	297	29359	52.26
100	09-Jan-91	19500	5.9	535		1			2.67	3.67	148.3	14358	86.78	89.6	8674		154	155	15822	74.27	306	29665	51.76
101	16-Jan-91	19400	7.4	372					3.01	4.17	152.9	14511	86.64	92.4	8766		159	160	15983	74.01	316	29981	50.72
102	23-Jan-91	19300	7.1	448	249	5	7	236	3.34	4.67	157.6	14669	86.49	95.2	8862	0.028	171	166	16146	73.46	325	30644	50.12
103	30-Jan-91	19200	6.3	4UZ 562	 	·			3.17	4.07	169.8	14033	86 19	102.6	9063		177	179	16499	73.17	351	30995	49.60
104	13-Feb-91	19400	63	448					2.83	4.66	175.9	15178	86.02	106.3	9169		183	185	16684	72.87	364	31358	49.01
106	20-Feb-91	19200	6.6	580	330	4	7	274	2.66	4.65	182.0	15360	85.86	110.0	9279	0.025	190	192	16876	72.56	377	31735	48.40
107	27-Feb-91	19200	5.9	552					4.15	3.99	193.2	15553	85.68	116.7	9396		201	201	17077	72.23	398	32133	47.75
108	06-Mar-91	19000	5.6	590					5.65	3.32	204.3	15/58	85.49	123.4	9650		213	220	17507	71.53	442	32995	46.35
109	13-Mar-91	19200	9.0	640	400	13	3	341	8.64	199	226.5	16200	85.08	136.9	9786	0.008	236	229	17736	71.16	463	33458	45.60
111	27-Mar-91	19100	4.5	564		<u> </u>			10.04	1.66	253.3	16453	84.85	153.0	9939		264	256	17992	70.74	518	33976	44.75
112	03-Apr-91	19400	4.2	515					11.44	1.34	280.1	16733	84.59	169.2	10109		292	282	18274	70.29	572	34548	43.82
113	10-Apr-91	19100	4.2	640					12.84	1.01	306.9	17040	84.31	185.4	10294	0.000	320	308	18582	69.79	627	301/4	42.81
	17-Apr-91	19600	4.1	720	485	21		492	14.24	0.68	333.7	17374	84.00	201.6	10496	0.002	348	334	19253	68,69	690	36545	40.58
115	24-APT-91	19200	3./ 3.8	892	<u> </u>	 			19.08	0.67	344.6	18057	83.37	208.1	10909		359	341	19593	68.14	699	37244	39.44
117	08-May-91	19100	3.6	875		1			21.50	0.67	350.0	18407	83.05	211.4	11120		365	344	19937	67.58	708	37951	38.29
118	15-May-91	19200	3.5	870	520	36	1	535	23.92	0.66	355.4	18763	82.72	214.7	11335	0.002	370	347	20284	67.02	717	38668	37.13
119	22-May-91	19600	3.4	820					33.95	0.50	380.3	19143	82.37	229.7	11564		396	363	20647	65.81	800	40226	34,59
120	29-May-91	19000	3.3	1100	 				43.99	0.33	400.2	19948	81.60	259.8	12069		448	394	21419	65.17	842	41068	33.22
122	12hn.91	18700	2.9	1300	620	99	0	703	64.06	0.00	454.9	20433	81.18	274.8	12344	0.000	474	410	21829	64.51	884	41952	31.79
123	19-Jun-91	18900	2.9	1410					58.97	0.00	476.6	20910	80.75	287.9	12632		496	437	22266	63.79	934	42886	30.27
124	26-Jun-91	18400	2.9	1350					53.87	0.00	498.3	21408	80.29	301.0	12933		519	465	22732	63.04	984	43870	28.67
125	03-Jul-91	14800	2.8	1800	CEA.	1/0		1463	48.78	0.00	520.0	21928	79.81	314.1	13247	0.000	042 664	493	23/24	61.39	1085	45989	25.22
126	10-JU-91	10/00	27	2510	000	118	<u> </u>	1403	47.64	0.00	597.1	23067	78.76	360.7	13935	0.000	622	574	24319	60.46	1196	47186	23.28
128	24-34-91	18000	2.4	3550					51.58	0.00	652.5	23719	78.16	394.2	14329		680	628	24947	59.44	1308	48493	21.15
129	31-Jul-91	18800	2.5	3020					55.53	0.00	707.9	24427	77.51	427.7	14757		737	682	25629	58.33	1419	49913	18.84
130	07-Aug-91	19100	2.5	2640	740	90	0	1155	59.48	0.00	763.3	25191	76.80	461.1	15218	0.000	795	135	20300	56.04	1382	52825	14.11
131	14-AUQ-91	19400	2.5	2260	[1	1		40.ZU	V.UU	000.3	200/0	10.17	714.0	10002		1.17		21000	¥¥.¥7			

	·	Dissolve	d Meta	s*:						<u>Metai Le</u>	ach Rate	.				· · ·		Cumula	tive Meta	al Leach I	(ates:				
		Antimony	Arsenic	Copper	Iron	Lead	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	Iron	Lead	Manganese	Silver	Zinc	Antimony	Arsenic	Соррег	Iron	Leed	Manganese	Silver	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
132	21-Aug-91														<u> </u>			2.1E-01	2.4E-01	6.9E+00	2.9E+02	1.6E-01	1.9E+02	4.2E-02	3.0E+01
133	28-Aug-91																	2.1E-01	2.5E-01	7.3E+00	3.2E+02	1.6E-01	1.9E+02	4.3E-02	3.0E+01
134	4-Sep-91		0.15	2.4	285		15	0.004	1.3		4.2E-02	6.6E-01	7.9E+01		4.2E+00	1.1E-03	3.6E-01	2.1E-01	2.9E-01	7.9E+00	4.0E+02	1.6E-01	2.0E+02	4.4E-02	3.0E+01
135	11-Sep-91			ļ											 	1		2.1E-01	3.0E-01	8.2E+00	4.36+02	1.65-01	2.0E+02	4.5E-02	3.1E+01
137	25-Sep-91																	2.2E-01	3.2E-01	8.7E+00	4.9E+02	1.7E-01	2.0E+02	4.6E-02	3.2E+01
138	2-Oct-9		0.003	0.66	50		4.9	0.003	1.6		2.0E-03	3.9E-01	3.3E+01		3.3E+00	2.0E-03	1.1E+00	2.2E-01	3.2E-01	9.1E+00	5.2E+02	1.7E-01	2.0E+02	4.8E-02	3.3E+01
139	9-Oct-91												· · · · · · · · · · · · · · · · · · ·					2.2E-01	3.2E-01	9.2E+00	5.3E+02	1.7E-01	2.1E+02	4.9E-02	3.3E+01
140	16-Oct-91											ļ				ļ		2.2E-01	3.3E-01	9.3E+00	5.4E+02	1.7E-01	2.1E+02	4.9E-02	3.3E+01
142	23-0ct-91 30-0ct-91	1							1									2.2E-01	3.3E-01	9.6E+00	5.6E+02	1.8E-01	2.1E+02	5.1E-02	3.4E+01
143	6-Nov-91		0.002	0.41	26		3.4	0.002	1		1.3E-03	2.7E-01	1.7E+01		2.2E+00	1.3E-03	6.6E-01	2.2E-01	3.3E-01	9.9E+00	5.8E+02	1.8E-01	2.1E+02	5.2E-02	3.5E+01
144	13-Nov-91			0 														2.3E 01	3.3E-01	1.0E+01	5.8E+02	1.8E-01	2.1E+02	5.3E-02	3.5E+01
145	20-Nov-91											L						2.3E-01	3.3E-01	1.0E+01	5.9E+02	1.8E-01	2.1E+02	5.3E-02	3.5E+01
140	4-Dec-91		IO.001	0.37	20		3.1	0.001	0.94		6.6E-04	2.4E-01	1.3E+01		2 0E+00	6.6E-04	6.2E-01	2.3E-01	3.3E-01	1.1E+01	6.1E+02	1.9E-01	2.2E+02	5.4E-02	3.6E+01
148	11-Dec-91) I													(2.3E.01	3.3E-01	1.1E+01	6 7F+02	19F_01	2 2E+02	5 5F-02	37F+01
149	18-Dec-91																	2.3E-01	3.3E-01	1.1E+01	6.2E+02	1.9E-01	2.2E+02	5.5E-02	3.7E+01
150	25-Dec-91		0.001	0.2	92	ļ	10	0.001	0.60		6 85-04	1 4E-01	5 7E+00		1 35+00	6 8E-04	4 7E-01	2.3E-01	3.3E-01	1.1E+01	6.3E+02	1.9E-01	2.2E+02	5.5E-02	3.8E+01
151	8-Jan-92		0.001	<u>v.2</u>	0.3		1.9	0.001	0.05		0.02-04	1.46-01	2.12.00		1.02-00	0.02-04		2.4E-01	3.3E-01	1.1E+01	6.4E+02	2.0E-01	2.2E+02	5.6E-02	3.8E+01
153	15-Jan-92																	2.4E-01	3.3E-01	1.1E+01	6.4E+02	2.0E-01	2.2E+02	5.7E-02	3.8E+01
154	22-Jan-92														1.15.00	0.05.01	5 15 01	2.4E-01	3.3E-01	1.1E+01	6.4E+02	2.0E-01	2.2E+02	5.7E-02	3.8E+01
155	29-Jan-92		0.001	0.22	9.5		2.1	0.001	0.77		6.6E-04	1.5E-01	6.3E+00		1.4E+00	6.6E-04	5.1E-01	2.4E-01	3.3E-01	1.1E+01	6.5E+02	2.0E-01	2.2E+02 2.2E+02	5.8E-02	3.9E+01
157	12-Feb-92							·										2.4E-01	3.3E-01	1.1E+01	6.5E+02	2.1E-01	2.2E+02	5.8E-02	3.9E+01
158	19-Feb-92																	2.4E-01	3.3E-01	1.1E+01	6.6E+02	2.1E-01	2.2E+02	5.9E-02	3.9E+01
159	26-Feb-92		0.001	0.17	4.9		1.7	0.001	0.56		6.7E-04	1.1E-01	3.3E+00		1.1E+00	6.7E-04	3.7E-01	2.5E-01	3.4E-01	1.2E+01	6.6E+02	2.1E-01	2.3E+02	5.9E-02	4.0E+01
160	4-Mar-02											1	t · ·	1		1	1	2.5E-01	3.4E-01	1.2E+01	6.6E+02	2.1E-01	2 3E+02	6.0E-02	4 0F+01
162	18-Mar-92				[]													2.5E-01	3.4E-01	1.2E+01	6.6E+02	2.2E-01	2.3E+02	6.0E-02	4.0E+01
163	25-Mar-92		0.001	0.18	4.9		2.1	0.001	0.65		6.9E-04	1.2E-01	3.4E+00		1.4E+00	6.9E-04	4.5E-01	2.5E-01	3.4E-01	1.2E+01	6.7E+02	2.2E-01	2.3E+02	6.1E-02	4.1E+01
164	1-Apr-92																	2.5E-01	3.4E-01	1.2E+01	6.7E+02	2.2E-01	2.3E+02	6.1E-02	4.1E+01
165	8 Apr 92										9							2.52-01	3.4E-01	1.20+01	6.7E+02	2.2E-01	2.30+02	6.2E-02	4.1E+01
165	22-Apr-92		0.001	0.16	3.2		2	0.001	0.52		6.6E-04	1.1E-01	2.1E+00		1.3E+00	6.6E-04	3.5E-01	2.6E-01	3.4E-01	1.2E+01	6.7E+02	2.3E-01	2.3E+02	6.3E-02	4.2E+01
168	29-Apr-92																	2.6E-01	3.4E-01	1.2E+01	6.7E+02	2.3E-01	2.3E+02	6.3E-02	4.2E+01
169	6-May-92				·													2.6E-01	3.4E-01	1.2E+01	6.8E+02	2.3E-01	2.3E+02	6.3E-02	4.2E+01
170	13-May-92 20 May 92		0.002	0 17	25		10	0.001	0.46		1 35-03	1 15-01	1.65+00		1 2E+00	6.5E-04	3.0E-01	2.6E-01	3.4E-01	1.2C+01	6.8E+02	2.3E-01	2.3E+02	6.4E-02	4.3E+01
172	27-May-92		0.001	0.11	2.0		1.9	0.001	0.40		1.02 00	1.12.01			1			2.6E-01	3.4E-01	1.3E+01	6.8E+02	2.4E-01	2.4E+02	6.5E-02	4.3E+01
173	3-Jun-92																	2.6E-01	3.4E-01	1.3E+01	6.8E+02	2.4E-01	2.4E+02	6.5E-02	4.3E+01
174	10-Jun-92		0.004	0.40				0.004	0.55		0.05.04	4 45 64	4.55.00		4.65.00	6 05 04	2.05.04	2.7E-01	3.4E-01	1.3E+01	6.8E+02	2.4E-01	2.4E+02	6.5E-02	4.3E+01
1/5	24- Jun-92		0.001	0.10	2.2		4.4	0.001	0.55		0.95-04	1.10-01	1.56700		1.36700	0.95-04	3.00-01	2.7E-01	3.4E-01	1.3E+01	6.8E+02	2.4E-01	2.4E+02	6.6E-02	4.4E+01
177	1-Jul-92								· · · · ·									2.71E-01	3.4E-01	1.3E+01	6.8E+02	2.5E-01	2.4E+02	6.7E-02	4.4E+01
178	6-Jul-92										0.05.00	0.05.05					0.05.04	2.7E-01	3.4E-01	1.3E+01	6.8E+02	2.5E-01	2.4E+02	6.7E-02	4.4E+01
179	15-Jul-92		0.001	0.1	0.93		1.4	0.001	0.34		0.6E-04	0.0E-02	0.1E-U1		9.2E-01	0.05-04	2.2E-01	2.7E-01	3.5E-01	1.3E+01	6.8E+02	2.5E-01	2.4E+02	6.8E-02	4.4E+01
181	29-Jul-92																	2.7E-01	3.5E-01	1.3E+01	6.8E+02	2.5E-01	2.4E+02	6.8E-02	4.4E+01
182	5-Aug-92																	2.8E-01	3.5E-01	1.3E+01	6.8E+02	2.6E-01	2.4E+02	6.9E-02	4.5E+01
183	12-Aug-92		0.001	0.18	1.4		2	0.001	0.51		6.7E-04	1.2E-01	9.4E-01		1.3E+00	6.7E-04	3.4E-01	2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.6E-01	2.5E+02	6.9E-02	4.5E+01
184 185	19-Aug-92 26-Aug-92				/													2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.6E-01	2.5E+02 2.5E+02	7.0E-02	4.5E+01
186	2-Sep-92					L I												2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.6E-01	2.5E+02	7.0E-02	4.5E+01
187	9-Sep-92		0.001	0.12	0.67		1.1	0.001	0.35		6.4E-04	7.7E-02	4.3E-01		7.0E-01	6.4E-04	2.2E-01	2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.7E-01	2.5E+02	7.1E-02	4.6E+01
188	16-Sep-92]																2.8E-01	3.5E-01	1.3E+01	6.9E+02	2.7E-01	2.5E+02	1.1E-02	4.6E+01
189	23-Sep-92 30-Sen-02																	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.7E-01	2.5E+02	7.2E-02	4.6E+01
191	7-Oct-92		0.001	0.17	0.45		1.1	0.001	0.27		6.6E-04	1.1E-01	3.0E-01		7.3E-01	6.6E-04	1.8E-01	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.7E-01	2.5E+02	7.3E-02	4.6E+01
192	14-Oct-92																	2.9E-01	3.5E-01	1.4E+U1	6.9E+02	2.8E-01	2.5E+02	7.3E-02	4.6E+01
193	21-Oct 92						<u> </u>		<u> </u>		······			 				2 0F-01	3.5E-01	145-01	6.9E+02	2.86-01	2.5E+02	7.3E-02	4.6E+01
195	4-Nov-92		0.001	0.17	0.52		0.89	0.001	0.21		6.7E-04	1.1E-01	3.5E-01		6.0E-01	6.7E-04	1.4E-01	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.8E-01	2.5E+02	7.4E-02	4.6E+01
196	11-Nov-92																	2.9E-01	3.5E-01	1.4E+01	6.9E+02	2.8E-01	2.5E+02	7.5E-02	4.7E+01
107	12 Nov 02																	3 0F-01	3 5E-01	14E+01	69E+02	29E-01	2.5F+02	7 5E-02	4 7E+01

ŝį

Samatosum Mine Humidity Cell Data - Column 1 (Blend Control)

			1	1	I											I							
		Analytical	Results:		t						Sulphate I	Production:				Molar	NP Consume	tion;					
														By Surface	Area:	Ratio:	Theoretical	Empirical		Remaining	Theoretical		Remaining
									Acidity	Alkalinity	SO4	Cumulative	Remaining	S04	Cumulative		NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekly		1	Acidity	Alkalinity	Subhate	Production	Production	Production	S04	S	Production	SO4	Ak	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Week No.	Date	Recovered	pH	Conductivity	Eh	(CaCO3	(CeCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	/SO4	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
		(mL)	(pH units)	(umhos/cm)	(mV)	mgA.)"	mgA.)*	mg/L)*	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg/wk)"	(mgAcg)	original)	(mg/m2/wk)**	(mg/m2)		(mgAcgAvik)	(mg/kg/wk)	(mg/kg/wk)	(%)	(mg/kg/wil)	(mg/kg/wk)	(%)
198	25-Nov-92	19400	3.15	380					8.09	0.00	70.8	39898	63.26	42.7	24102		74	66	39978	34.99	139	80377	-30.69
199	02-Dec-92	19000	2.99	388	650	13	0	103	8.55	0.00	67.7	39965	63.20	40.9	24143	0.000	71	62	40040	34.89	133	80509	-30.91
200	09-Dec-92	19000	2.9	410					7.75	0.00	68.2	40034	63.14	41.2	24184		71	63	40104	34.79	134	80644	-31.13
201	16-Dec-92	19600	3.11	342					6.96	0.00	68.8	40102	63.07	41.5	24226		72	65	40168	34.69	136	80780	-31.35
202	23-Dec-92	19100	3.03	362					6.16	0.00	69.3	40172	63.01	41.9	24268		72	66	40234	34.58	138	80918	-31.57
203	30-Dec-92	19400	3.34	367	650	8	0	104	5.37	0.00	69.8	40241	62.95	42.2	24310	0.000	73	67	40302	34.47	140	81058	-31.80
204	06-Jan-93	19000	3.17	290	1				5.11	0.00	67.2	40309	62.88	40.6	24351		70	65	40367	34.36	135	81193	-32.02
205	13-Jan-93	19000	3.04	345					4.85	0.00	64.5	40373	62.82	39.0	24390		67	62	40429	34.26	130	81323	-32.23
206	20-Jan-93	19000	2.9	362					4.59	0.00	61.9	40435	62.77	37.4	24427		64	60	40489	34.16	124	81447	-32.43
207	27-Jan-93	12500	2.87	432	660	10	0	137	4.33	0.00	59.3	40494	62.71	35.8	24463	0.000	62	57	40546	34.07	119	81566	-32.63
208	03-Feb-93	19100	2.89	372	<u> </u>				4.89	0.00	63.5	40558	62.65	38.4	24501		66	61	40608	33.97	127	81694	-32.84
209	10-Feb-93	19000	2.85	380					5.45	0.00	67.8	40626	62.59	40.9	24542		71	65	40673	33.87	136	81829	-33.06
210	17-Feb-93	19200	2.87	372					6.01	0.00	72.0	40698	62.53	43.5	24586		75	69	40742	33.75	144	81973	-33.29
211	24-Feb-93	19000	2.93	360	640	10	0	116	6.57	0.00	76.3	40774	62.46	46.1	24632	0.000	79	73	40815	33.63	152	82126	-33.54
212	03-Mar-93	19000	2.85	340					6.57	0.00	76.3	40850	62.38	46.1	24678		79	73	40887	33.52	152	82278	-33.79
213	10-Mar-93	19000	3.06	336					6.57	0.00	76.3	40926	62.31	46.1	24724		79	73	40960	33.40	152	82430	-34.03
214	17-Mar-93	18600	2.95	345					6.57	0.00	76.3	41003	62.24	46.1	24770	· .	79	73	41033	33.28	152	82583	-34.28
		00000	0.30	1507				4630	70.10														
Maximum		_20000	8.20	3726	740	118	45.0	1030	/2.12	28.18	/63.3	41003	99.75	461.1	24770	0.174	795	736	41033	99.51	1531	82583	99.10
Winimum	l	4900	2.20	215	210	1	0.0	103	0.66	0.00	59.3	266	62.24	35.8	161	0.000	62	57	302	33.28	119	551	-34.28
Mean		10049	5.05	708	493	19.5	10.4	313	13.21	5.40	190.7	20133	81.46	115.2	12163	0.048	199	191	20917	6'3.99	384	46944	33.42
Median	Maaka	19100	5.05	512	490	3.3	0.5	240	4.03	3.02	155.0	10003	85.68	94.0	9396	0.025	162	158	17077	72.23	310	32133	47.75
Mean Last	VVEERS	10175	2.91	307	050	NV.	0.0	127	3.8/	0.00	/0.9	40741	62.49	42.9	24012	0.000	/4	68	40/83	33.69	142	82060	-33.43
75% Remai	ning (Mrs)												174										
50% Remai	ning (Wks)												134							90			52
OFN Demo													401							139			104
2076 Remain	IIII (VVKS)												1165				(289			127
v % rtemain	IN (AAK2)					<u> </u>				1			1103							910			140
			a di au dada a		nd/or of			unilable d	de une inte	mainted from	m oviction di	te endured		nt equation									
		i measu	eu suipne	ie, astainny i	INVOT BO	auny value	s were una		ala was inte	pointed tro	ແຂະຈາຍເມື່ອ		III subsequ) .								
ļļ				ļ		ļ																	

Samatosum Mine Humidity Cell Data -Column 1 (Blend Control)

					<u> </u>	<u> </u>	1							ľ		I	1	1			1	T			
	1	Dissolve	d Meta	ls*:				-		Metal Le	ach Rate							Cumula	tive Meta	l Leach I	Rates:			······	
				<u> </u>								· · · ·				<u> </u>				1 · · · · · ·	1				
		Antimony	Arsenic	Copper	Iren	Lead	Manganese	Silver	Zinc	Antimony	Arsenic	Соррег	tron	Load	Manganese	Silver	Zinc	Artimony	Arsenic	Copper	Iron	Leed	Manganese	Silver	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
		(mgA.)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mgA.)	(mg/L)	(mg/L)	(mg/kg/wk)	(mg/kg/wk)	(mgAqAvik)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mgAkg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
198	25-Nov-92																	3.0E-01	3.5E-01	1.4E+01	6.9E+02	2.9E-01	2.5E+02	7.5E-02	4.7E+01
199	2-Dec-92		0.001	0.13	0.46		0.7	0.001	0.21	·	6.6E-04	8.5E-02	3.0E-01		4.6E-01	6.6E-04	1.4E-01	3.0E-01	3.5E-01	1.4E+01	6.9E+02	2.9E-01	2.5E+02	7.6E-02	4.7E+01
200	9-Dec-92			L													L	3.0E-01	3.5E-01	1.4E+01	6.9E+02	2.9E-01	2.5E+02	7.6E-02	4.7E+01
201	16-Dec-92																	3.0E-01	3.5E-01	1.4E+01	6.9E+02	2.9E-01	2.5E+02	7.7E-02	4.7E+01
202	23-Dec-92																	3.0E-01	3.5E-01	1.4E+01	6.9E+02	3.0E-01	2.5E+02	7.7E-02	4.7E+01
203	30-Dec-92		0.001	0.05	0.41		0.84	0.001	0.2		6.7E-04	3.4E-02	2.8E-01		5.6E-01	6.7E-04	1.3E-01	3.0E-01	3.6E-01	1.4E+01	6.9E+02	3.0E-01	2.5E+02	7.8E-02	4.7E+01
204	6-Jan-93																	3.1E-01	3.6E-01	1.4E+01	6.9E+02	3.0E-01	2.5E+02	7.8E-02	4.7E+01
205	13-Jan-93																l	3.1E-01	3.6E-01	1.4E+01	6.9E+02	3.0E-01	2.5E+02	7.8E-02	4.7E+01
206	20-Jan-93																	3.1E-01	3.6E-01	1.4E+01	6.9E+02	3.0E-01	2.5E+02	7.8E-02	4.7E+01
207	27-Jan-93		0.001	0.15	0.61		1	0.001	0.29		4.3E-04	6.5E-02	2.6E-01		4.3E-01	4.3E-04	1.3E-01	3.1E-01	3.6E-01	1.4E+01	6.9E+02	3.1E-01	2.5E+02	7.9E-02	4.7E+01
208	3-Feb-93																	3.1E-01	3.6E-01	1.4E+01	6.9E+02	3.1E-01	2.6E+02	7.9E-02	4.8E+01
209	10-Feb-93																	3.1E-01	3.6E-01	1.4E+01	6.9E+02	3.1E-01	2.6E+02	7.9E-02	4.8E+01
210	17-Feb-93																	3.1E-01	3.6E-01	1.5E+01	6.9E+02	3.1E-01	2.6E+02	8.0E-02	4.8E+01
211	24-Feb-93		0.001	0.05	0.32		0.79	0.001	0.44		6.6E-04	3.3E-02	2.1E-01		5.2E-01	6.6E-04	2.9E-01	3.1E-01	3.6E-01	1.5E+01	6.9E+02	3.1E-01	2.6E+02	8.0E-02	4.8E+01
212	3-Mar-93																	3.2E-01	3.6E-01	1.5E+01	6.9E+02	3.2E-01	2.6E+02	8.1E-02	4.8E+01
213	10-Mar-93																	3.2E-01	3.6E-01	1.5E+01	6.9E+02	3.2E-01	2.6E+02	8.2E-02	4.9E+01
214	17-Mar-93																	3.2E-01	3.6E-01	1.5E+01	6.9E+02	3.2E-01	2.6E+02	8.2E-02	4.9E+01
Maximum		0.023	0.15	2.4	285	0.004	17	0.004	6.3	1.4E-02	4.2E-02	6.6E-01	7.9E+01	2.6E-03	6.3E+00	2.7E-03	2.3E+00	3.2E-01	3.6E-01	1.5E+01	6.9E+02	3.2E-01	2.6E+02	8.2E-02	4.9E+01
Minimum		0.002	0.001	0.0005	0.01	0.001	0.7	2E-04	0.04	1.3E-03	4.3E-04	3.3E-04	2.8E-03	5.5E-04	4.3E-01	1.1E-04	2.7E-02	1.4E-02	7.5E-03	4.4E-03	6.3E-03	6.3E-04	8.9E-01	1.3E-04	5.6E-02
Mean		0.005	0.006	0 1944	11 04	0.001	37	0.0009	0.59	3 2E-03	2 8E-03	1.0E-01	4 9E+00	8.6E-04	2 2E+00	5 8E-04	3-5E-01	1.8E-01	2 3E-01	5 2E+00	2.5E+02	1.2E-01	1.3E+02	3.5E-02	1.9E+01
Median		0.004	0.001	0.0410	0.019	0.001	26	0.0010	0.32	2 6F-03	67F-04	27E-02	1.2E-02	6.6E-04	1.7E+00	6 6E-04	2 0E-01	1.8E-01	1.9E-01	6.1E-01	4.5E-01	1.1E-01	1.1E+02	3.2E-02	8.5E+00
Meanlast	8 Weeks		0.001	0 1000	0.465	0.001	0.9	0.0010	0.37		5 4F-04	4 9F-02	2 4F-01		4 8F-01	54E-04	2 1E-01	3 1F-01	3 6F-01	1.5F+01	6 9E+02	3 1E-01	2 6E+02	8 0E-02	4 8E+01
			3.001		5.400		0.0		0.07																
75% Rema	ining (Mirs)														·										
50% Rema	ining (Wks)																								
25% Rema	ining (Wks)				· · ·								· · · · · · · · · · · · · · · · · · ·												
0% Remain	ning (Wks)												-												
																				·		·			

×

Samatosum Mine Humidity Cell Data -Column 1 (Blend Control)

		Dissolve	d Mota	la*•						Motal La	ach Rate	e'						Cumula	j tive Net	lieachi	lates.				
		01000111							<u> </u>	motal Eo		<u> </u>						<u>o antara</u>				1			
Mar ale Mar	Data	Antimony	Arsenic	Copper	Iron	Leed	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	Iron	Load	Manganese	Silver	Zinc	Antimorry	Arsenic	Copper	Iron	Leed	Manganese	Silver	Zinc
Week NO.	Uate	U-SD (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	D-SD (mg/kg/wk)	(mphghak)	(mg/kg/wk)	(mg/sg/wk)	(mg/kg/wk)	(mg/kg/wk)	U-Ag (mg/sg/wk)	(mg/kg/wk)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
																						2.45.00	6.05.00	4.05.00	
67	16-May-90 23-May-90	0.002	0.002	5E-04	0.01	0.001		0.004	0.04	1.3E-03	1.3E-03	3.3E-04	3.3E-03	0.02-04		2.7E-03	2.7E-02	1.2E-01 1.3E-01	1.7E-01	3.5E-01	2.2E-011	3.1E-021	6.1E+01	1.3E-02	2.1E+00
68	30-May-90																	1.3E-01	1.7E-01	3.5E-01	2.2E-01	3.3E-02	6.2E+01	1.5E-02	2.1E+00
69	6-Jun-90	0.000			0.04	0.004	4.95	0.000		105.00	0.05.04	0.45.00	4.05.00	0.05.00	0.05.04	0.05.04		1.3E-01	1.7E-01	3.6E-01	2.2E-01	3.4E-02	6.2E+01	1.6E-02	2.1E+00
71	20-Jun-90	0.002	0.001	0.004	0.01	0.004	1.35	0.001	0.08	1.36-03	0.02-04	2.42-03	4.0E-U3	2.0E-U3	0.92-01	0.02-04	5.3E-02	1.3E-01	1.7E-01	3.6E-01	2.3E-01	3.7E-02	6.4E+01	1.7E-02	2.2E+00
72	27-Jun-90																	1.3E-01	1.7E-01	3.6E-01	2.4E-01	3.9E-02	6.4E+01	1.7E-02	2.2E+00
73	4-Jul-90		0.001	0.014	0.02	0.002	1.94	0.004	0.45	<u> </u>	E EE OA	0.45.02	0.05.02	2.05.02	1.05.00	C CE OA	0.05.02	1.3E-01	1.7E-01	3.7E-01	2.4E-01	4.0E-02	6.5E+01	1.7E-02	2.3E+00
75	18-Jul-90		0.001	0.014	0.02	0.003	1.04	0.001	0.15		0.02-04	9.4E-03	9.92-03	2.00-03	1.20700	0.02-04	9.92-02	1.3E-01	1.7E-01	3.8E-01	2.5E-01	4.4E-02	6.7E+01	1.8E-02	2.4E+00
76	25-Jul-90																	1.4E-01	1.7E-01	3.8E-01	2.6E-01	4.6E-02	6.8E+01	1.9E-02	2.5E+00
77	1-Aug-90		0.002	0.002	0.01		2 02	0.001	0.21		1 25 02	1 65 02	205.02		255400	E EE MA	145-01	1.4E-01	1.7E-01	3.8E-01	2.6E-01	4.8E-02	6.9E+01	1.9E-02	2.6E+00
79	15-Aug-90		0.002	0.002	0.01		3.62	0.001	0.21		1.35-03	1.02-03	3.90-03		2.56 100	0.02-04	1.46-01	1.4E-01	1.7E-01	3.9E-01	2.7E-01	5.2E-02	7.3E+01	2.0E-02	2.8E+00
80	22-Aug-90																	1.4E-01	1.7E-01	4.0E-01	2.7E-01	5.4E-02	7.4E+01	2.0E-02	2.9E+00
81	29-Aug-90 5-Sen-90		0.001	0.03	0.01		32	0.001	0.34		67E-04	2 0E-02	87E-03		2 1E+00	67E-04	235-01	1.4E-01	1.7E-01	4.0E-01	2.7E-01	5.6E-02	7.5E+01 7.7E+01	2.1E-02 2.1E-02	3.0E+00 3.2E+00
83	12-Sep-90		0.001	0.00	0.01		0.2	0.001	0.04		0.12-04	2.02.02	0.72-00		2.12.00	0.72-04	2.02.01	1.5E-01	1.8E-01	4.3E-01	2.9E-01	5.9E-02	7.8E+01	2.2E-02	3.3E+00
84	19-Sep-90																	1.5E-01	1.8E-01	4.4E-01	2.9E-01	6.1E-02	8.0E+01	2.2E-02	3.5E+00
86	20-Sep-90 3-Oct-90		0.001	0.03	0.01		4.3	0.001	0.48		6.6E-04	2.0E-02	3.3E-03		2.8E+00	6.6E-04	3.2E-01	1.5E-01	1.8E-01	4.5E-01	3.0E-01	6.5E-02	8.4E+01	2.2E-02 2.3E-02	3.9E+00
87	10-Oct-90																	1.5E-01	1.8E-01	4.8E-01	3.0E-01	6.7E-02	8.5E+01	2.3E-02	4.1E+00
88	17-Oct-90																	1.5E-01	1.8E-01	4.8E-01	3.0E-01	6.9E-02	8.6E+01	2.4E-02	4.2E+00
90	31-Oct-90		0.001	0.007	0.02		3.6	0.001	0.37		6.6E-04	4.5E-03	1.0E-02		2.4E+00	6.6E-04	2.5E-01	1.5E-01	1.8E-01	4.9E-01	3.1E-01	7.3E-02	9.0E+01	2.5E-02	4.6E+00
91	7-Nov-90																	1.6E-01	1.8E-01	5.0E-01	3.2E-01	7.5E-02	9.1E+01	2.5E-02	4.7E+00
92	14-Nov-90								 									1.6E-01	1.8E-01	5.0E-01	3.3E-01	7.7E-02	9.2E+01	2.5E-02	4.9E+00
94	28-Nov-90		0.001	0.009	0.02		3.4	0.001	0.46		6.7E-04	5.7E-03	1.2E-02		2.3E+00	6.7E-04	3.1E-01	1.6E-01	1.8E-01	5.1E-01	3.4E-01	8.1E-02	9.6E+01	2.6E-02	5.3E+00
95	5-Dec-90																	1.6E-01	1.8E-01	5.1E-01	3.5E-01	8.3E-02	9.7E+01	2.7E-02	5.5E+00
96	12-Dec-90 19-Dec-90										·							1.6E-01	1.8E-01	5.2E-01	3.6E-01 3.7E-01	8.7E-02	9.8E+01 9.9E+01	2.7E-02 2.7E-02	5.6E+00
98	26-Dec-90		0.001	0.008	0.03		2.9	0.001	0.52		6.7E-04	5.2E-03	2.1E-02		1.9E+00	6.7E-04	3.5E-01	1.7E-01	1.8E-01	5.2E-01	3.9E-01	8.9E-02	1.0E+02	2.8E-02	6.2E+00
99	2-Jan-91 9- Jan-91																· · · · · · · · · · · · · · · · · · ·	1.7E-01	1.8E-01	5.2E-01	4.0E-01	9.1E-02 9.3E-02	1.0E+02	2.8E-02 2.9E-02	6.3E+00
101	16-Jan-91																	1.7E-01	1.8E-01	5.3E-01	4.1E-01	9.5E-02	1.0E+02	2.9E-02	6.7E+00
102	23-Jan-91		0.001	0.006	0.01		3	0.001	0.5		6.7E-04	3.7E-03	6.7E-03		2.0E+00	6.7E-04	3.3E-01	1.7E-01	1.8E-01	5.3E-01	4.2E-01	9.7E-02	1.1E+02	3.0E-02	7.0E+00
103	6-Feb-91																	1.7E-01	1.8E-01	5.4E-01	4.3E-01	1.0E-01	1.1E+02	3.0E-02	7.4E+00
105	13-Feb-91																	1.7E-01	1.8E-01	5.5E-01	4.3E-01	1.0E-01	1.1E+02	3.1E-02	7.7E+00
106	20-Feb-91 27-Eeb-91		0.001	0.032	0.02		4	0.001	0.81		6.6E-04	2.1E-02	1.3E-02		2.7E+00	6.6E-04	5.4E-01	1.8E-01	1.9E-01	5.7E-01 6.1E-01	4.4E-01	1.1E-01	1.1E+02 1.1E+02	3.1E-02 3.2E-02	8.2E+00 8.5E+00
190	C 1/107 01		0.001	0.21	0.02		5.1	0.001	1.2		6.6E-04	1.4E-01	-1.6E-02		3.4E+00	6.6E-04	8.0E-01	1.65 01	1.0E 01	O.SE OI	1.0E 01	1.1E 01	1.20 .02	9.2E 02	8.0C .00
109	13-Mar-91 20-Mar-91																	1.8E-01	1.9E-01	6.9E-01	4.6E-01	1.1E-01 1.1E-01	1.2E+02	3.2E-02 3.3E-02	9.2E+00
m	27-Mar-91																	1.8E-01	1.9E-01	9.4E-01	5.0E-01	1.1E-01	1.2E+02	3.3E-02	1.00-01
112	3-Apr-91																	1.8E-01	1.9E-01	1.1E+00	5.2E-01	1.2E-01	1.2E+02	3.4E-02	1.1E+01
114	17-Apr-91		0.001	0.44	0.08		6.5	0.001	1.53		6.8E-04	3.0E-01	5.4E-02		4.4E+00	6.8E-04	1.0E+00	1.9E-01	1.9E-01	1.5E+00	5.9E-01	1.2E-01	1.3E+02	3.5E-02	1.2E+01
115	24-Apr-91																	1.9E-01	1.9E-01	1.6E+00	7.1E-01	1.2E-01	1.3E+02	3.5E-02	1.3E+01
116	1-May-91																	1.9E-01	1.9E-01	1.8E+00	8.3E-01	1.2E-01	1.3E+02	3.5E-02	1.3E+01
118	15-May-91		0.001	0.57	0.66		7.4	0.001	1.6		6.6E-04	3.8E-01	4.4E-01		4.9E+00	6.6E-04	1.1E+00	1.9E-01	1.9E-01	2.3E+00	1.4E+00	1.3E-01	1.4E+02	3.6E-02	1.5E+01
119	22-May-91																	1.9E-01	1.9E-01	2.6E+00	3.4E+00	1.3E-01	1.4E+02	3.7E-02	1.6E+01
120	29-May-91																	1.9E-01 2.0F-01	1.9E-01	2.8E+00 3.0E+00	5.5E+00	1.3E-01	1.5E+02 1.5E+02	3.7E-02	1.6E+01 1.7E+01
122	12-Jun-91		0.001	0.72	12		8.3	0.001	2		6.5E-04	4.7E-01	7.8E+00		5.4E+00	6.5E-04	1.3E+00	2.0E-01	1.9E-01	3.4E+00	1.5E+01	1.4E-01	1.6E+02	3.8E-02	1.8E+01
123	19-Jun-91																	2.0E-01	1.9E-01	3.7E+00	2.5E+01	1.4E-01	1.6E+02	3.8E-02	1.9E+01
124	20-JUN-91 3-JUL-91	 																2.0E-01 2.0E-01	1.9E-01	4.0E+00	3.4E+01	1.4E-01	1.6E+02	3.9E-02	2.0E+01 2.1E+01
126	10-Jul-91		0.007	1.5	81		17	0.002	6.3		2.6E-03	5.6E-01	3.0E+01		6.3E+00	7.4E-04	2.3E+00	2.0E-01	2.0E-01	4.8E+00	7.4E+01	1.4E-01	1.7E+02	4.0E-02	2.3E+01
127	17-Jul-91]]													2.0E-01	2.0E-01	5.1E+00	9.8E+01	1.5E-01	1.7E+02	4.0E-02	2.4E+01
129	31-Jul-91																	2.1E-01	2.0E-01	5.7E+00	1.5E+02	1.5E-01	1.8E+02	4.1E-02	2.6E+01
130	7-Aug-91		0.011	0.95	102		7.8	0.001	3		7.3E-03	6.3E-01	6.7E+01		5.2E+00	6.6E-04	2.0E+00	2.1E-01	2.1E-01	6.3E+00	2.1E+02	1.5E-01	1.8E+02	4.1E-02	2.8E+01
131	19-AU0-91				1													2.10-011	2.2C-U11	D.DETUUI	2.0ETUZI	1.0E-U1	1.801021		2.9C+U11

Sulphate vs Conductivity

B2. Column 2

.

re-Test ABA & ICP Metals Data amatosum Mine solumn 2 (Encapsulated 3 Layers)	1	Post-Test ABA & ICP Metals Data amatosum Mine :olumn 2 (Encapsulated 3 Layers)	
titial Sample Weight (dry) (g)	46160	inal Sample Weight (dry) (g)	
BA Results: Slurry pH K S (Total) K S (Sulphate) K S (Sulphide) K S (Bas04)	6.4 2.44	BA Results: Paste pH % S (Total) % S (Sulphate) % S (Sulphide) % S (Sulphide)	
TAP (tonne CaCO3/ktonne) SAP (tonne CaCO3/ktonne) UP (tonne CaCO3/ktonne) Carbon (%)	76 76.2	IAP (tonne CaCO3/ktonne) SAP (tonne CaCO3/ktonne) VP (tonne CaCO3/ktonne) Carbon (%)	Da No Availa
CaNP (t CaCO3/ktonne) INNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) RNNP (tonne CaCO3/ktonne)	2	CaNP (t CaCO3/ktonne) INNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) RNNP (tonne CaCO3/ktonne)	
TNPR SNPR RNPR	1.03	TNPR SNPR RNPR	
iurface Area: Surface Area (m2/kg)	1.52	iurface Area: Surface Area (m2/kg)	
AluminumAlAluminumAlAntimonySbArsenicAsBariumBaBerylliumBeBismuthBiCadmiumCdCalciumCaChromiumCrcobaltCOCoppercuIronFeLanthiumLaLeadPbLithiumLiMagnesiumMgMolybdenumMcNickelNiPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumTi	Data Not Available	fletals: (ppm)AluminumAlAntimonySbArsenicAsBariumBaBerylliumBeBismuthBiCadmiumCdCalciumCaChromiumCrCobaltCoCoppercuIronFeLanthiumLaLeadPbLithiumLiMagnesiumMgManganeseMrMercuryHgMolybdenumMcNickelNiPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumTiThalliumTi	Da Na Avail

NOTE: When **metals** were repotted as < detection limit, **half** the value of the detection **limit** is shown in italics, and was used in subsequent calculations.

L		Analytical	Results:			ļ					Sulphate	Production;		0.0.4.4	L	Molar	NP Consum	tion:		Duratala			B
<u> </u>									Acidity	Alkaliaitu	504	Currendardinan	Permisian	By Surface A	rea: Cumudathan	Kalio:	Ineoretical AIO	Empirical Once Sustem	O m ND	Remaining	Theoretical Closed Sustan	C-NP	Kemaining
<u> </u>		Leachate	Weekty			Acidity	Alkalinity	Subhate	Production	Production	Production	SO4	stementarily C	Production	SOA	AF	Consumption	NP Consumption	Consumption	0000	NP Consumption	Consumation	Closed
Week No.	Date	Recovered	pН	Conductivity	Eh	(CaCO3	(CaCO3	(\$04	Rate	Rate	Rate	Production	(% 0	Rate	Production	/SO4	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
		(mL)	(pH units)	(umhos/cm)	(mV)	mg/L)*	mg/L)'	mg/L)'	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg)	(lenigino	(mg/m2/wk)**	(mg/m2)		(mg/kg/wk)	(mgAcgAwk)	(mg/kg/wk)	(%)	(mg/kg/wk)	(mg/kg/wk)	(%)
	40.14	40000																	0760			0550	07 70
60	16-May-90	19300	8.3	314	180	1	81	102	0.42	33.87	42.0	4621	93.69	28.1	3040	0.762	44.4	77.4	6/06	91.30	88.4	9000	87.79
68	30-May-90	19200	7.6	325		<u>├</u>			0.52	32.45	43.0	4004	03.67	20.5	3000		44.7	76.9	6033	91.20	80.5	9039	87.56
69	06-Jun-90	19200	8.0	307					0.73	31.74	43.6	4751	93.51	28.7	3125		45.4	76.4	6986	91.07	90.0	9819	87.44
70	13-Jun-90	19100	7.8	314	200	2	75	106	0.83	31.03	43.9	4795	93.45	28.8	3154	0.679	45.7	75.9	7062	90.97	90.5	9909	87.33
71	20-Jun-90	19000	7.8	321					0.72	31.24	44.4	4839	93.39	29.2	3183	1	46.2	76.7	7139	90.87	91.7	10001	87.21
72	27-Jun-90	19500	8.0	328					0.62	31.45	44.9	4884	93.33	29.5	3213		46.8	77.6	7217	90.77	92.9	10094	87.09
73	04-Jul-90	19200	8.2	311					0.52	31.65	45.4	4930	93.27	29.9	3242	L	47.3	78.4	7295	90.67	94.1	10188	86.97
74	11-Jui-90	19100	8.2	323	242	1	\overline{n}	111	0.41	31.86	45.9	4976	93.20	30.2	3273	0.666	47.8	79.3	7374	90.57	95.3	10283	86.85
10	18-JUI-90	19100	8.1	307					0.41	28.03	49.1	5025	93.14	32.3	3305		51.2	/8.8	7403	90.4/	102.0	10385	80.72
77	01-400-90	19200	81	364					0.41	29.21	55.5	5133	93.00	36.5	3376		67.0	77.8	7609	90.37	115.3	10494	86.43
78	08-Aug-90	19100	82	360	240	1	40	142	0.41	16.55	58.8	5191	92.93	38.6	3415	0 270	612	77.3	7687	90.17	122.0	10731	86 28
79	15-Aug-90	19300	7.5	368	2.10				0.41	16.59	54.0	5245	92.83	35.5	3450	0.210	56.2	72.4	7759	90.08	112.1	10843	86.13
80	22-Aug-90	19100	8.0	334					0.42	16.64	49.2	5295	92.77	32.4	3483		51.3	67.5	7826	89.99	102.2	10946	86.00
81	29-Aug-90	19000	8.1	292					0.42	16.68	44.5	5339	92.71	29.3	3512		46.3	62.6	7889	89.91	92.2	11038	85.89
82	05-Sep-90	19300	8.0	264	280	1	40	95	0.42	16.72	39.7	5379	92.65	26.1	3538	0.404	41.4	57.7	7947	89.84	82.3	11120	85.78
83	12-Sep-90	19500	8.0	318			<u> </u>		0.52	16.06	41.2	5420	92.60	27.1	3565		42.9	58.4	8005	89.76	85.2	11205	85.67
85	15-Sep-90	19100	0.1 77	3/2					0.62	10.40	42.0	0463 5507	92.04	28.0	3093		44.4	59.2	8124	89.69	01.1	11294	85.44
86	03-Oct-90	19100	$\frac{7.7}{77}$	275	300	2	34	110	0.73	14.73	45.5	5552	92.40	29.0	3652	0.297	47.4	607	8185	89.53	94.0	11479	85.32
87	10-Oct-90	19200	7,7	249					0.93	13.77	43.4	5595	92.36	28.5	3680		45.2	58.0	8243	89.46	89.5	11568	85.21
88	17-Oct-90	19200	7.8	248					1.04	13.48	41.3	5637	92.30	27.1	3708		43.0	55.4	8298	89.39	84.9	11653	85.10
89	24-Oct-90	19300	7.7	230					1.14	13.19	39.1	5676	92.25	25.7	3733		40.8	52.8	8351	89.32	80.4	11734	85.00
90	31-Oct-90	19200	7.0	227	330	3	31	89	1.25	12.89	37.0	5713	92.20	24.3	3758	0.334	38.6	50.2	8401	89.26	75.9	11809	84.90
91	07-Nov-90	19400	7.1	235					1.25	12.81	36.3	5749	92.15	23.9	3782		37.8	49.4	8451	89.19	72.0	11884	84.80
03	21-Nov-90	10100	76	240					1.25	12.72	35.0	5/00	92.10	23.0	3828		36.4	47.8	8547	89.07	716	12028	84.62
94	28-Nov-90	19300	75	280	250	3	30	82	1 25	12.54	34.3	5854	92.00	22.6	3851	0 351	357	47.0	8594	89.01	70.2	12099	84.53
95	05-Dec-90	18800	7.7	328					1.15	12.10	33.5	5888	91.96	22.0	3873		34.9	45.8	8640	88.95	68.6	12167	84.44
96	12-Dec-90	19800	7.3	238					1.04	11.65	32.7	5920	91.91	21.5	3894		34.0	44.6	8685	88.89	67.0	12234	84.36
97	19-Dec-90	19200	7.5	340					0.93	11.20	31.8	5952	91.87	20.9	3915		33.2	43.4	8728	88.84	65.4	12300	84.27
98	26-Dec-90	19100	7.7	270	220	2	26	75	0.83	10.76	31.0	5983	91.83	20.4	3935	0.333	32.3	42.3	8770	88.78	63.8	12363	84.19
99	02-Jan-91	15200	6.3	322					1.04	10.67	32.1	6015	91.78	21.1	3957		33.5	43.1	8813	88.73	65.9	12429	84.11
100	09-Jan-91	19900	6.4	248					1.25	10.58	33.2	6048	91.74	21.8	3978	·	34.6	43.9	8857	88.67	67.9	12497	84.02
102	10-Jan-91	10000	7.5	205	747		26	96	1.40	10.49	34.3	6440	91.09	22.0	4001	0.282	30.1	44.1	8048	00.02	72.0	12007	82.84
102	30-Jan-91	19300	71	182	474				1.56	10.32	35.6	6154	91.59	23.5	4048	0.202	37.0	45.8	8993	88.50	72.5	12712	83 74
104	06-Feb-91	19000	7.0	242					1.46	10.24	35.7	6189	91.54	23.5	4071		37.2	46.0	9039	88.44	73.0	12785	83.65
105	13-Feb-91	19100	7.7	245					1.36	10.16	35.9	6225	91.50	23.6	4095		37.4	46.2	9086	88.38	73.5	12858	83.56
106	20-Feb-91	19400	7.6	265	350	3	24	86	1.26	10.09	36.1	6262	91.45	23.8	4119	0.268	37.6	46.5	9132	88.32	74.0	12932	83.46
107	27-Feb-91	19100	6.5	248					1.26	12.53	39.3	6301	91.39	25.9	4144		41.0	52.2	9184	88.26	80.6	13013	83.36
108	13-Mar-01	18800	0.8	242					1.25	14.97	42.5	6343	91.33	27.9	4172		44.3	58.0	9242	88.18	87.3	13100	83.25
110	20-Mar-91	19100	70	324	270	3	48	118	1.20	19.86	48.8	6438	91.21	32.1	4235	0.390	50.9	69.5	9376	88.01	100.5	13295	83.00
111	27-Mar-91	19000	7.5	278		<u> </u>			1.14	19.62	47.8	6486	91.14	31.4	4266	0.000	49.7	68.2	9444	87.92	98.4	13393	82.87
112	03-Apr-91	19400	7.7	250					1.04	19.39	46.7	6532	91.08	30.7	4297		48.6	67.0	9511	87.84	96.2	13489	82.75
113	10-Apr-91	19100	7.8	270					0.94	19.15	45.6	6578	91.01	30.0	4327		47.5	65.7	9577	87.75	94.1	13583	82.63
114	17-Apr-91	19400	7.9	298	300	2	45	106	0.84	18.91	44.5	6622	90.95	29.3	4356	0.407	46.4	64.5	9641	87.67	92.0	13675	82.51
115	24-Apr-91	19100	7.0	300					0.94	19.05	43.9	6666	90.89	28.8	4385		45.7	63.8	9705	87.59	90.4	13/66	82.40
117	08-May-91	19600	7.6	282					1.14	19.31	42.5	6752	90.78	27.9	4441		44.3	62.4	9830	87.43	87.4	13942	82.17
118	15-May-91	19100	7.7	290	210	3	47	101	1.24	19.45	41.8	6794	90.72	27.5	4469	0.447	43.5	61.7	9892	87.35	85.8	14028	82.06
119	22-May-91	19400	7.5	254					1.14	18.98	41.2	6835	90.66	27.1	4496		42.9	60.7	9953	87.27	84.6	14112	81.95
120	29-May-91	19000	7.8	277					1.04	18.50	40.5	6875	90.61	26.7	4522		42.2	59.7	10013	87.20	83.4	14196	81.85
121	05-Jun-91	19100	7.4	260					0.94	18.03	39.9	6915	90.55	26.3	4549		41.6	58.7	10071	87.12	82.2	14278	81.74
122	12-JUN-91	19300	1.8	245	320	Z	42	54	0.84	17.56	39.3	6904	90.50	25.9	4574	0.429	40.9	51.7	10129	8/.05	81.0	14359	81.64
124	26-Jun-91	19700	77	262					1.04	16.85	39.5	7034	90,30	26.0	4627		41.4	572	10243	86.90	817	14522	81.43
125	03-Jul-91	19300	7.8	280					1.14	16.49	39.9	7074	90.34	26.3	4653	<u> </u>	41.6	56.9	10300	86.83	82.0	14604	81.32
126	10-Jul-91	19100	7.7	255	330	3	39	97	1.24	16.14	40.1	7114	90.28	26.4	4679	0.386	41.8	56.7	10357	86.76	82.4	14687	81.22
127	17-Jul-91	19300	7.6	300					1.13	15.91	43.5	7157	90.22	28.6	4708		45.3	60.1	10417	86.68	89.6	14776	81.10
128	24-Jul-91	19500	7.8	272					1.02	15.68	46.9	7204	90.16	30.9	4739		48.9	63.5	10481	86.60	96.7	14873	80.98
129	31-Jul-91	19200	7.5	314					0.91	15.46	50.3	7255	90.09	33.1	4772		52.4	67.0	10548	86.51	103.9	14977	80.85
130	14-Aug-91	18500	1.9	332	240	- 4	- 30	154	0.72	12.23	33.7	7356	90.02	30.3	4807	0.272	00.9	<u>/U.4</u>	10670	86.42	- 111.1	15186	80.68
		10000		~~~ I						14.04	77.0	1000	ua.39	V1.6	7030				10013		00.6	10100	00.00

·			r	1		r						1	1	1									
		Apphylical	Posulte								Sulphate	Production:	I			Moler	NP Consume	tion:					
		WUSIArics	Netuita	4							TANKING TAN	I		By Surface A	·ea:	Ratio:	Theoretical	Empirical		Remaining	Theoretical		Remaining
		·······							Acidity	Akalinity	\$04	Cumulative	Remaining	S04	Cumulative		NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leschete	Moold	. <u>[</u>		Acidity	Alkalicity	Subhate	Production	Production	Production	SO4	S	Production	SO4	Alk	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Meet No	Date	Recovered	nH	Conductivity	Fh	(CeCO3	(CeCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	<i>I</i> SO4	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
WEEK NO.	Delle	(mL)	(pH units)	(unhos/cm)	(mV)	mg/L)"	mgA.)*	mg/L)'	(mg/kg/wk)**	(mgAgAwk)**	(mg/kg/wk)**	(mg/kg)	original)	(mg/m2/wk)**	(mg/m2)		(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(%)	(mg/kg/wk)	(mg/kg/mg)	<u>P</u>
				1															040	00.72	240.2	249	00.55
0	08-Feb-89								2.27	38.67	168.7	169	99.77	111.0	111	0.000	1/5./	212.1	424	00 46	349.2	698	99 11
1	15-Feb-89	17500	7.6	936	480	6	102	445	2.27	38.67	168.7	337	99.54	111.0	222	0.220	1/5./	446.6	644	00.31	170.2	869	98.89
2	22-Feb-89	19000	7.9	488	490	1	77	199	0.41	31.69	81.9	419	99.43	53.9	2/6	0.3/1	60.5	119.6	659	99.16	179.9	1049	98.66
3	01-Mar-89	19300	7.8	476	480	3	70	208	1.25	29.27	87.0	506	99.31	5/.2	333	0.323		120.0	780	99.00	180 1	1229	98.43
4	08-Mar-89	19000	77	472	460	4	77	212	1.65	31.69	87.3	594	99.19	5/.4	390	0.349	09.7	124.8	905	98.84	196.6	1425	98.18
5	15-Mar-89	18000	7.9	515	475	2	69	243	0.78	26.91	94.8	588	99.00	62.3	610	0.273	104.5	133.0	1038	98.67	207.8	1633	97.91
6	22-Mar-89	19300	7.6	486	450	3	11	240	1.25	29.69	100.3	970	90.92	50.0	578	0.204	941	120.4	1159	98.52	186.7	1820	97.67
	29-Mar-89	19400	7.6	4/5		<u> </u>		400	1.40	21.00	80.3	050	03.60	52.8	631	0.310	83.6	107.9	1266	98.38	165.6	1985	97.46
8	05-Apr-89	19300	7.7	450	460		<u>62</u>	192	1.07	23.92	100.5	1060	98.55	66.2	697		104.8	131.8	1398	98.21	208.2	2194	97.19
9	12-Apr-89	19100	1.0	490	450		76	204	4 22	30.47	121.0	1181	98.39	79.6	777	0.245	126.1	155.7	1554	98.01	250.9	2444	96.87
10	19-Apr-89	19000	1.0	472	450	<u> </u>	- 13-	204	1 24	31.66	110.8	1292	98.24	72.9	850		115.5	145.9	1700	97.83	229.7	2674	96.58
	20-Apr-89	19000	76	657	472	3	78	242	1 25	32 44	100.7	1392	98.10	66.2	916	0.309	104.9	136.0	1836	97.65	208.5	2883	96.31
14	10-Mey-09	19200	75	608	716	<u>†−-×</u> −−	<u> 'ŭ</u>	- ''	1.68	32.06	124.3	1517	97.93	81.7	998	· · ·	129.4	159.8	1996	97.45	257.2	3140	95.98
- 13	17-May-05	19500	75	700	460	5	75	350	2.11	31.68	147.9	1665	97.73	97.3	1095	0.206	154.0	183.6	2179	97.21	305.9	3446	95.59
15	24-May-89	19000	7.5	514		1			1.91	31.55	145.9	1810	97.53	96.0	1191		152.0	181.6	2361	96.98	302.1	3/48	90.21
16	31-May-89	19600	7.5	407	469	4	74	339	1.70	31.42	143.9	1954	97.33	94.7	1285	0.209	149.9	179.7	2541	96.75	258.2	4040	34.03
17	07-Jun-89	19000	7.7	473					2.08	30.94	136.8	2091	97.14	90.0	1375	0.000	142.5	171.4	2/12	90.03	262.9	4597	94 12
18	14-Jun-89	19000	7.6	467	512	6	74	315	2.47	30.46	129.7	2221	96.97	85.3	1461	0.225	135.1	103.0	20/0	06.15	215.5	4812	93.85
19	21-Jun-89	19000	7.9	421					1.85	30.46	104.3	2325	96.82	68.6	1529	0.370	108./	107.3 414 K	312	96.01	163.4	4975	93.64
20	28-Jun-89	19000	7.8	482	490	3	74	192	1.23	30.46	79.0	2404	96.72	52.0	1001	0.370	A12	114.2	3238	95.86	165.6	5141	93.43
21	05-Jul-89	19000	7.8	455			L		0.83	31.87	79.9	2484	90.01	52.0	1697	0.306	841	116.9	3355	95.71	167.7	5309	93.21
22	12-Jul-89	19200	7.8	464	515	1	80	194	0.42	33.28	80.7	2000	90.00	524	1730	0.550	83.0	115.5	3471	95.56	165.3	5474	93.00
23	19-Jul-89	19200	7.8	468		l			0.63	33.19	79.0	2044	90.39	517	1791		81.9	114.1	3585	95.42	162.9	5637	92.79
24	26-Jul-89	19500	7.8	417	482	╂			1.04	33.11	77.5	2800	96 17	510	1842	t	80.8	112.7	3697	95.27	160.4	5797	92.59
25	02-Aug-89	18900	1.1	443	460	<u> </u>	70	484	1.00	33.03	76.5	2877	96.07	50.3	1892	0.414	79.6	111.3	3809	95.13	158.0	5955	92.38
26	09-Aug-89	19500	7.8	41/	460		<u> </u>	101	1 16	32 95	711	2948	95.97	46.8	1939		74.1	105.8	3914	94.99	147.1	6102	92.20
21	16-Aug-89	19300	1.0	430	642			ł	1.05	32.07	65.8	3014	95.88	43.3	1982	1	68.6	100.3	4015	94.87	136.1	6238	92.02
28	23-Aug-89	19200	1.0	910	. 342			 	0.04	32.70	60.5	3074	95.80	39.8	2022		63.0	94.8	4110	94.74	125.1	6364	91.86
29	30-Aug-89	19300	7.0	302	380	2	78	132	0.84	32.61	55.2	3130	95.72	36.3	2059	0.567	57.5	89.3	4199	94.63	114.1	6478	91.72
	12 500 80	19000	70	307		<u>∤</u> ≛			1.15	31.88	58.1	3188	95.65	38.2	2097		60.5	91.3	4290	94.51	119.9	6598	91.56
32	20-540-89	19200	75	389	490	t			1.46	31.15	61.0	3249	95.56	40.2	2137		63.6	93.3	4383	94.39	125.7	6723	91.40
33	27-Sep-89	19210	77	314		1	t		1.78	30.42	64.0	3313	95.47	42.1	2179		66.6	95.3	4479	94.27	131.5	6655	91.23
34	04-Oct-89	19300	7.7	380	390	5	71	160	2.09	29.69	66.9	3380	95.38	44.0	2223	0.426	69.7	97.3	4576	94.15	137.3	7446	91.00
35	11-Oct-89	19000	7.9	333					1.99	28.78	59.7	3439	95.30	39.3	2262		62.2	89.0	4665	94.03	122.0	7222	90.50
36	18-Oct-89	19000	7.4	315	1				1.89	27.87	52.6	3492	95.23	34.6	2297		54.8	80.7	4/40	93.93	07.8	7316	90.65
37	25-Oct-89	19500	7.7	289					1.78	26.96	45.4	3537	95.17	29.9	2327		47.3	12.5	4010	02.76	78.0	7303	90.55
38	01-Nov-89	19400	7.7	279	460	4	62	91	1.68	26.06	38.2	3576	95.12	25.2	2352	0.654	39.8	64.9	4002	93.67	78.4	7472	90.45
39	08-Nov-89	19100	7.4	276	L		· ·	ļ	1.57	26.34	38.4	3614	95.06	25.3	2311		40.0	65 3	5012	93.59	78.9	7550	90.34
40	15-Nov-89	19200	7.5	289	 		 	 	1.47	26.62	38.6	3003	04 00	20.4	2403	I	40.3	65.9	5078	93.51	79.3	7630	90.24
41	22-Nov-89	19200	7.9	287	-		65		1.36	20.90	38.7	3730	04.00	25.5	2454	0671	40.5	66.4	5145	93.42	79.8	7709	90.14
42	29-Nov-89	19300	1.8	284	3/0	1 3	00	33	1.20	27.66	30.5	3760	94.85	25.3	2479	1	40.1	66.4	5211	93.34	78.9	7788	90.04
43	12 Dc- 80	19400	<u> ;;</u>	294	+	+	t	<u> </u>	1.30	28 15	38.2	3807	94.80	25.1	2504	1	39.7	66.4	5278	93.25	78.0	7866	89.94
44	20 Dec 80	19200	70	200	 	+		<u> </u>	1.56	28.63	37.8	3845	94.75	24.9	2529		39.4	66.4	5344	93.17	77.2	7944	89.84
40	27-Dec-69	10200	+ +	273	380	1	70	90	1,66	29.12	37.4	3882	94.70	24.6	2553	0.746	39.0	66.4	5411	93.08	76.3	8020	89.74
40 A7	03-140-09	19200	78	269	+	<u>+</u>	1	<u> </u>	1.56	29.15	35.9	3918	94.65	23.6	2577		37.4	65.0	5476	93.00	73.3	8093	89.65
48	10-Jan-90	18700	7.8	275	†	1	1	1	1.46	29.19	34.4	3952	94.60	22.6	2600		35.8	63.6	5539	92.92	10.2	8163	80.40
49	17-Jan-90	19600	7.9	253	1		1		1.36	29.23	32.9	3985	94.56	21.6	2621		34.2	62.1	5601	92.84	6/.1	8205	80 30
50	24-Jan-90	19300	7.1	266	435	3	70	75	1.25	29.27	31.4	4017	94.51	20.6	2642	0.896	32.7	60.7	5662	92.70	62.4	8357	89.31
51	31-Jan-90	19200	8.1	262		L		L	0.99	28.13	30.4	4047	94.47	20.0	2662	I	31./	5.0C	6770	92.00	60.7	8418	89.24
52	07-Feb-90	19200	7.6	245	L		Į	L	0.73	26.98	29.5	4077	94.43	19.4	2081	I	30.1	00.9 KK 1	6833	92.54	590	8477	89.16
53	14-Feb-90	19900	8.0	206	1	<u> </u>	l	-	0.47	25.84	28.5	4105	94.39	18.8	2700	0.850	29.7	53.2	5886	92.47	57.2	8534	89.09
54	21-Feb-90	19000	8.1	253	360	1_1_	60	6/	0.21	24.70	21.0	4133	04 34	20.1	2738	0.003	31.8	57.2	5943	92.40	63.4	8597	89.01
55	28-Feb-90	19000	8.2	266		+		<u> </u>	0.10	20.00	32.4	4103	04.31	220	2760	I	34.8	61.2	6004	92.32	69.6	8667	88.92
56	U7-Mar-90	19000	1.9	294	+	+	+	<u> </u>	0.10	27.78	36.4	4233	94.22	23.9	2784	I	37.9	65.1	6069	92.24	75.7	8743	88.82
57	14-Mar-90	19000	1.9	291	200	+	83	05	0.00	28 14	39.3	4272	94.16	25.9	2810	0.687	40.9	69.1	6139	92.15	81.9	8824	88.72
50	28-Mer 90	19100	8.4	201	200	┿╌┷		1 ²⁰	0.00	29.09	40.9	4313	94.11	26.9	2837	1	42.7	71.7	6210	92.06	85.3	8910	88.61
	20-Mat-90	19100	1 12	267	<u>†</u>	+	1	1	0.00	30.04	42.6	4356	94.05	28.0	2865		44.4	74.4	6285	91.96	88.7	8998	88.49
61	11.400.00	19100	82	299	<u>+</u>	1	1	1	0.00	30.99	44.2	4400	93.99	29.1	2894		46.1	77.0	6362	91.86	92.1	9091	88.38
62	18-Apr-90	18900	8.3	344	190	0	78	112	0.00	31.94	45.9	4446	93.93	30.2	2924	0.668	47.8	79.7	6441	91.76	95.5	9186	88.25
63	25-Anr-90	19400	82	297	1	1	1	1	0.10	32.42	45.1	4491	93.86	29.6	2954		46.9	79.2	6521	91.66	93.8	9280	00.13
64	02-May-90	19100	8.0	280	1		1		0.21	32.90	44.3	4535	93.80	29.1	2983	I	46.1	78.8	6599	91.56	82.0	93/2	87.00
65	09-May-90	19000	8.0	318		1	1		0.31	33.38	43.4	4579	93.75	28.6	3012		45.3	(6.3	<u> </u>	1 21.40	<u> 70.4</u>	0-04	

	ļ			[ļ																	
		Analytical	Regults;				<u> </u>				SUIDNAIA	Production	·	By Surface /	l	Ratio:	Theoretical	Empirical		Remaining	Theoretical		Remaining
			·						Acidity	Alkalinity	S04	Cumulative	Remaining	S04	Cumulative		NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekly			Acidity	Alkalinity	Sulphate	Production	Production	Production	\$04	S	Production	S04	Alk	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Week No.	Date	Recovered	pH (ald unite)	Conductivity	Eh	(CaCO3	(CaCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production (molm?)	/504	At pH 6	At Measured pH (moltabilit)	Open-System (maka/wk)	System (%)	Above pH 6.5	Closed-System (mo/ko/wk)	System (%)
	··	(mc)	(pri units)	(united and my	(114)	ingrc)	ingr.)		(ingray was)	(ingengener)	(ing agent)	(myng)	unginary	(my narmy	(ingritik)		((
198	25-Nov-92	18200	7.48	200					1.26	14.92	26.8	9484	87.04	17.6	6238		27.9	41.6	13683	82.50	54.6	19529	75.03
199	02-Dec-92	19300	7.47	188	440	3	36	64	1.25	15.05	26.8	9511	87.01	17.6	6256	0.540	27.9	41.7	13725	82.40	53.7	19584	74.90
200	16-Dec-92	19600	7.53	170					1.26	13.83	26.0	9563	86.94	17.1	6290	1	27.1	39.6	13805	82.35	52.9	19690	74.82
202	23-Dec-92	19000	7.4	170					1.26	13.22	25.6	9588	86.90	16.8	6307		26.7	38.6	13844	82.30	52.1	19742	74.75
203	30-Dec-92	19400	7.42	170	450	3	30	60	1.26	12.61	25.2	9614	86.87	16.6	6324	0.480	26.3	37.6	13881	82.25	<u>61.3</u>	19793	74.69
204	06-Jan-93	19300	7.4	125					1.36	12.49	25.9	9640	86 79	17.0	6358		27.0	38.6	13958	82.15	54.0	19900	74.55
205	20-Jan-93	19100	7.18	175					1.57	12.25	27.3	9694	86.76	18.0	6376		28.5	39.1	13997	82.10	55.3	19955	74.48
207	27-Jan-93	19300	7.33	173	450	4	29	67	1.67	12.13	28.0	9722	86.72	18.4	6394	0.415	29.2	39.6	14037	82.05	56.7	20012	74.41
208	03-Feb-93	19200	7.15	168					1.86	11.52	28.0	9750	86.68	18.4	6413		29.2	38.8	14076	82.00	56.5	20069	74.34
209	10-Feb-93	19000	7.14	1/8					2.05	10.92	28.0	9//8	86.60	18.4	6450	<u> </u>	29.1	37.2	14151	81.90	56.0	20125	74.19
211	24-Feb-93	18700	7.45	180	430	6	24	69	2.43	9.72	28.0	9833	86.57	18.4	6468	0.334	29.1	36.4	14187	81.86	55.8	20237	74.12
212	03-Mar-93	19000	7.05	152					3.15	9.53	30.0	9863	86.53	19.8	6488		31.3	37.7	14225	81.81	59.4	20296	74.05
213	10-Mar-93	19200	7.2	155					3.86	9.34	32.1	9896	86.48	21.1	6509		33.4	38.9	14264	81.76	63.0	20359	73.97
214	17-Mar-93	19100	7.02	160	E10	+2			4.58	9.15	34.2	9930	86.43	22.5	6531	0.237	35.6	40.2	14304	81.71	70.2	20426	73.88
215	24-Mar-93	17400	7.05	192	510	13	- 22	09	4 39	9.35	33.6	10000	86.34	23.0	6577	0.231	35.0	40.0	14385	81.60	65.6	20562	73.71
217	07-Apr-93	20000	7.32	150					3.49	9.73	30.9	10031	86.30	20.4	6598		32.2	38.5	14424	81.56	61.0	20622	73.63
218	14-Apr-93	19600	7.33	190					2.58	10.12	28.3	10059	86.26	18.6	6616		29.5	37.0	14461	81.51	56.4	20679	73.56
219	21-Apr-93	19400	7.19	162	420	4	25	61	1.68	10.51	25.6	10084	86.22	16.9	6633	0.393	26.7	35.5	14496	81.46	51.7	20731	73.49
220	28-Apr-93	19100	7.11	1/0					1.78	10.35	25.8	10136	86.19	17.0	6667		20.9	35.4	14552	81.37	52.3	20835	73.36
222	12-May-93	19700	7.08	147					1.96	10.04	26.2	10162	86.12	17.2	6684	1	27.3	35.3	14603	81.33	52.5	20887	73.29
223	19-May-93	19000	7.02	184	460	5	24	64	2.06	9.88	26.3	10189	86.08	17.3	6702	0.360	27.4	35.3	14638	81.28	52.8	20940	73.22
224	26-May-93	19000	7.37	188					2.07	10.02	27.4	10216	86.04	18.0	6720	I	28.5	36.5	14674	81.23	55.0	20995	73.15
225	02-Jun-93	19200	7.15	188					2.07	10.17	28.4	10245	86.00	18.7	6758	l	307	38.9	14712	B1.19 B1.14	59.3	21052	73.00
220	16-Jun-93	19300	7.06	180	410	5	25	73	2.09	10.45	30.5	10305	85.92	20.1	6778	0.329	31.8	40.2	14791	81.09	61.5	21173	72.92
228	23-Jun-93	19300	7.25	182					1.88	10.45	30.8	10335	85.88	20.3	6798		32.1	40.7	14832	81.03	62.4	21236	72.84
229	30-Jun-93	19700	7.4	195					1.67	10.45	31.1	10367	85.84	20.5	6819		32.4	41.2	14873	80.98	63.2	21299	72.76
230	07-Jul-93	19500	7.35	170	370		- 25	76	1.46	10.45	31.5	10398	85.80	20.7	6860	0.316	32.6	41.0	14910	80.93 80.87	64.9	21303	72.60
231	21-Jul-93	20000	7.3	178	5/0		-23	-70	1.27	10.11	30.5	10460	85.71	20.1	6880		31.8	40.7	14998	80.82	62.4	21490	72.52
233	28-Jul-93	19700	7.22	168					1.28	9.78	29.3	10490	85.67	19.3	6900		30.5	39.0	15037	80.77	59.8	21550	72.44
234	04-Aug-93	18000	7.2	160					1.29	9.44	28.1	10518	85.63	18.5	6918		29.3	37.4	15074	80.72	57.2	21607	72.37
235	11-Aug-93	20000	7.25	130	410	3	21	62	1.30	9.10	26.9	10545	85.59	17.0	6054	0.325	28.0	30.6	15110	80.63	55.1	21702	72 23
230	25-Aug-93	19000	7 15	160					1.28	10.01	27.3	10599	85.52	18.0	6972		28.4	37.2	15184	80.58	55.6	21773	72.16
238	01-Sep-93	19200	7.12	168					1.27	10.47	27.5	10627	85.48	18.1	6990		28.7	37.9	15222	80.54	56.1	21829	72.09
239	08-Sep-93	19400	7.25	150	410	3	26	66	1.26	10.93	27.7	10654	85.44	18.2	7008	0.378	28.9	38.6	15260	80.49	56.5	21885	72.01
240	15-Sep-93	19400	7.18	168					1.26	10.88	27.5	10682	85.41	18.1	7026	 	28.7	38.3	15298	80.44	00.1 66.7	21941	71.94 71.87
241	22-Sep-93	19600	7.05	153					1.20	10.84	21.3	10709	85.33	17.8	7044		28.2	37.8	15374	80.39	55.2	22052	71.80
243	06-Oct-93	19100	7.33	152	350	3	26	65	1.24	10.76	26.9	10763	85.30	17.7	7080	0.384	28.0	37.5	15412	80.29	54.8	22107	71.73
244	13-Oct-93	18900	7.18	160					1.24	10.56	27.9	10791	85.26	18.3	7098		29.0	38.3	15450	80.24	56.8	22164	71.66
245	20-Oct-93	19100	7.32	162					1.24	10.37	28.8	10820	85.22	19.0	7117	Į	30.0	39.2	15489	80.19	58.8	22223	71.58
246	27-Oct-93	19000	7.04	162	370	<u> </u>			1.25	10.18	29.8	10850	85.18	19.6	7136	0311	31.1	40.0	15570	80.00	62.9	22283	71.50
24/	10-Nov-93	19200	7.45	1/8	3/0	3	- 24	- /4	1.25	9.98	28.8	10909	85.10	19.0	7176		30.0	38.6	15609	80.04	58.9	22405	71.35
249	17-Nov-93	19200	6.94	126					1.24	9.52	26.9	10936	85.06	17.7	7193		28.0	36.3	15645	79.99	54.8	22460	71.28
250	24-Nov-93	19100	7.43	148					1.24	9.29	25.0	10961	85.03	16.4	7210		26.0	34.1	15679	79.95	50.8	22511	71.21
251	01-Dec-93	19000	7.39	147	270	3	22	56	1.23	9.06	23.1	10984	84.99	15.2	7225	0.377	24.0	31.8	15711	79.91	46.8	22058	- 1.15
252	15-Dec-93	19100	7.05	148					1.24	8.48	23.1	11008	04.90 84.93	10.0	7257	1	25.4	32.3	15776	79.83	49.6	22655	71.03
254	22-Dec-93	18800	7.04	146					1.24	8.19	25.1	11057	84.89	16.5	7273		26.1	33.1	15809	79.78	51.1	22707	70.96
255	29-Dec-93	19200	7.28	154	280	3	19	62	1.25	7.90	25.8	11083	84.86	17.0	7290	0.294	26.9	33.5	15842	79.74	52.5	22759	70.90
256	05-Jan-94	19400	7.54	136					1.04	8.23	25.9	11109	84.82	17.1	7307	 	27.0	34.2	15877	79.70	53.0	22865	70.83
25/	12-Jan-94	20000	77	173					0.63	6.00 8.87	262	11161	84.75	17.2	7342	ł	27.3	35.5	15947	79.61	54.0	22919	70.69
259	26-Jan-94	19300	7.71	173	280	1	22	63	0.42	9.20	26.3	11188	84.72	17.3	7359	0.335	27.4	36.2	15983	79.56	54.5	22974	70.62
260	02-Feb-94	19600	7.63	157					0.63	9.42	25.7	11214	84.68	16.9	7376		26.8	35.6	16019	79.52	53.0	23027	70.55
261	09-Feb-94	18900	7.59	174			——————————————————————————————————————		0.84	9.64	25.1	11239	84.65	16.5	7392		26.2	35.0	16088	79.47	51.6	230/8	70.49
263	23-Feb-94	19400	7.67	168	320	3	24	57	1.26	10.09	24.0	11287	84.58	15.8	7424	0.404	25.0	33.8	16122	79.38	48.6	23177	70.36

🔹 Hyrakine war op an de 1900 Colored op lipst 100 fre dekodian limst is ehrwa in Haling and was used in subsequierd nobriations

<u> </u>			1	<u> </u>	1							1		1	r		1	· · · · · · · · · · · · · · · · · · ·			1		
· · · · · · · · · · · · · · · · · · ·		Anahtical	Results:								Sulphate	Production				Molar	NP Consum	otion;					
														By Surface A	rea:	Ratio:	Theoretical	Empirical		Remaining	Theoretical		Remaining
									Acidity	Alkalinity	\$04	Cumulative	Remaining	\$04	Cumulative		NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekly	L	L	Acidity	Akalinity	Suphate	Production	Production	Production	S04	5	Production	S04	AK	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Week No.	Date	Recovered	PH	Conductivity	Eh	(CeCO3	(CeCO3	(\$04	Rate	Rate	Rate	Production	(% %	Rate	Production	/504	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
	·	(mL)		(unnouring)	(mga.y.	mga.)	<u></u>	(where the second	(mg/kg/wkg/	fuidheard	(=949)	onginai)	(mg/m/2/w/k)**	(mgm(2)		(mg/mg/wit)	(mg/sg/wit)	(mgragrant)		(inderfame)	(mgr.grwc)	
132	21-Aug-91	19800	7.9	322					0.64	10.05	41.2	7397	89.89	27.1	4866		42.9	52.4	10732	86.28	85.3	15271	80.47
133	28-Aug-91	19500	7.1	285		1			0.57	7.46	35.0	7432	89.85	23.0	4889		36.5	43.4	10775	86.22	72.3	15344	80.38
134	04-Sep-91	7500	7.5	438	282	3	30	177	0.49	4.87	28.8	7461	89.81	18.9	4907	0.163	30.0	34.3	10810	86.18	59.4	15403	80.30
135	11-Sep-91	19000	7.1	258					0.68	7.86	29.7	7491	89.77	19.5	4927		30.9	38.1	10848	86.13	61.1	15464	80.22
136	18-Sep-91	19500	7.7	260					0.87	10.84	30.6	7521	89.73	20.1	4947		31.8	41.8	10889	86.07	62.8	15527	80.14
137	25-Sep-91	19800	7.7	221		<u> </u>			1.07	13.83	31.5	7553	89.68	20.7	4968		32.8	45.5	10935	86.02	64.5	15591	80.06
138	02-Oct-91	19400	7.9	232	180	<u>3 ·</u>	40		1.26	16.81	32.4	7585	89.64	21.3	4989	0.499	33.7	49.3	10984	85.95	66.2	15658	79.98
139	16 0 01	19300	7.0	218	280				1.81	20.85	32.3	7617	89.59	21.2	5010		33.6	52.7	11037	85.89	0.0	10/23	79.89
141	2204.91	19200	76	215					2.30	29.09	32.2	7682	89.55	21.2	5053		33.0	59.5	11152	85.74	64.0	15852	79.73
142	30-Oct-91	19300	7.6	218					3.45	32.96	32.1	7714	89.46	21.1	5074		33.4	62.9	11215	85.66	63.3	15915	79.65
143	06-Nov-91	19800	7.5	235	300	4	37		4.00	37.00	32.0	7746	89.42	21.0	5095		33.3	66.3	11282	85.57	62.6	15978	79.57
144	13-Nov-91	19700	7.3	212					3.42	31.81	31.9	7777	89.38	21.0	5116		33.2	61.6	11343	85.49	63.1	16041	79.49
145	20-Nov-91	19200	7.4	210					2.83	26.61	31.8	7809	89.33	20.9	5137		33.2	56.9	11400	85.42	63.5	16104	79.41
146	27-Nov-91	19500	7.7	195					2.25	21.42	31.8	7841	89.29	20.9	5158		33.1	52.3	11453	85.35	63.9	16168	79,32
147	04-Dec-91	19200	7.5	210	320	4		76	1.66	16.22	31.6	7873	89.24	20.8	5178	0.492	32.9	47.5	11500	85.29	64.2	16232	79.24
148	11-Dec-91	19500	/.5	208	ļ				1.6/	14.90	29.9	7903	89.20	19.7	5198	·	31.2	44.4	11544	85.24	60.6	16293	79.10
149	25-Dec-91	19300	7.6	155					1.67	12.25	26.2	7957	89.17	17.4	5234		23.4	38.2	11674	85 14	53.5	16404	79.03
151	01-Jan-92	19400	7.2	162	300	4	26	59	1.68	10.93	24.8	7982	89.10	16.3	5250	0.423	25.8	35.1	11659	85.09	50.0	16454	78.96
152	08-Jan-92	19300	7.0	180					1.57	10.48	25.5	8008	89.06	16.7	5267		26.5	35.4	11694	85.05	51.5	16505	78.89
153	15-Jan-92	19100	7.0	180					1.46	10.04	26.1	8034	89.03	17.2	5284		27.2	35.8	11730	85.00	53.0	16558	78.83
154	22-Jan-92	19700	7.4	162					1.36	9.59	26.8	8060	88.99	17.6	5302		27.9	36.1	11766	84.95	54.5	16613	78.76
155	29-Jan-92	19200	7.5	165	310	3	22	66	1.25	9.15	27.5	8088	88.95	18.1	5320	0.320	28.6	36.5	11803	84.91	55.9	16669	78.68
156	05-Feb-92	19400	7.1	170					1.15	8.99	27.1	8115	88.91	17.8	5338		28.2	36.0	11839	84.86	55.2	16724	78.61
15/	12-Feb-92	19200	1.3	168					1.05	8.82	26.7	8142	88.86	17.0	5300		27.8	30.0	116/4	94 77	52.8	16932	78.49
100	26-Feb-92	19600	76	161	200	2	- 20	61	0.95	8.49	20.3	8194	88.81	17.0	5390	0 315	270	34.6	11944	84 73	53.1	16885	78.41
160	04-Mar-92	19000	74	170	2.50				0.84	833	27.9	8222	88 77	18.4	5408	0.010	29.1	36.6	11981	84.68	57.3	16943	78.33
161	11-Mar-92	19100	7.5	190					0.84	8.18	29.9	8252	88.73	19.7	5428		31.2	38.5	12019	84.63	61.5	17004	78.26
162	18-Mar-92	19400	7.9	175					0.83	8.02	31.9	8284	88.68	21.0	5449		33.3	40.4	12060	84.58	65.7	17070	78.17
163	25-Mar-92	19100	7.5	190	390	2	19	82	0.83	7.86	33.9	8318	88.64	22.3	5471	0.222	35.3	42.4	12102	84.52	69.9	17140	78.08
164	01-Apr-92	18000	7.3	225					0.93	8.60	34.5	8352	88.59	22.7	5494		35.9	43.6	12146	84.47	70.9	17210	77.99
165	08-Apr-92	19200	7.2	185		·			1.04	9.34	35.1	8387	88.54	23.1	5517		36.5	44.8	12190	84.41	72.0	17282	77.90
166	15-Apr-92	19000	7.4	200	430		~~~~~	87	1.14	10.08	35.6	8423	88.49	23.4	5540	0.207	37.1	46.0	12236	84.35	73.1	17356	77 74
167	22-Apr-92 79-Apr-97	19200	75	200	430		_ <u>~</u>		1.20	10.81	30.2	8495	88.40	23.0	5587	0.287	37.1	47.3	12330	84 23	73.0	17503	77.62
169	06-May-92	19400	7.6	200					123	9 66	35.1	8530	88.35	23.1	5610		36.6	45.0	12375	84.18	71.9	17575	77.53
170	13-May-92	19000	7.4	191					1.22	9.08	34.6	8564	88.30	22.7	5633		36.0	43.9	12419	84.12	70.8	17645	77.44
171	20-May-92	18700	7.3	204	380	3	21	84	1.22	8.51	34.0	8598	88.25	22.4	5656	0.240	35.4	42.7	12461	84.06	69.7	17715	77.35
172	27-May-92	19200	7.2	185					1.33	8.89	34.2	8632	88.21	22.5	5678		35.6	43.2	12505	84.01	69.9	17785	77.26
173	03-Jun-92	19100	7.3	210					1.44	9.27	34.4	8667	88.16	22.6	5701		35.8	43.6	12548	83.95	70.2	17855	77.17
1/4	10-Jun-92	19200	1.2	190	470				1.56	9.65	34.5	8/01	88.11	22.7	5723	0 979	36.0	44.1	12592	83.90	70.4	1/926	76.00
176	24-11-02	19000		220	720	┝╶╇┙┥		- 00	1.07	10.03	34.7	8770	88.02	22.6	5760	0.210	35.6	44.0	12684	83 79	69.8	18066	76.90
177	01-Jul-92	19200	7.5	240					1,26	10.54	33.7	8804	87.97	22.2	6791		35.1	44.4	12726	83,73	68.9	18135	76.81
178	08-Jul-92	19500	7.3	195					1.06	10.79	33.2	8837	87.93	21.8	5813		34.6	44.3	12770	83.67	68.1	18203	76.72
179	15-Jul-92	19600	7.4	182	400	2	26	77	0.85	11.04	32.7	8870	87.88	21.5	5834	0.324	34.1	44.2	12814	83.61	67.3	18270	76.64
180	22-Jul-92	19200	7.6	225					0.96	12.29	33.4	8903	87.84	22.0	5856		34.8	46.1	12860	83.55	68.6	18339	76.55
181	29-Jul-92	18600	7.5	232					1.07	13.54	34.1	89 37	87.79	22.4	5879		35.5	48.0	12908	83.49	70.0	18409	76.46
182	US-AUg-92	12900	7.3	340	- 200				1.19	14.78	34.8	8972	87.74	22.9	5902	0.400	36.3	49.9	12958	83.43	71.4	18480	76.37
183	12-AUG-92	10200	1.4	200	380	3	- 37	82	1.30	10.03	35.5	9008	87.69	23.4	5925	U.433	31.0	51,7	13010	83.36	12.1	18003	76 40
185	26-Aug-92	19400	7.43	225					1.07	13.08	34.9	9077	87.60	22.5	5970		357	477	13107	83.24	703	18695	76.09
186	02-Sep-92	19000	7.18	222					0.96	11.61	33.6	9110	87.55	22.1	5992		35.0	45.6	13153	83.18	69.0	18764	76.01
187	09-Sep-92	19500	7.4	186	460	2	24	78	0.84	10.14	33.0	9143	87.51	21.7	6014	0.295	34.3	43.6	13197	83.12	67.8	18832	75.92
188	16-Sep-92	19000	7.54	204					0.84	10.59	33.7	9177	87.46	22.1	6036		35.1	44.8	13241	83.07	69.3	18901	75.83
189	23-Sep-92	19200	7.43	187]		0.83	11.04	34.4	9211	87.42	22.6	6059		35.8	46.0	13287	83.01	70.8	18972	75.74
190	30-Sep-92	19100	7.54	200					0.83	11.49	35.1	9247	87.37	23.1	6082		36.6	47.2	13335	82.95	72.3	19044	75.65
191	14 Oct 92	19000	7.62	212	460	2		- 87	0.82	11.94	35.8	9282	87.32	23.6	6106	0.320	37.3	48.4	13383	82.89	13.8	19118	75.48
193	21-Oct 92	19700	7.52	208					1.05	11 22	313	9347	87 23	20.6	6148		327	0.0	13474	82 77	64.3	19251	75.38
194	28-Oct-92	19200	7.52	206		· · · · ·			1.17	13.87	29.1	9376	87.19	19.2	6167		30.3	43.0	13518	82.71	59.5	19310	75.31
195	04-Nov-92	19700	7.46	180	480	3	34	63	1.28	14.51	26.9	9403	87.15	17.7	6185	0.518	28.0	41.2	13559	82.66	54.7	19365	75.24
196	11-Nov-92	19100	7.58	192					1.27	14.65	26.9	9430	87.12	17.7	6203		28.0	41.3	13600	82.61	54.7	19420	75.17
197	18-Nov-97	19500	75	182					127	14 78	26.8	9457	87.08	17.6	6220		27.9	415	13642	82.56	54.6	19474	75 10

* Assakses were consider a confection limit, 9/2 the detection limit to shown to belies and was used in subsequent calculations

i an

		Dissolut	d Matel							Motel I e	ach Rate	l						Cumute	tive Mete	I Leach	Cates:				
		21220146		•••						morai Fa		ī				ł		Soundia		- Louis I					
		Antimony	Arsenic	Copper	tron	Lead	Manganese	Silver	Zinc	Antemony	Arsenic	Copper	iron	Load	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	tron	Lead	Manganese	Silver	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
		(mg/L)	(mg/L)	(ing/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/tg/w/)	(mgngnak)	(///0////	(mg/ng/mg	(mg/kg/wk)	(1191910)	(mg/ng/wk)	(mg/rg/wir)	(Mg/Kg)	(mg/rog)	(mgnog)	(mg/kg)	((()))	(mg/ng)	(mgrug)	(mgacg)
0	8-Feb-89																	7.2E-03	4.5E-03	1.7E-03	2.7E-03	3.8E-04	7.0E-02	7.6E-05	1.1E-02
1	15-Feb-89	0.019	0.012	0.005	0.007	0.001		2E-04	0.03	7.2E-03	4.5E-03	1.7E-03	2.7E-03	3.8E-04		7.6E-05	1.1E-02	1.4E-02	9.1E-03	3.4E-03	5.3E-03	7.6E-04	1.4E-01	1.5E-04	2.3E-02
2	22-Feb-89	0.016	0.005	0.002	0.005	0.001		2E-04	0.04	6.6E-03	2.1E-03	6.2E-04	2.1E-03	4.1E-04		8.2E-05	1.6E-02	2.1E-02	1.1E-02	4.0E-03	7.4E-03	1.2E-03	2.1E-01	2.3E-04	3.9E-02
	1-Mar-89 8-Mar-89	0.011	0.004	9E-04	0.005	0.001		2E-04	0.00	4.0E-03 2.9E-03	1.7E-03	3.7E-04	3.3E-03	4.1E-04		8.2E-05	2.9E-02	2.8E-02	1.4E-02	5.0E-03	1.3E-03	2.0E-03	3.5E-01	4.0E-04	9.3E-02
5	15-Mar-89	0.007	0.002	0.001	0.005	0.001		2E-04	0.08	2.7E-03	7.8E-04	3.9E-04	1.9E-03	3.9E-04		7.8E-05	3.1E-02	3.1E-02	1.5E-02	5.4E-03	1.5E-02	2.4E-03	4.2E-01	4.8E-04	1.2E-01
6	22-Mar-89	0.005	0.002	7E-04	0.005	0.001		2E-04	0.07	2.1E-03	8.4E-04	2.9E-04	2.1E-03	4.2E-04		8.4E-05	2.9E-02	3.3E-02	1.6E-02	5.7E-03	1.7E-02	2.8E-03	4.9E-01	5.6E-04	1.5E-01
7	29-Mar-89																	3.4E-02	1.6E-02	6.1E-03	1.8E-02	3.0E-03	5.6E-01	6.0E-04	1.7E-01
9	12-Apr-89																	3.5E-02	1.7E-02	7.0E-03	2.0E-02	3.4E-03	7.0E-01	6.9E-04	2.0E-01
10	19-Apr-89	0.002	0.002	0.003	0.005	0.001		2E-04	0.09	8.2E-04	8.2E-04	1.4E-03	2.1E-03	4.1E-04		8.2E-05	3.7E-02	3.6E-02	1.8E-02	8.4E-03	2.2E-02	3.8E-03	7.7E-01	7.7E-04	2.4E-01
11	26-Apr-89																	1.7E-02	1.9E-02	8.8E-03	2.3E-02	4.1E-03	8.4E-U1	8.1E-04	2.0E-U1
12	3-M8y-89																	1.0E-02	2.0E-02	9.7E-03	2.5E-02	4.5E-03	9.8E-01	8.9E-04	2.9E-01
14	17-May-89	0.006	0.006	0.001	0.005	0.001		2E-04	0.0	6 2.5	E-03 2.5	-03 4.2E	04 2 1E-	3 4.2E-0	4	8.4E-05	2.5E-02	4.1E-02	2.3E-02	1.0E-02	2.7E-02	4.9E-03	1.1E+00	9.8E-04	3.1E-01
15	24-May-89																	4.3E-02	2.4E-02	1.0E-02	2.9E-02	5.1E-03	1.1E+00	1.0E-03	3.3E-01
16	31-May-89											ļ						4.4E-02	2.4E-02	1.1E-02	3.1E-02	5.3E-03	1.2E+00	1.1E-03	3.4E-01
1/	7-JUN-89	0.005	0.002	0.001	0.015	0.001		26-04	0.00	2 15-03	8 2E-04	4 55-04	6 2E-03	4 1E-04		8 2E-05	3.7E-02	4.5E-02	2.5E-02	1.1E-02	4 0E-02	5.9E-03	1.3E+00	1.1E-03	4 0F-01
19	21-Jun-89	0.000	0.002	0.001	0.010	0.001		22-04	0.03	2.12-00	0.22-01	4.02-01	0.12-00	7.12-01		0.22.00	0.72-02	4.8E-02	2.6E-02	1.1E-02	4.2E-02	6.1E-03	1.4E+00	1.2E-03	4.1E-01
44	28-Jur-09																	1.9E 02	2.7E 02	1.2E 02	4.4E 02	6 3E 03	1.5E+00	1.3E 03	4.26 01
21	5-Jul-89	0.005	0.001	5E 04	0.005	0.001		25.04	0.02	2 15 02	4 25.04	245.04	2 15.02	4 25.04		9 25 05	1 25 02	5.0E-02	2.7E-02	12E-02	4 6E-021	6.5E-03	1.5E+00	1.3E-03	4.3E-01
23	10- H4-80	0.005	0.001	05-04	0.005	0.001		26-04	0.03	2. IE-03	4.20-04	2.15-04	2.15-03	9.20-01		0.3E*03	1.26-02	5 3E-02	2.7E-02 2.8E-02	1.2E-02	4.9E-02	7.2E-03	1.7E+00	1.4E-03	4.6E-01
24	26-Jul-89													1	Í			5.4E-02	2.8E-02	1.3E-02	5.0E-02	7.4E-03	1.8E+00	1.5E-03	4.7E-01
25	2-Aug-89			1													-	1.5E-02	2.8E-02	1.3E-02	5.1E-02	7.6E-03	1.8E+00	1.5E-03	4.9E-01
26	9-Aug-89	0.005 1	0.001	0.004	0.005	0.001	<u> </u>	2E-04	0.1	2.1E-03	4.2E-04	1.7E-03	2.1E-03	4.2E-04		8.4E-05	4.2E-02	5.7E-02	2.9E-02	1.5E-02	5.3E-02	8.0E-03	1.9E+00	1.6E-03	5.3E-01
27	16-Aug-89						· · · · · · · · · · · · · · · · · · ·											5.8E-02	2.9E-02	1.6E-02	6 1E-02	8 4F-03	2.0E+00	1.0E-03	5.6E-01
29	30-Aug-89																	6.0E-02	2.9E-02	1.7E-02	6.6E-02	8.6E-03	2.1E+00	1.7E-03	5.8E-01
30	6-Sep-89	0.005	0.001	0.001	0.035	0.001		2E-04	0.07	2.1E-03	4.2E-04	5.0E-04	1.5E-02	4.2E-04		8.4E-05	2.9E-02	6.3E-02	3.0E-02	1.7E-02	8.0E-02	9.1E-03	2.2E+00	1.8E-03	6.1E-01
31	13-Sep-89																	6.3E-02	3.0E-02	1.7E-02	8.3E-02	9.2E-03	2.3E+00	1.8E-03	6.2E-01
32	20-Sep-89																	6.3E-02	3.0E-02	1.8E-02	8.6E-02	9.3E-03	2.3E+00	1.9E-03	6.3E-01
34	4-Oct-89															· · ·		6.4E-02	3.0E-02	1.8E-02	9.1E-02	9.5E-03	2.5E+00	1.9E-03	6.4E-01
35	11-Oct-89																	6.5E-02	3.0E-02	1.8E-02	9.4E-02	9.6E-03	2.5E+00	1.9E-03	6.5E-01
36	18-Oct-89																	6.5E-02	3.1E-02	1.8E-02	9.7E-02	9.7E-03	2.6E+00	1.9E-03	6.5E-01
37	25-Oct-89	0.003	0.002	0.002	0.018	0.001		25-04	0.06	1 35-03	8 4E-04	63E-04	7.6E-03	4 2E-04		8.4F-05	25E-02	6.5E-02	3.1E-02 3.2E-02	1.8E-02	1.0E-01	1 0F-02	2.7E+00 2.7E+00	2.0E-03	6.0E-01
39	8-Nov-89	0.003	0.002	0.002	0.010	0.001		22-04	0.00	1.32-03	0.42-04	0.32-04	7.02-03	4.22-04		0.42-00	2.52-02	6.7E-02	3.2E-02	2.6E-02	1.1E-01	1.0E-02	2.8E+00	2.1E-03	7.0E-01
40	15-Nov-89																	6.8E-02	3.2E-02	3.4E-02	1.1E-01	1.1E-02	2.9E+00	2.1E-03	7.1E-01
41	22-Nov-89		-									0.05.00		105.01		0.45.05	0.55.00	6.8E-02	3.2E-02	4.1E-02	1.2E-01	1.1E-02	3.0E+00	2.2E-03	7.2E-01
42	29-Nov-89	0.002	0.001	0.07	0.01	0.001		2E-04	0.06	8.4E-04	4.2E-04	2.9E-02	4.2E-03	4.2E-04		8.45-00	2.5E-02	7.0E-02	3.3E-02	8.5E-02	1.2E-01	1.1E-02 1 1E-02	3.0E+00 3.1E+00	2.3E-03	7.66-01
44	13-Dec-89										i							7.0E-02	3.3E-02	1.0E-01	1.3E-01	1.2E-02	3.2E+00	2.3E-03	7.7E-01
45	20-Dec-89																	7.0E-02	3.4E-02	1.1E-01	1.3E-01	1.2E-02	3.2E+00	2.4E-03	7.9E-01
46	27-Dec-89	0.002	0.001	0.07	0.032	0.001		2E-04	0.06	8.3E-04	4.2E-04	2.9E-02	1.3E-02	4.2E-04		8.3E-05	2.5E-02	7.1E-02	3.4E-02	1.4E-01	1.5E-01	1.2E-02	3.3E+00	2.5E-03	8.1E-01
47	3-Jan-90											· · · ·						7.2E-02 7.2E-02	3.4E-02	1.5E-01	1.5E-01	1.3E-02	3.4E+00	2.5E-03	8.3E-01
49	17-Jan-90																	7.2E-02	3.5E-02	1.7E-01	1.6E-01	13E-02	355+00	261-03	8 4E-01
50	24-Jan-90	0.002	0.001	5E-04	0.005	0.001 1		2E-04	0.05	8.4E-04	4.2E-04	2.1E-04	2.1E-03	4.2E-04		8.4E-05	2.1E-02	7.3E-02	3.5E-02	1.7E-01	1.6E-01	1.3E-02	3.6E+00	2.7E-03	8.7E-01
51 52	31-J80-90 7-Eeb-90																	7.4E-02	3.5E-02	1.7E-01	1.0C-01	14E-02	3.7E+00	2.7E-03	8.9E-01
53	14-Feb-90																	7.5E-02	3.6E-02	1.7E-01	1.6E-01	1.4E-02	3.8E+00	2.8E-03	9.0E-01
54	21-Feb-90	0.002	0.001	5E-04	0.005	0.001		2E-04	0.0	5 8.2	-04 4 1E	-04 2.1E-	04 2 1E-0	3 4.1E-04		8.2E-05	2.1E-02	7.5E-02	3.6E-02	1.7E-01	1.7E-01	1.4E-02	3.9E+00	2.9E-03	9.2E-01
55	28-Feb-90			7]													7.65-02	3.6E-02	1.7E-01	1.7E-01	1.5E-02	3.9E+00	3.0E-03	9.3E-01
57	7-Mar-90																	7.0E-02	3.0C-02	1.76-01	17E-01	1.5E-02	4 1E+00	3 2E-03	9.5E-01
58	21-Mar-90	0.002	0.001	0.001	0.005	0.001		0.001	0.05	8.3E-04	4.1E-04	5.8E-04	2.1E-03	4.1E-04		4.1E-04	2.1E-02	7.7E-02	3.7E-02	1.7E-01	1.7E-01	1.5E-02	4.2E+00	3.7E-03	9.7E-01
59	28-Mar-90																	7.8E-02	3.7E-02	1.7E-01	1.7E-01	1.6E-02	4.2E+00	3.9E-03	9.8E-01
60	4-Apr-90																	7.8E-02	3.7E-02	1.7E-01	1.7E-01	1.6E-02	1.3E+00	4.1E-03	9.9E-01
62	18-Apr-90	0.002	0.001	0.002	0.005	0.003	Ì	0.001	0.04	8 2E-04	4 1E-04	0 4E 04	205.02	1 25.02		4 1E-04	1.65.0	7 95-02	3 8E-02	1.7E-01	1.8E-01	1.8E-02	4E+00	4.7E-03	1.0E+00
63	25-Apr-90	4.004	0.001	¥.444	v.vvv	v		0.001	0.04	0.22-04		0.70-04	<u>2.00-03</u>	1.66-413		4.10.04	1.02-04	8.0E-02	3.8E-02	1.7E-01	1.8E-01	1.8E-02	1.5E+00	4.9E-03	1.0E+00
64	2-May-90									· ·								8.0E-02	3.8E-02	1.7E-01	1.8E-01	1.9E-02	1.6E+00	5.1E-03	1.0E+00
65	9-May-90																	8.1E-02	3.9E-02	1.7E-01	1.8E-01	1.9E-02	6E+00	5.3E-03	1.0E+00

														1									
		Appletical	Paquitar								Sulphate	Production:				Molar	NP Consume	tion:					
	· ·····	Analytical	Keguna;								AAIDureta	1000citoti.		By Surface A	rea:	Ratio:	Theoretical	Empirical		Remaining	Theoretical		Remaining
									Acidity	Alkalinity	504	Cumulative	Remaining	SO4	Cumulative		NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Lanchete	Month			Acidity	Alkalinity	Subbete	Production	Production	Production	504	S	Production	SO4	Ak	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Monk No.	Data	Recovered	NACENA	Conductivity	Eh	/C=C03	rCaCO3	(504	Rate	Rate	Rate	Production	(% 4	Rate	Production	/504	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
WEEK NO.	Daie	(ml)	(old units)	(umbacking)	(111)	(Cacos	mol.)'	mod.)*	(mafkafwk)**	(ma/ka/wk)**	(ma/ka/wk)"	(mgAca)	(lenipho	(mg/m2/wk)**	(mg/m2)		(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(%)	(mgAkgAwik)	(mg/kg/wk)	(%)
			y	((, , , , , , , , , , , , , , , , , , ,												
264	02-Mar-94	19400	7 4 1	168	•				1.25	9.52	24.4	11312	84.55	16.1	7440		25.5	33.7	16156	79.34	49.7	23227	70.30
265	09-Mar-94	18900	7.56	182			· · · ·		1.25	8.95	24.9	11337	84.51	16.4	7457		26.0	33.7	16189	79.30	50.7	23278	70.23
266	16-Mar-94	19200	7 44	176					1.24	8.39	25.4	11362	84.48	16.7	7473		26.5	33.6	16223	79.25	51.8	23329	70.17
267	23-Mar-94	19000	7.54	179	320	3	19	63	1.23	7.82	25.9	11388	84.44	17.1	7491	0.289	27.0	33.6	16257	79.21	52.8	23382	70.10
268	30-Mar-94	18800	7.5	165					1.54	7.41	25.7	11414	84.41	16.9	7507		26.8	32.7	16289	79.17	52.1	23434	70.03
269	06-Apr-94	18900	7.05	168					1.85	7.00	25.5	11439	84.37	16.8	7524		26.6	31.7	16321	79.13	51.3	23485	69.97
270	13-Apr-94	18900	7.37	184					2.16	6.59	25.3	11465	84.34	16.7	7541		26.4	30.8	16352	79.09	50.6	23536	69.90
271	20-Apr-94	19000	7.32	168	370	6	15	61	2.47	6.17	25.1	11490	84.30	16.5	7557	0.236	26.2	29.9	16382	79.05	49.8	23586	69.84
272	27-Apr-94	19400	7.33	143					2.06	6.20	25.8	11515	84.27	17.0	7574		26.9	31.0	16413	79.01	51.8	23638	69.77
273	04-May-94	19300	7.08	173					1.65	6.22	26.6	11542	84.23	17.5	7592		27.7	32.2	16445	78.97	53.7	23691	69.70
274	11-May-94	19300	7.26	145					1.24	6.25	27.3	11569	84.19	17.9	7610		28.4	33.4	16478	78.93	55.6	2374/	69.63
275	18-May-94	19300	7.41	169	400	2	15	67	0.84	6.27	28.0	11597	84.16	18.4	7628	0.215	29.2	34.6	16513	78.88	57.5	23804	69.06
276	25-May-94	19200	7.27	192					0.83	5.94	28.1	11625	84.12	18.5	7647		29.3	34.4	16547	78.84	57.7	23862	69.49
277	01-Jun-94	18700	7.67	207					0.83	5.61	28.2	11654	84.08	18.6	7665		29.4	34.2	16582	78.80	57.9	23920	69.41
278	08-40-94	19000	7.27	193					0.83	5.27	28.3	11682	84.04	18.6	7684		29.5	33.9	16616	78.75	58.1	23978	69.34
279	15-Jun-94	19000	7.37	183	250	2	12	69	0.82	4.94	28.4	11710	84.00	18.7	7703	0.167	29.6	33.7	16649	78.71	58.3	24037	69.26
280	22-Jun-94	18900	7.28	210					0.82	5.25	28.1	11738	83.96	18.5	7721		29.3	33.7	16683	78.67	57.7	24094	69.19
281	29-Jun-94	19300	7.5	187					0.82	5.56	27.8	11766	83.93	18.3	7739		28.9	33.7	16717	78.62	57.1	24151	69.12
282	06-Jul-94	19500	7.36	183					0.82	5.87	27.5	11794	83.89	18.1	7757		28.6	33.7	16750	78.58	56.4	24208	69.04
283	13-Jul-94	19000	7.45	174	265	2	15	66	0.82	6.17	27.2	11821	83.85	17.9	7775	0.218	28.3	33.6	16784	78.54	55.8	24204	00.97
284	20-Jul-94	19000	7.37	173					0.82	6.17	27.2	11848	83.81	17.9	7793		28.3	33.6	16818	78.49	00.8	24319	00.90
285	27-Jul-94	15300	7.15	230					0.82	6.17	27.2	11875	83.78	17.9	7811		28.3	33.6	16851	78.45	<u> </u>	243/3	60.03
286	03-Aug-94	19100	7.05	178					0.82	6.17	27.2	11902	83.74	17.9	7829		28.3	33.6	16885	/8.41	33.6	24431	00.70
																	476.7		40005	00.72	240.2	24431	99.55
Maximum		20000	8.30	936	542	13	102.0	445	5.29	38.67	168.7	11902	99.77	111.0	7829	0.896	1/5./	212.1	212	78.41	46.8	349	68.76
Minimum		7500	6.30	125	180	0	12.0	56	0.00	4.87	23.1	169	83.74	15.2	111	0.103	42.0	£9.9	414	86.57	85.1	15044	80.76
Mean		19107	7.52	254	369	3	43.7	118	1.27	16.91	41.5	/305	90.02	21.3	4800	0.386	43.2	00.0 46.1	11282	85.57	69.6	15978	79.57
Median		19200	7.50	222	380	3	36.0	87	1.24	12.72	33.9	1/40	89.42	22.3	2090	0.335	30.3	36 1	15507	80 17	55.9	22262	71.53
Mean Last	8 Weeks	19133	7.28	170	367	4	21.7	6/	1.58	8.91	27.0	10837	60.19	10.2	/ 120	0.310	20.0	50.1	10001				
													517			———				360			199
75% Rema	ining (Wks)	Į											1170		· · · ·					901			548
50% Rema	ining (Wks)	I	L			l					ļ	ł	1944							1443			898
25% Rema	ining (Wks)	ļ		· · · · ·								l	2603							1985			1247
0% Remain	ing (VVks)		ļ										2000										
			I.,	I			L					hts and used			L								
		" If measu	rea sulpha	ite, aikalinity a	and/or ac	ciaity value	es were uni	valladie, d	nata was inte	sporated tro	m existing o		III subsequ										
						ļ										I							
		 	Į		 			i									t						
	i '	I	1		I	I	I				L	L		L		L	L						

a tak

		Dissolut	d Mate							Motal Le	ach Rater							Cumula	tive Meta	l Leach F	tates:				
		DIBBUIT		•••														Anthropologic	America	Cannad		Last	Mennenese	Silver	Zinc
		Antimony	Arsenic	Copper	tron	Load	Manganese D. Min	Silver	Zinc D. Zo	Antimony	Arsenic		Iron D.F.e	Lead D-Ph	D-Mn	Silver D-Ad	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
Week No.	Date	D-SD (mgA.)	(mg/L)	(mgA.)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mgA.)	(mg/kg/wk)	(mg/rg/wk)	(mgmgmk)	(mground)	(1100400406)	(mg/ng/wk)	(mg/kg/wk)	(mg/sg/wis)	(mgArg)	(mg/kg)	(mg/kg)	(mgAg)	(mgAcg)	(mgArg)	(mg/kg)	(mg/kg)
															·			13E-01	6 5E-02	115+00	3.2E-01	7.0E-02	6.4E+00	2.3E-02	1.4E+00
132	21-Aug-91																	1.4E-01	6.6E-02	1.1E+00	3.2E-01	7.1E-02	6.4E+00	2.3E-02	1.4E+00
134	4-Sep-91		0.005	0.011	0.01		0.031	0.001	0.01		8.1E-04	1.8E-03	1.6E-03		5.0E-03	1.6E-04	1.2E-03	1.4E-01	6.7E-02	1.1E+00	3.2E-01	7.2E-02	6.4E+00	2.3E-02	1.4E+00
135	11-Sep-91																	1.4E-01	6.7E-02	1.1E+00	3.2E-01	7.4E-02	6.4E+00	2.3E-02	1.4E+00
136	18-Sep-91																<u> </u>	1.4E-01	6.8E-02	1.1E+00	3.3E-01	7.4E-02	6.4E+00	2.3E-02	1.4E+00
138	2-Oct-91		0.002	0.001	0.015		0.0054	0.001	0.01		8.4E-04	5.9E-04	6.3E-03		2.3E-03	4.2E-04	2.3E-03	1.4E-01	6.9E-02	1.1E+00	3.3E-01	7.5E-02	6.4E+00	2.4E-02	1.4E+00
139	9-Oct-91					_											<u> </u>	1.4E-01	6.9E-02	1.1E+00	3.4E-01	7.7E-02	6.4E+00	2.4E-02	1.4E+00
140	16-Oct-91 23-Oct-91	~																1.4E-01	7.0E-02	1.1E+00	3.5E-01	7.8E-02	6.4E+00	2.4E-02	1.4E+00
142	30-Oci 01-		0.002	0 002	-0.06		0 0022	0.001			1 2E 02		7 6F-02		45 02	4 35.04	2 45 02	4.1E-01	7.2E-02	1.1E+00	3.8E-01	7.9E-02	6.4E+00	2.5E-02	1.4E+00
143	12 Nov 01		0.000	0.001	0.00		0.0032	0.001	0.01		1.00-00	0.02-04	2.02.02		1.45-03	4.52-04	2.40-03	1.4E-01	7.25-02	1.1E+00	3.9E-01	8.0E-02	6.4E+00	2.5E-02	1.4E+00
145	20-Nov-91																	1.5E-01	7.3E-02	1.1E+00	4.0E-01	8.1E-02 8.2E-02	6.4E+00 6.4E+00	2.5E-02 2.6E-02	1.4E+00
146	27-Nov-91		0.000	0.002	0.019	 	0.0012	0.001	0.01		8 3E-04	115-03	7.5E-03		5.4E-04	4.2E-04	3.1E-03	1.5E-01	7.4E-02	1.1E+00	4.2E-01	8.3E-02	6.4E+00	2.6E-02	1.4E+00
14/	4-Dec-91 11-Dec-91		0.002	0.003	0.018		0.0013	0.001	0.01		0.02.04	1.12 00	1.02 00					1.5E-01	7.4E-02	1.1E+00	4.2E-01	8.4E-02	6.4E+00	2.6E-02	1.4E+00
149	18-Dec-91													I			<u>} </u>	1.5E-01	7.5E-02	1.1E+00	4.2E-01	8.4E-02 8.5E-02	6.4E+00	2.6E-02 2.7E-02	1.4E+00
150	25-Dec-91		0.001	55 M	0.005		0.0024	0.001	0.01	·	4 2E-04	2 1E-04	2 1E-03	<u> </u>	1.0E-03	4.2E-04	2.8E-03	1.5E-01	7.6E-02	1.1E+00	4.2E-01	8.6E-02	6.4E+00	2.7E-02	1.4E+00
151	1-Jan-92 8-Jan-92		0.001	00-04	0.005		0.0024	0.001			7.46-97							1.5E-01	7.6E-02	1.1E+00	4.3E-01	8.7E-02	6.4E+00	2.7E-02	1.4E+00
153	15-Jan-92													ļ				1.5E-01	7.6E-02	1.1E+00	4.4E-01	8.8E-02	6.4E+00	2.7E-02 2.8E-02	1.4E+00
154	22-Jan-92		0.001	6E-04	0.05	<u>1</u>	0.003	0.001	1 001		1 4 2E-04	1 25F-04	2.1E-02		1.2E-03	4.2E-04	2.7E-03	1.5E-01	7.71 -02	1.1E+00	4.6E-01	8.9E-02	6.4E+00	2.8E-02	1.4E+00
156	5-Feb-92		0.001	OL-04	0.05	İ	0.000	0.001			1.22 01	2.02-04						1 6E-01	776 02	1.1E+00	4.7E-01	9.0E-02	6.4E+00	2.8E-02	1.4E+00
157	12-Feb-92											· ·						1.0E-01	7.7E-02	1.1E+00	4.9E-01	9.2E-02	6.4E+00	2.9E-02	1.4E+00
158	19-FeL-92		0.001	0.004	005	ſ	0.002	0.001	0.01		4 2E-04	1 8F-03	2.1E-02		18.5E-04	4.2E-04	2.2E-03	1.6E-01	7.8E-02	1.1E+00	5.2E-01	9.3E-02	6.4E+00	2.9E-02	1.4E+00
160	4-Mar-52		0.001		1									Į		Ì		T615 01	7.8E-02	1.1E+00	53F-01	9 3F-02	6.4E+00	2 9E-02 3 0E-02	1.4E+00
161	11-Mar-92				·	 	1		 	I	}		 			}		1.6E-01	7.8E-02	1.1E+00	5.5E-01	9.5E-02	6.4E+00	3.0E-02	1.4E+00
162	18-Mar-92 25-Mar-92		0.001	5E-04	0.05		0.002	0.001	0.01		4.1E-04	2.1E-04	2.1E-02		8.3E-04	4.1E-04	3 1E-03	1.6E-01	7.9E-02	1.1E+00	5.7E-01	9.6E-02	6.4E+00	3.0E-02	1.4E+00
164	1-Apr-92		4.041															1.6E-01	7.9E-02	1.1E+00	5.8E-01	9.7E-02	6.4E+00	3.0E-02 3.1E-02	1.4E+00
165	8-Apr-92		ļ		ļ	ļ	ļ	<u> </u>	<u> </u>			ļ	 	}	<u>├</u>			1.6E-01	7.9E-02	1.1E+00	6 0F-01	9 8F-02	6.4E+00	3 1E-02	1.4E+00
167	22-Aur-92		0.001	0.001	1.0.05		0.002	0.001	0.01		4.2E-04	4.6E-04	2.1E-02		8.3E-04	4.2E-04	2.5E-03	1.6E-01	8.0E-02	1.1E+00	6.2E-01	9.9E-02	6.4E+00	3.1E-02	1.4E+00
168	29-Ayr-92		I			i									I		1	17E-01	8.1E-02	1.1E+00	6.4E-01	1.0E-01	6.4E+00	3.2E-02	1.4E+00
169	6-May-92					1	1		1 1									7E-01	8.1E-02	1.1E+00	6.5E-01	1.0E-01	6.4E+00	3.2E-02	1.4E+00
171	20-M ²⁻⁹²¹		-0.003-	-7E-04-	0.05		0.003	0.001	0.01		1.2E-03	2.8E-04	2.0E-02	ĺ	1.2E-03	4.1E-04	2.2E-03	1.//E-01	8.2E-02	1.1E+00	6.7E-01	1.0E-01	6.4E+00	3.2E-02 3.2E-02	1.4E+00
172	27-May-92				<u> </u>											1		176-01	8.4E-02	1.1E+00	6.9E-01	1.0E-01	6.4E+00	3.3E-02	1.4E+00
173	3-Jun-92 10-Jun-92		1	1					1									17E-01	8.4E-02	1.1E+00	7.0E-01	1.1E-01	6.4E+00	3.3E-02	1.4E+00
175	17-Jun-92	_	0.004	SE-04	0.05		0.002	0.001	0.01		1.7E-03	2.1E-04	2.1E-02		8.4E-04	4.2E-04	3.6E-03	1.7 <u>E-01</u>	8.6E-02	1.1E+00	7.2E-01 7.3E-01	1.1E-01	6.4E+00	3.3E-02 3.3E-02	1.4E+00
176	24-Jun-92	ļ				1				i								17E-01	8.7E-02	1.1E+00	7.4E-01	1.1E-01	6.4E+00	3.4E-02	1.5E+00
178	8-Jul-92													<u> </u>			<u> </u>	1.7E-01	8.8E-02	1.1E+00	7.5E-01	1.1E-01	6.4E+00	3.4E-02	1.5E+00
179	15-Jul-92		10.003	0.60	3 1 0.05		0.001	0.001	0.02	1	1.3E-03	1.1E-03	2.1E-02		4.2E-04	4.2E-04	1.0E-02	1.7 <u>E-01</u>	8.9E-02	1.1E+00	7.90-01	1.1E-01	6.4E 100	3.4E-02	1.6E+00
180	22-Jul-92	ļ					1		1	[Ľ		1				1.8E-01	9.1E-02	1.1E+00	8.0E-01	1.1E-01	6.4E+00	3.5E-02	1.5E+00
182	5-Aug-92								1					[-	I.	1.8E-01	9.1E-02	1.1E+00	8.1E-01	1.1E-01	6.4E+00	3.5E-02	1.5E+00
183	12-Aug-92	[0.003	_5E-04	0.05		0.001	0.001 I	0.01	[1.3E-03	2.2E-04	2.2E-02	1	4.3E-04	4.3E-04	3.9503	1.8E-01	9.3E-02	1.1E+00	8.4E-01	1.1E-01	6.4E+00	3.6E-02	1.5E+00
184	26-Ain-92																I	1.8E-01	9.4E-02	1.1E+00	8.5E-01	1.1E-01	6.4E+00	3.6E-02	1.5E+00
186	2-Sep-92															LA OF OF		1.6 E-01	9.4E-02	1.1E+00	8.6E-01	1.2E-01	6.4E+00	3.6E-02	1.5E+00
187	9-Sep-92	-	0.002	5E-04	1 0.05		0.001	0.001	10	 	8.4E-04	2.16-04	2.1E-02		4.2E-04	4.2E-04	1.85-03	1.6 E-U1	0.6E-02	1.16400	8.9E-01	1.2E-01	54F+00	3 7F-UZ	1.51-100
189	23-Sep-92												İ					1.8E-01	9.6E-02	1.1E+00	9.0E-01	1.2E-01	6.4E+00	3.7E-02	1.5E+00
190	30-Sep-92							<u> </u>		•	-	-		· · · · · ·		4 45 04	-2 25 02-	1.8E-01	9.7E-02	1.1E+00	9.3E-01	1.2E-01	6.4E+00	3.7E-02	1.5E+00
191	14.04.02		0.003	0.001	10.05		0.001	0.001	10.01	l T	1.2E-03	4,12-04	2.1C-UZ		4.15-04	4. j ⊑-04 j	3.2E-U3	1.85-01	9.9E-02	1.1E+00	9.4E-01	1.2E-01	6.4E+00	3.8E-02	1.5E+00
193	21-00-92								L									1.9E-01	9.9E-02	1.1E+00	9.5E-01	1.2E-01	6.4E+00	3.8E-02	1.5E+00
194	28-Oct-92				0.05		0.001				1 25 02	146 641	2 45 00		4 35 04	TA 35-04	T1 46-02	1.9E-01	105-01	1.1E+00	9.9E-01	1.2E-01	6.4E+00	3.9E-02	1.5E+00
195	4-Nov-92	1	0.003	5E-04_	<u>10.05</u>	<u> </u>	<u>10.001</u>	U.001	101	-	1.32-03	2.10-04	2.15-02		4.35-04	1 4.30-14	1.46-03	1.0E 01	1.05-01	1.1E-00	1.0E+00	125-01	64E+00	3 9F-02	15E+00
	40 Nov 02		 	·····	1	1	1	1	<u>† – – – – – – – – – – – – – – – – – – –</u>	I	1	1	1	T	1	ľ	1	1.9E-01	1.0E-01	1.1E+00	1.0E+00	1.2E-01	6.4E+00	3.9E-02	1.5E+00

Dissolved Metals*: Metal Leach Rates: Currentiative metal Antmony Arsenic Copper Iven Lead Marganese Silver Zinc Artemory Artemory Artemory Artemory Artemory Iventility	Active: pper ton -Cu D-Fe prev (mgAg) E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.9E-01 E-01 2.0E-01	Iron L D-Fe D (m-4) (m-4) (m-4)	Lead Mangarities 3-Pb D-Min mp/sp (mp/sp) DE-02 4.7E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 5.0E+00 DE-02 5.1E+00 DE-02 5.1E+00 DE-02 5.2E+00 DE-02	Shur Z D-Ag D. (mpAg) (m 5.7E-03 1.01 5.9E-03 1.01 6.4E-03 1.01 6.4E-03 1.01 6.4E-03 1.11 7.0E-03 1.11 7.2E-03 1.11 8.2E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 8.4E-03 1.11 8.4E-03 1.11 9.0E-03 1.11 9.3E-03 1.11 9.3E-03 1.11	
Artimory Artemory D-Sb D-As D-Wn D-Ag D-Sb D-As D-Wn D-Ag D-As D-Wn D-Ag D-As D-Cu D-Pb D-Mn D-Ag D-As D-Cu D-As D-Cu D-As D-Cu D-As D-Cu D-As D-Cu D-As D-As D-As D-As D-As D-As D-Cu D-As D-As D-As D-As D-As <thd-as< th=""> <thd-as< th=""> D-As<th>pp# ten Cu D-Fe ghg CmgAng E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 2.0E-01 E-01 2.0E-01</th><th>Iron L D-Fe D (mode) (mode) (mode) (mode)</th><th>Lead Hangamese 3-Pb D-Min mg/sg) (mg/sg) DE-02 4.8E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 5.0E+00 DE-02 5.0E+00 DE-02 5.1E+00 DE-02 5.1E+00 DE-02 5.1E+00 DE-02 5.2E+00 DE-02 5.3E+00 DE-02 5.3E+00 DE-02 5.3E+00 DE-02 5.3E+00 DE-02 5.3E+00</th><th>Shwr Z D-Ag D (mpAg) (m (mpAg) (m 5.7E-0.3 1.01 5.9E-0.3 1.01 6.4E-0.3 1.01 6.4E-0.3 1.01 6.4E-0.3 1.01 7.0E-0.3 1.11 7.2E-0.3 1.11 8.2E-0.3 1.11 8.4E-0.3 1.11 8.4E-0.3 1.11 8.4E-0.3 1.11 8.4E-0.3 1.11 9.0E-0.3 1.11 9.3E-0.3 1.11 9.3E-0.3 1.11</th><th>2nr 2nr 2nr 2nr 2nr 2nr 2nr 2nr 2nr 2nr</th></thd-as<></thd-as<>	pp# ten Cu D-Fe ghg CmgAng E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 2.0E-01	Iron L D-Fe D (mode) (mode)	Lead Hangamese 3-Pb D-Min mg/sg) (mg/sg) DE-02 4.8E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 5.0E+00 DE-02 5.0E+00 DE-02 5.1E+00 DE-02 5.1E+00 DE-02 5.1E+00 DE-02 5.2E+00 DE-02 5.3E+00 DE-02 5.3E+00 DE-02 5.3E+00 DE-02 5.3E+00 DE-02 5.3E+00	Shwr Z D-Ag D (mpAg) (m (mpAg) (m 5.7E-0.3 1.01 5.9E-0.3 1.01 6.4E-0.3 1.01 6.4E-0.3 1.01 6.4E-0.3 1.01 7.0E-0.3 1.11 7.2E-0.3 1.11 8.2E-0.3 1.11 8.4E-0.3 1.11 8.4E-0.3 1.11 8.4E-0.3 1.11 8.4E-0.3 1.11 9.0E-0.3 1.11 9.3E-0.3 1.11 9.3E-0.3 1.11	2nr 2nr 2nr 2nr 2nr 2nr 2nr 2nr 2nr 2nr
Week No. Date D-Sb D-As D-Cu D-Fe D-Ph D-Mn D-Ag D-As D-Cu D-Ph D-Mn D-Ag D-As D-Cu D-Ph D-Mn D-Ag D-Sb D-As mg(1) mg(2) mg(1) mg(2) mg(1) mg(2) mg(1) mg(2) <	Cu D-te \$\$\phi\$\$ \$\$\phi\$\$ \$\$\pmodellimetrian 1.8E-01 \$\$E-01 1.9E-01 \$\$E-01 2.0E-01 \$\$E-01 2.0E-01 \$\$E-01 2.0E-01 \$\$E-01 2.0E-01 \$\$E-01 2.0E-01 \$\$E-01 2.0E-01 \$\$E-01 2.0E-01	D-Fe L (mp4g) fr .8E-01 2.0 .8E-01 2.0 .8E-01 2.0 .8E-01 2.0 .8E-01 2.0 .8E-01 2.0 .9E-01 2.1 .9E-01 2.1 .9E-01 2.1 .9E-01 2.3 .9E-01 2.3 .9E-01 2.3 .9E-01 2.4 .9E-01 2.5	2-PB D-WM1 mpM9 (mpM9) 05E-02 4.7E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 5.0E+00 1E-02 5.0E+00 1E-02 5.1E+00 DE-02 4.9E DE-02 4.9E DE-02 4.9E DE-02 5.1E+00 BE-02 5.2E+00 DE-02 5.3E+00 DE-02 5.3	L-Rg D-C (mp49) (m 5.7E-03 1.01 5.9E-03 1.01 6.4E-03 1.01 6.4E-03 1.01 6.4E-03 1.01 7.0E-03 1.11 7.2E-03 1.11 7.2E-03 1.11 8.2E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 8.4E-03 1.11 9.0E-03 1.11 9.3E-03 1.11	
(mg4) (mg4) <th< th=""><th>E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 2.0E-01 E-01 2.1E-01</th><th>8E-01 20 8E-01 20 8E-01 20 8E-01 20 9E-01 21 9E-01 21 9E-01 21 9E-01 22 9E-01 22 9E-01 22 9E-01 23 0E-01 24 0E-01 24 0E-01 24 0E-01 26 0E-01 26 0E-01 28 0E-01 </th><th>DE-02 4.7E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 5.0E+00 TE-02 5.0E+00 TE-02 5.1E+00 DE-02 5.2E+00 DE-02 ><th>5.7E-03 1.01 5.9E-03 1.01 6.4E-03 1.01 6.4E-03 1.01 6.8E-03 1.11 7.0E-03 1.11 7.2E-03 1.11 7.2E-03 1.11 8.0E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 9.3E-03 1.11 9.</th><th>100 100 100 100 100 100 100 100</th></th<>	E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 2.0E-01 E-01 2.1E-01	8E-01 20 8E-01 20 8E-01 20 8E-01 20 9E-01 21 9E-01 21 9E-01 21 9E-01 22 9E-01 22 9E-01 22 9E-01 23 0E-01 24 0E-01 24 0E-01 24 0E-01 26 0E-01 26 0E-01 28 0E-01	DE-02 4.7E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 5.0E+00 TE-02 5.0E+00 TE-02 5.1E+00 DE-02 5.2E+00 DE-02 .7E-03 1.01 5.9E-03 1.01 6.4E-03 1.01 6.4E-03 1.01 6.8E-03 1.11 7.0E-03 1.11 7.2E-03 1.11 7.2E-03 1.11 8.0E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 9.3E-03 1.11 9.	100 100 100 100 100 100 100 100	
66 15-M89/50 0.002 0.001 0.001 0.001 0.001 0.001 0.002 8.4E-04 4.2E-04 2.1E-03 4.2E-04 4.2E-04 8.4E-02 8.4E-02 8.2E-02 8.2E-02<	Eo1 1.8E-01 E-01 1.8E-01 E-01 1.8E-01 E-01 1.9E-01 E-01 2.0E-01	86-01 20 86-01 20 86-01 20 86-01 21 96-01 21 96-01 21 96-01 21 96-01 21 96-01 21 96-01 22 96-01 23 06-01 24 06-01 26 06-01 26 06-01 27 06-01 25 06-01	26-22 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 4.9E+00 DE-02 5.0E+00 IE-02 5.0E+00 IE-02 5.1E+00 IE-02 5.1E+00 S.2E+00 S.2E+00 SE-02 5.2E+00 SE-02 5.2E+00 SE-00 5.2E+00 SE	2.12-23 5.9E-03 1.00 6.4E-03 1.00 6.4E-03 1.01 7.0E-03 1.11 7.2E-03 1.11 7.2E-03 1.11 7.2E-03 1.11 8.0E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 9.0E-03	
67 23-migroup 82E-02 4.0E-02 1 68 30-May-90 8.8E-02 4.0E-02 1 70 13-un-90 8.8E-02 4.0E-02 1 8.8E-02 4.0E-02 1 71 20-un-90 0.002 0.001 0.005 0.001 0.01 8.3E-02 4.1E-04 5.4E-04 2.1E-03 4.1E-04 7.0E-02 4.1E-04 2.9E-03 8.4E-02 4.0E-02 1 8.4E-02 4.0E-02 1 8.4E-02 4.0E-02 1 8.4E-02 4.0E-02 4.1E-04 7.0E-02 4.1E-04 1.4E-02 8.6E-02 4.1E-02 1.4E-02 8.6E-02 4.1E-02 1.4E-02 8.6E-02 4.1E-02 1.4E-02 8.6E-02 4.1E-02 1.4E-02 1.4E-02 1.4E-02 8.6E-02 4.1E-02 1.4E-02 1	E-01 1.8E-01 E-01 1.9E-01 E-01 2.0E-01	8E-01 2.0 8E-01 2.0 9E-01 2.1 9E-01 2.1 9E-01 2.1 9E-01 2.1 9E-01 2.1 9E-01 2.2 9E-01 2.2 9E-01 2.4 0E-01 2.4 0E-01 2.4 0E-01 2.6	DE-02 4.9E+00 DE-02 4.9E+00 DE-02 5.0E+00 TE-02 5.0E+00 TE-02 5.1E+00 DE-02 5.1E+00 DE-02 5.2E+00 DE-02 5.2E+00 DE-02 5.2E+00 DE-02 5.2E+00 DE-02 5.2E+00 DE-02 5.2E+00 DE-02 5.3E+00 DE-02 5.2E+00 DE-02 .1E-03 1.00 6.4E-03 1.00 6.8E-03 1.11 7.0E-03 1.11 7.4E-03 1.11 7.4E-03 1.11 8.0E-03 1.11 8.0E-03 1.11 8.4E-03 1.11 8.4E-03 1.11 9.0E-03 1.11 9.0E-03 1.11 9.3E-03 1.11		
69 6-Jun-90 1 8.84-02 4.02-002 1 70 13-Jun-90 0.002 0.001 0.01 8.36-02 4.16-04 5.46-04 2.16-03 4.16-04 7.06-02 4.16-04 2.95-03 8.46-02 4.06-02 1 71 20-Jun-90 1 <	Eon 1.8E-01 E-01 1.9E-01 E-01 2.0E-01	JE-01 20 JE-01 21 JE-01 23 JE-01 24 JE-01 25 JE-01 26 JE-01 26 JE-01 26 JE-01 26 JE-01 26 JE-01 27 JE-01 26 JE-01 26 JE-01 27 JE-01 27 JE-01 27 JE-01 27 JE-01 27 JE-01 27 JE-01 28 JE-01 28 JE-01 28 JE-01 28	1E-02 4.3E+00 1E-02 5.0E+00 1E-02 5.0E+00 1E-02 5.1E+00 1E-02 5.1E+00 1E-02 5.1E+00 1E-02 5.1E+00 3E-02 5.2E+00 5E-02 5.2E+00 5E-02 5.3E+00 5E-02 5.3E+00 5E-02 5.3E+00 7E-02	0.62-03 1.01 7.06-03 1.11 7.06-03 1.11 7.2E-03 1.11 7.4E-03 1.11 7.4E-03 1.11 8.2E-03 1.11 8.2E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 9.0E-03 1.11 9.0E-03 1.11 9.3E-03 1.11	
70 13-447-90 0.001 0.001 0.01	E-01 1.0E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 2.0E-01	DE-01 2.1 9E-01 2.1 9E-01 2.1 9E-01 2.2 9E-01 2.3 0E-01 2.4 0E-01 2.6 0E-01 2.7 0E-01 2.7 0E-01 2.7 0E-01 2.7 0E-01 2.7 0E-01 2.7 0E-01 2.8 0E-01 2.8 0E-01 2.8 0E-01 2.8	1E 02 6.0E+00 1E-02 5.1E+00 2E-02 5.1E+00 2E-02 5.1E+00 4E-02 5.2E+00 4E-02 5.2E+00 5E-02 5.2E+00 5E-02 5.3E+00 5E-02 5.5E+00 5E-00	7.06-03 1.11 7.2E-03 1.11 7.8E-03 1.11 8.0E-03 1.11 8.2E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 8.8E-03 1.11 9.0E-03 1.11 9.3E-03 1.11 9.3E-03 1.11	
72 27-Jun 90 8.56-02 4.16-02 8.56-02 4.16-02 1.46-02 4.16-02 1.46-02 4.16-02 1.46-02 4.16-02	E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 1.9E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.1E-01 E-01 2.1E-01	9E-01 2.1 9E-01 2.1 9E-01 2.2 9E-01 2.3 0E-01 2.4 0E-01 2.5 0E-01 2.6 0E-01 2.6 0E-01 2.6 0E-01 2.6 0E-01 2.6 0E-01 2.6 0E-01 2.7 0E-01 2.8 0E-01 2.8 0E-01 2.7 0E-01 2.8 0E-01 2.8	1E-02 5.1E+00 1F-02 5.1E+00 2E-02 5.1E+00 3E-02 5.2E+00 4E-02 5.2E+00 5E-02 5.2E+00 5E-02 5.3E+00 5E-02 5.3E+00 7E-02 5.5E+00 7E-02	7.2E-03 1.11 7.4E-03 1.11 8.0E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 8.8E-03 1.11 9.0E-03 1.11 9.0E-03 1.11 9.3E-03 1.11	
73 4.18.90 0.001 0.007 0.006 0.002 0.13 0.001 0.03 4.1E-04 2.9E-03 3.3E-03 8.3E-02 4.1E-04 1.4E-02 4.1E-02	E-01 1.9E-01 E-01 1.9E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.1E-01 E-01 2.1E-01	9E-01 22 9E-01 23 .0E-01 24 .0E-01 25 .0E-01 25 .0E-01 25 .0E-01 25 .0E-01 25 .0E-01 25	2E-02 5.1E-00 3E-02 5.2E+00 4E-02 5.2E+00 5E-02 5.2E+00 5E-02 5.3E+00 6E-02 5.3E+00 6E-02 5.3E+00 7E-02 5.3E+00	7.8E-03 1.10 8.0E-03 1.10 8.2E-03 1.10 8.4E-03 1.11 8.8E-03 1.11 9.0E-03 1.11 9.3E-03 1.11 9.5E-03 1.11	E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00
75 18-bit 90 88E-02 4.1E-021 88E-02 4.1E-021 1 8.9E-02 4.2E-021 1 9.9E-02 4.3E-021 1 9.9E-02 4.3E-021 1 9.3E-02 4.3E-021 <td>E-01 1.9E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-0 E-01 2.0E-0 E-01 2.0E-0 E-01 2.0E-0 E-01 2.1E-0 E-01 2.1E-0</td> <td>9E-01 23 0E-01 24 0E-01 25 0E-01 26 0E-01 27 0E-01 27 0E-01 28 0E-01 28</td> <td>3E-02 5.2E+00 4E-02 5.2E+00 5E-02 5.2E+00 5E-02 5.3E+00 5E-02 5.3E+00 5E-02 5.3E+00 7E-02 5.3E+00</td> <td>8.0E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 8.8E-03 1.11 9.0E-03 1.11 9.3E-03 1.11 9.5E-03 1.11</td> <td>E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00</td>	E-01 1.9E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-0 E-01 2.0E-0 E-01 2.0E-0 E-01 2.0E-0 E-01 2.1E-0 E-01 2.1E-0	9E-01 23 0E-01 24 0E-01 25 0E-01 26 0E-01 27 0E-01 27 0E-01 28 0E-01 28	3E-02 5.2E+00 4E-02 5.2E+00 5E-02 5.2E+00 5E-02 5.3E+00 5E-02 5.3E+00 5E-02 5.3E+00 7E-02 5.3E+00	8.0E-03 1.11 8.2E-03 1.11 8.4E-03 1.11 8.8E-03 1.11 9.0E-03 1.11 9.3E-03 1.11 9.5E-03 1.11	E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00
76 25-JJ-90 0.021 <th< td=""><td>E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.1E-01 E-01 2.1E-01</td><td>0E-01 2.5 0E-01 2.6 0E-01 2.6 0E-01 2.7 0E-01 2.5 0E-01 2.5</td><td>5E-02 5.2E+00 6E-02 5.3E+00 6E-02 5.3E+00 6E-02 5.3E+00 7E-02 5.3E+00</td><td>8.4E-03 1.11 8.8E-03 1.11 9.0E-03 1.11 9.3E-03 1.11 9.5E-03 1.11</td><td>E+00 E+00 E+00 E+00</td></th<>	E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.1E-01 E-01 2.1E-01	0E-01 2.5 0E-01 2.6 0E-01 2.6 0E-01 2.7 0E-01 2.5 0E-01 2.5	5E-02 5.2E+00 6E-02 5.3E+00 6E-02 5.3E+00 6E-02 5.3E+00 7E-02 5.3E+00	8.4E-03 1.11 8.8E-03 1.11 9.0E-03 1.11 9.3E-03 1.11 9.5E-03 1.11	E+00 E+00 E+00 E+00
78 6-Aug-90 0.001 0.005 0.11 0.001 0.03 4.1E-04 4.6E-04 2.1E-03 4.6E-02 4.1E-04 1.2E-02 9.0E-02 4.2E-02 1.2E-03 9.0E-02 4.2E-02 1.2E-02 9.0E-02 4.2E-02 1.2E-03 9.3E-02 4.2E-02 1.2E-03 3.8E-02 4.2E-04 8.8E-03 9.4E-02 4.2E-04 7.98031 2.1E-03 3.8E-02 4.4E-02 4.2E-04 7.98031 2.1E-03 3.8E-02 4.4E-02 4.4E-02 4.2E-04 7.98031 2.1E-03	E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.1E-01 E-01 2.1E-01	0E-01 2.6 0E-01 2.6 0E-01 2.7 0E-01 2.8 0E-01 2.8	6E-02 5.3E+00 6E-02 5.3E+00 7E-02 5.3E+00	8.8E-03 1.11 9.0E-03 1.11 9.3E-03 1.11 9.5E-03 1.11	E+00 E+00 E+00
79 15-409-90 9.12-02 4.22-02 9.12-02 4.22-02 9.12-02 4.32-02 1 9.12-02 4.32-02 1 9.12-02 4.32-02 1 9.12-02 4.32-02 1 9.12-02 4.32-02 1 9.12-02 4.32-02 1 9.12-02 4.32-02 1 9.12-02 4.32-02 1 9.12-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 4.32-02 1 9.32-02 1 9.32-02 1 9.32-02 1 3.82-02 1 9.32-02 1 3.82-02 1 3.82-02 1 3.82-02 1 3.82-02 1 3.82-02 1 3.82-02 1 3.82-02 1 3.82-02 1	E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.0E-01 E-01 2.1E-01 E-01 2.1E-01	0E-01 2.7 0E-01 2.8 0E-01 2.8	7E-02 5.3E+00	9.3E-03 1.1	E+00
00 22-30-30 9.3E-02 4.3E-02 4.3E-02 1 81 29-A0-90 0.011 0.005 0.09 0.001 0.02 4.2E-04 7.98031 2.1E-03 3.8E-02 4.2E-04 8.8E-03 9.4E-02 4.3E-02 1	E-01 2.0E-01 E-01 2.0E-01 E-01 2.1E-01 E-01 2.1E-01	OE-01 2.8	BE 02 6 2E400	9 5E-03 1 1	-
82 5-Sep-90 0.001 0.019 0.005 0.09 0.001 10.02 4.2E-04 7.98031 2.1E-03 3.8E-02 4.8E-03 9.4E-02 4.8E-02 1	E-01 2.1E-01 E-01 2.1E-01 E-01 2.1E-01	UE-01 2.5	DE-02 5.3L+00	0.00 02 4 1	E+00
	E-01 2.1E-01	1E-01 3.0	9E-02 5.4E+00	1.0E-02 1.1	E+00
84 12/58/9-50 95.02 4 4E/02/2	E 04 0 45 04	1E-01 3.1	1E-02 5.4E+00	1.0E-02 1.1	E+00
86 26 Sep 90 90-02 90-02 10 10 10 10 10 10 10 10 10 10 10 10 10	E-01 2.1E-01	1E-01 3.1	2E-02 5.5E+00	1.1E-02 1.1	E+00
	E 01 2.1E-0	.1E-01 3.1	3E-02 5.5E+00	1.1E-02 1 1	EADO
86 17-0c: 90 0.00 0.00 0.00 0.00 0.00 0.00 0.00	E-01 2.1E-01 E-01 2.1E-01	1E-01 3	4E-02 5 5E+00 5E-02 5 5E+00	1 1E-02 1 2 1 2E-02 1.2	E+00
89 24-04-90 2001 0.001 0.001 0.01 42E-04 42E-04 42E-04 21E-03 33E-02 42E-04 37E-03 10E-01 45E-02 1	E-01 2.2E-01	2E-01 3.6	6E-02 5.6E+00	1.2E-02 1.2	.E+00
SU 31-04-50 000 000 000 000 000 000 000 000 000	E-01 2.2E-01	2E-01 3.0	6E-02 5.6E+00	1.2E-02 1.2	E+00
92 14-Nov-90 10E-01 4.6E-02 2	E-01 2.2E-0	2E-01 3.	8E-02 5.6E+00	1.3E-02 1.2	E+00
93 21-Nov-90 0001 0.002 0.031 0.1 0.001 0.02 4.2E-04 8.4E-04 1.3E-02 4.2E-02 4.2E-04 8.4E-03 1.0E-01 4.6E-02 2	E-01 2.4E-01	.4E-01 3.9	9E-02 5.7E+00	1.3E-02 1.2	(E+00
95 5-Dec-90 10-E-014/7E-02 2	E-01 2.4E-0	24E-01 4.0	0E-02 5.7E+00	1.3E-02 1.2 1.3E-02 1.2	2E+00
96 12-Dec-90 11.1E-01 4.7E-02 7	E-01 2.5E-01	.5E-01 4.1	1E-02 5.7E+00	1.4E-02 1.2	:E+00
37 12-DEC-50 0.001 5E-04 0.005 0.1 0.001 0.02 4.1E-04 2.1E-04 2.1E-03 4.1E-02 4.1E-04 7.0E-03 1.1E-01 4.7E-02 7	E-01 2.5E-01	5E-01 4.2	2E-02 5.8E+00	1.4E-02 1.2	E+00
99 2-Jan 91 1.1E-01 4.66-02 2 0.0	E-01 2.5E-0	5E-01 4.4	4E-02 5.8E+00	1.4E-02 1.2	2E+00
100 9-347-91 116-Jan-91	E-01 2.6E-0	2.6E-01 4.5	5E-02 5.8E+00	1.5E-02 1.2	E+00
102 23-Jen-91 0.001 5E-04 0.005 0.1 0.001 0.02 4.2E-04 2.1E-03 4.2E-02 4.2E-04 6.7E-03 1.1E-01 4.8E-02 2	E-01 2.6E-0	6E-01 4.0	6E-02 5.9E+00	1.5E-02 1.2	E+00
103 30-Jan-91 1.1E-014.9E-02 7	E-01 2.6E-01	6E-01 4.7	7E-02 5.9E+00	1.5E-02 1.2	E+00
105 13-Feb-91 1.1E-01 4.9E-02 2 105 13-Feb-91 2.4 2E-04 2.4E-03 2.4E-03 1.1E-01 4.9E-02 2	E-01 2.6E-0	2.6E-01 4.8	8E-02 5.9E+00 9E-02 6.0E+00	1.6E-02 1.2 1.6E-02 1.2	2E+00
106 20-Feb-91 0.001 5E-04 0.005 0.07 0.001 0.01 4.2E-04 2.1E-04 2.1E-04 2.1E-04 1.1E-01 5.0E-02 7	E-01 2.6E-0	2.6E-01 5.0	0E-02 6.0E+00	1.6E-02 1.2	/E+00
108 6-Mar-91 12E-0150E-022	E-01 2.7E-0	2.7E-01 5.0	0E-02 6.0E+00	1.7E-02 1.2	2E+00
109 13-Mar-91 0.001 0.001 0.005 0.12 0.001 0.01 4.1E-04 5.8E-04 2.1E-03 6.0E-02 4.1E-04 5.0E-03 1.2E-01 5.1E-02 7	E-01 2.7E-0	2.7E-01 5.2	2E-02 6.1E+00	1.7E-02 1.2	2E+00
111 27-Mar-91 12E-015.1E-02 7	E-01 2.7E-0	2.7E-01 5.3	3E-02 6.1E+00 4E-02 6 1E+00	1.7E-02 1.2	2E+00
112 3-Apr-91 12E-01 5:1E-021	E-01 2.7E-0	2.7E-01 5.	5E-02 6.2E+00	1.8E-02 1.2	2E+00
114 17-Apr-91 0.001 0.003 0.009 0.12 0.001 0.01 4.2E-04 1.2E-03 3.8E-03 5.0E-02 4.2E-04 5.5E-03 1.2E-01 5.2E-02 7	E-01 2.8E-0	2.8E-01 5	5E-02 6.2E+00	1.8E-02 1.2	:E+00 2E+00
115 24-Apr-91 112E-01 5.2E-021 2 116 1.4May 91 112E-01 5.2E-021 2	E-01 2.8E-0	2.8E-01 5.	7E-02 6.2E+00	1.9E-02 1.3	3E+00
116 1-Mary 91 1 12-01152-0227	E-01 2.8E-0	2.8E-01 5.4	8E-02 6.3E+00	1.9E-02 1.3	JE+00
118 15-May-91 0.001 0.12 0.005 0.07 0.001 0.01 4.1E-04 5.0E-02 2.1E-03 2.9E-02 4.1E-04 3.3E-03 1.2E-01 5.3E-02 4	E-01 2.8E-0	2.8E-01 5.	0E-02 6.3E+00	1.9E-02 1.3	3E+00
119 22-May-91 1.3E-01 5.4E-02 4	E-01 2.9E-0	2.9E-01 6.0	0E-02 6.3E+00	2.0E-02 1.3	3E+00
121 5-Jun-91 13E-01 5-4E-021 5 13E-01 5-4E-021 5 13E-01 5-4E-021 5 13E-01 5-4E-021 5 13E-01 5-6E-021 1 3E-01 5-6E-021 5	E-01 2.9E-0	2.9E-01 6.	1E-02 6.3E+00 2E-02 6.4E+00	2.0E-02 1.3	3E+00
122 12-Jun-91 0.04 0.72 0.005 0.00 0.01 1.7E-03 3.0E-01 2.1E-03 2.1E-02 2.2E-04 2.3E-04 0.4E-04	E-01 2.9E-0	2.9E-01 6.	3E-02 6.4E+00	2.0E-02 1.3	JE+00
124 26-Jun-91 13E-01 5.8E-021 1 13E-01 5.8E-021 1 13E-01 5.8E-021	E+00 2.9E-0 E+00 3.0F-0	2.9E-01 6.4	4E-02 6.4E+00 5E-02 6.4E+00	2.1E-02 1.3	3E+00
125 3-JJ-91 126 10-JJ-91 0.004 0.003 0.017 0.018 0.001 0.09 1.7E-03 1.2E-03 7.0E-03 7.4E-03 4.1E-04 3.7E-02 1.3E-01 6.0E-02 1	E+00 3.0E-0	.0E-01 6.	5E-02 6.4E+00	2.1E-02 1.3	E+00
127 17-Jul-91 13E-01 6.1E-02 1	E+00 3.0E-0	SOE-01 6.0	6E-02 6.4E+00 7E-02 6.4F+00	2.2E-02 1.3	1E+00
	E-00 3 1E A			225.02 14	E400
130 7-Aug-91 0.004 9E-04 0.009 0.0097 0.001 0.02 1 1.6E-03 3.6E-04 3.6E-03 3.6E-03 4.0E-04 8.0E-03 1.3E-01 6.4E-02 1	E+00 3.2E-0	3.2E 01 6.0	0E 02 6.4E+00	2.25 02 1.4	1E400

3

								1																	
		Dissolved Metals*:				1			Metal Leach Rates:					1			Cumula	tive Meta	I Leach F	Rates:					
								1																	
		Antimony	Arsenic	Copper	Iron	Load	Manganese	Silver	Zinc	Antemony	Arsenic	Copper	Iron	Lood	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	iron	Leed	Manganese	Silver	Zirvc
Week No.	Date	D-Sb	D-As	DCu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
		(mgA.)	(mg/L)	(mgL)	(mgA.)	(mg/L)	(mg/L)	(mgA.)	(mgA_)	(mg/kg/wk)	(mg/sg/wk)	(mg/kg/wk)	(mgAg/wk)	(mghqhik)	(mgAgAwk)	(mg/kg/uk)	(mg/kg/wk)	(mg/kg)	(mg/kg)	(mgAtg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mgArg)
264	2-Mar-94																	2.4E-01	1.5E-01	1.2E+00	1.9E+00	1.8E-01	6.5E+00	6.4E-02	2.0E+00
265	9-Mar-94																	2.5E-01	1.5E-01	1.2E+00	1.9E+00	1.8E-01	6.5E+00	6.5E-02	2.0E+00
266	16-Mar-94																	2.5E-01	1.5E-01	1.2E+00	1.9E+00	1.8E-01	6.5E+00	6.5E-02	2.0E+00
267	23-Mar-94			0.001	0.05		0.001		0.01			5.8E-04	2.1E-02		4.1E-04		5.4E-03	2.5E-01	1.5E-01	1.2E+00	1.9E+00	1.8E-01	6.5E+00	6.5E-02	2.0E+00
268	30-Mar-94																	2.5E-01	1.5E-01	1.2E+00	1.9E+00	1.8E-01	6.5E+00	6.6E-02	2.0E+00
269	6-Apr-94																	2.5E-01	1.6E-01	1.2E+00	1.9E+00	1.8E-01	6.5E+00	6.6E-02	2.0E+00
270	13-Apr-94						1											2.5E-01	1.6E-01	1.2E+00	2.0E+00	1.8E-01	6.5E+00	6.7E-02	2.0E+00
271	20-Apr-94			8E-04	0.05	[.	0.001		0.01			3.3E-04	2.1E-02		4.1E-04		5.8E-03	2.5E-01	1.6E-01	1.2E+00	2.0E+00	1.9E-01	6.5E+00	6.7E-02	2.0E+00
272	27-Apr-94																	2.5E-01	1.6E-01	1.2E+00	2.0E+00	1.9E-01	6.5E+00	6.7E-02	2.0E+00
273	4-May-94										-							2.5E-01	1.6E-01	1.2E+00	2.0E+00	1.9E-01	6.5E+00	6.8E-02	2.0E+00
274	11-May-94																	2.5E-01	1.6E-01	1.2E+00	2.0E+00	1.9E-01	6.5E+00	6.8E-02	2.0E+00
275	18-May-94			9E-04	0.05		0.001		0.02			3.8E-04	2.1E-02		4.2E-04		9.2E-03	2.5E-01	1.6E-01	1.2E+00	2.0E+00	1.9E-01	6.5E+00	6.9E-02	2.1E+00
276	25-May-94					1	1				<u> </u>							2.5E-01	1.6E-01	1.2E+00	2.0E+00	1.9E-01	6.5E+00	6.9E-02	2.1E+00
277	1-Jun-94						1	1										2.5E-01	1.6E-01	1.2E+00	2.0E+00	1.9E-01	6.5E+00	6.9E-02	2.1E+00
278	8-Jun-94																	2.6E-01	1.6E-01	1.2E+00	2.1E+00	1.9E-01	6.5E+00	7.0E-02	2.1E+00
279	15-Jun-94			0.005	0.05		0.001		0.02			1.9E-03	2.1E-02		4.1E-04		9.5E-03	2.6E-01	1.6E-01	1.2E+00	2.1E+00	1.9E-01	6.5E+00	7.0E-02	2.1E+00
280	22-Jun-94												1					2.6E-01	1.6E-01	1.2E+00	2.1E+00	1.9E-01	6.5E+00	7.1E-02	2.1E+00
281	29-Jun-94						1											2.6E-01	1.7E-01	1.2E+00	2.1E+00	1.9E-01	6.5E+00	7.1E-02	2.1E+00
282	6-Jul-94						1											2.6E-01	1.7E-01	1.2E+00	2.1E+00	1.9E-01	6.5E+00	7.1E-02	2.1E+00
283	13-Jul-94			0.006	0.05		0.001		0.03			2.5E-03	2.1E-02		4.1E-04		1.3E-02	2.6E-01	1.7E-01	1.2E+00	2.1E+00	2.0E-01	6.5E+00	7.2E-02	2.1E+00
284	20-Jul-94							1										2.6E-01	1.7E-01	1.2E+00	2.2E+00	2.0E-01	6.5E+00	7.2E-02	2.1E+00
285	27-Jul-94							1										2.6E-01	1.7E-01	1.2E+00	2.2E+00	2.0E-01	6.5E+00	7.3E-02	2.1E+00
286	3-Aug-94																	2.6E-01	1.7E-01	1.2E+00	2.2E+00	2.0E-01	6.5E+00	7.3E-02	2.1E+00
																				-					
Maximum		0.019	0.012	0.72	0.06	0.003	0.17	0.001	0.1	7.2E-03	4.5E-03	3.0E-01	2.6E-02	1.2E-03	7.0E-02	4.3E-04	4.2E-02	2.6E-01	1.7E-01	1.2E+00	2.2E+00	2.0E-01	6.5E+00	7.3E-02	2.1E+00
Minimum		0.002	0.001	0.0005	0.005	0.001	0.001	2E-04	0	8.2E-04	4.1E-04	2.1E-04	1.6E-03	3.8E-04	4.1E-04	7.6E-05	9.6E-04	7.2E-03	4.5E-03	1.7E-03	2.7E-03	3.8E-04	7.0E-02	1.6E-05	1.1E-02
Mean		0.005	0.002	0.0153	0.028	0.001	0.029	0.0008	0.03	2.2E-03	8.6E-04	6.4E-03	1.2E-02	4.7E-04	1.2E-02	3.1E-04	1.2E-02	1.5E-01	7.8E-02	7.1E-01	7.1E-01	8.4E-02	5.3E+00	2.8E-02	1.3E+00
Median		0.005	0.001	0.0014	0.025	0.001	0.002	0.0010	0.02	2.1E-03	4.2E-04	5.8E-04	1.0E-02	4.2E-04	8.4E-04	4.1E-04	7.1E-03	1.4E-01	7.2E-02	1.1E+00	3.8E-01	7.9E-02	6.4E+00	2.5E-02	1.4E+00
Mean Last	8 Weeks			0.0053	0.050		0.001	[0.03			2.2E-03	2.1E-02		4.1E-04	-	1.1E-02	2.6E-01	1.7E-01	1.2E+00	2.1E+00	1.9E-01	6.5E+00	7.2E-02	2.1E+00
1	T			1																			I	L]	
75% Rema	aining (Wks)						1	1			·												L		
50% Rem	aining (Wks)			1		1	1		1														I	L	L
25% Rem	ining (Wks)			1		1		1	·								·								
0% Remai	nina (Wks)			1		1	[· · · · ·	i			[1										L
1-10-100	1			t		t	t	1		1	1				1	1									1

		Diegoby	d Mate							Natal La	ach Rate							Cumula	tive Meta	l Leach	Rates:				1
		DISTOIN								motal Co.		Î	· · · ·					1			1			1	
		Antimony	Arsenic	Copper	iron	Lond	Manganese	Silver	Zinc	Antemony	Arsenic	Copper	iron	Load	Manganese	Silver	Zinc	Antimorry	Arsenic	Copper	aron	Lond	Manganese	Silver	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb (motortat)	D-As	D-Cu	D-Fe	D-Pb (moto/wk)	D-Mn (mohahiti)	D-Ag (monometa)	(monanta)	(ma/ka)	(mo/kg)	(ma/kg)	(mg/kg)	(mg/kg)	(mgAtg)	(mg/kg)	(mg/kg)
		(mpc)	(mga.)	(ingic)	(myr.)	(myr.)	(11)	(myc)	(ingra)	1															
198	25-Nov-92														0.05.00	4 05 04	0.05.04	1.9E-01	1.0E-01	1.1E+00	1.0E+00	1.2E-01	6.4E+00	3.9E-02	1.5E+00
199	2-Dec-92		0.002	0.003	0.05		0.007	0.001	0		8.4E-04	1.0E-03	2.1E-02		2.9E-03	4.2E-04	9.02-04	1.9E-01	1.0E-01	1.1E+00	1.0E+00	1.3E-01	6.4E+00	4.0E-02	1.5E+00
200	9-Dec-92 16-Dec-92																	1.9E-01	1.0E-01	1.1E+00	1.1E+00	1.3E-01	6.4E+00	4.0E-02	1.5E+00
202	23-Dec-92																	1.9E-01	1.0E-01	1.1E+00	1.1E+00	1.3E-01	6.4E+00	4.0E-02	1.5E+00
203	30-Dec-92		0.001	0.009	0.05		0.004	0.001	0.02		4.2E-04	3.8E-03	2.1E-02		1.7E-03	4.2E-04	6.7E-03	1.9E-01	1.0E-01	1.1E+00	1.1E+00	1.3E-01	6.5E+00	4.1E-02	1.5E+00
204	6-Jan-93																	2.0E-01	1.1E-01	1.1E+00	1.1E+00	1.3E-01	6.5E+00	4.1E-02	1.5E+00
205	13-Jai P33		0.002	0.002	0.05		0.001	0.001	0.07		0 45 04	4 45 02	2 16.02			4 25.04	-2 05 72	3 8E-81	1 1E-81	115:189	1 1E±88	13E-81	6.5E+00	4.1E-02	1.5E+00
207	27-Jan-93		0.002	0.003	0.05	1	0.001	0.001	0.07		0.46-94	F1.1E-03	2.10-04		9.25-04	9.26-04	2.36-02	2.0E-01	1.1E-01	1.1E+00	1.2E+00	1.3E-01	6.5E+00	4.2E-02	1.6E+00
200	10 Feb 02																	2.0E-01	1.1E-01	1.1E+00	1.2E+00	1.3E-01	6.5E+00	4.2E-02	1.6E+00
210	17-Feb-93				L	İ					0.45.04	6 45 04	0.05.00		4 15 04	4 15 04	A 15.02	2.0E-01	1.1E-01	1.1E+00	1.2E+00	1.3E-01	6.5E+00	4.2E-02	1.6E+00
211	24-Feb-93		0.002	0.002	0.05	 	0.001	0.001	0.1		8.1E-04	0.1E-04	2.0E-02	·	9.10-04	4.16-04	9.10-02	2.0E-01	1.1E-01	1.1E+00	1.2E+00	1.4E-01	6.5E+00	4.3E-02	1.7E+00
212	10-Mar-93																	2.0E-01	1.1E-01	1.1E+00	1.2E+00	1.4E-01	6.5E+00	4.3E-02	1.7E+00
214	17-Mar-93																	2.0E-01	1.1E-01	1.1E+00	1.2E+00	1.4E-01	6.5E+00	4.4E-02	1.7E+00
215	24-Mar-93			0.004	0.05		0.003		0.01			1.5E-03	2.0E-02		1.26-03		3.4E-03	2.0E-01	1.1E-01	1.1E+00	1.3E+00	1.4E-01	6.5E+00	4.5E-02	1.7E+00
217	7-Apr-93																	2.1E-01	1.1E-01	1.1E+00	1.3E+00	1.4E-01	6.5E+00	4.5E-02	1.7E+00
218	14-Apr-93																	2.1E-01	1.1E-01	1.1E+00	1.3E+00	1.4E-01	6.5E+00	4.6E-02	1.7E+00
219	21-Apr-93			0.001	0.05	ļ	0.002		0.08			5.5E-04	2.1E-02		8.4E-04		3.4E-02	2.1E-01	1.2E-01	1.1E+00	1.3E+00	1.4E-01	6.5E+00	4.6E-02	1.8E+00
220	28-Apr-93					 				·						<u> </u>		2.1E-01	1.2E-01	1.1E+00	1.3E+00	1.4E-01	6.5E+00	4.7E-02	1.8E+00
222	12-May-93																	2.1E-01	1.2E-01	1.1E+00	1.3E+00	1.4E-01	6.5E+00	4.7E-02	1.8E+00
223	19-May-93			0.003	0.05		0.001		0.02			1.0E-03	2.1E-02		4.1E-04		7.0E-03	2.1E-01	1.2E-01	1.1E+00	1.3E+00	1.5E-01	6.5E+00	4.8E-02	1.8E+00
224	26-May-93					 												2.1E-01	1.2E-01	1.1E+00	1.4E+00	1.5E-01	6.5E+00	4.8E-02	1.8E+00
225	9-Jun-93					<u> </u>						t						2.1E-01	1.2E-01	1.1E+00	1.4E+00	1.5E-01	6.5E+00	4.9E-02	1.8E+00
227	16-Jun-93			0.002	0.05		0.001		0.05			6.7E-04	2.1E-02		4.2E-04		2.2E-02	2.1E-01	1.2E-01	1.1E+00	1.4E+00	1.5E-01	6.5E+00	4.9E-02	1.8E+00
228	23-Jun-93											<u> </u>				<u> </u>		2.1E-01	1.2E-01	1.1E+00	1.4E+00	1.5E-01	6 5E+00	5.0E-02	1.9E+00
229	30-JUN-93 7- Hill 93					 					i							2.2E-01	1.2E-01	1.1E+00	1.4E+00	1.5E-01	6.5E+00	5.0E-02	1.9E+00
231	14-Jul-93			6E-04	0.05	1	0.001		0.01			2.5E-04	2.1E-02		4.2E-04		4.0E-03	2.2E-01	1.2E-01	1.1E+00	1.5E+00	1.5E-01	6.5E+00	5.1E-02	1.9E+00
232	21-Jul-93											ļ						2.2E-01	1.3E-01	1.1E+00	1.5E+00	1.5E-01	6.5E+00	5.1E-02	1.9E+00
233	28-Jul-93																	2.2E-01	1.3E-01	1.1E+00	1.5E+00	1.5E-01	6.5E+00	5.2E-02	1.9E+00
235	11-Aug-93	···		0.002	0.05		0.001		0.01			1.0E-03	2.2E-02		4.3E-04		2.9E-03	2.2E-01	1.3E-01	1.1E+00	1.5E+00	1.6E-01	6.5E+00	5.2E-02	1.9E+00
236	18-Aug-93																	2.2E-01	1.3E-01	1.1E+00	1.5E+00	1.6E-01	6.5E+00	5.3E-02	1.9E+00
237	25-Aug-93					 										<u> </u>		2.2E-01	1.3E-01	1.1E+00	1.5E+00	1.6E-01	6.5E+00	5.4E-02	1.9E+00
238	1-360-93			0.001	0.05		0.001		0.02			5.5E-04	2.1E-02		4.2E-04		7 15 03	2.2E-01	1.3E-01	1.2E+00	1.6E+00	1.6E=01	8.5E+00	5.4E-02	1.9E+99
240	22-Sep 03					1			1				l			1		2.3E-01	1.3E-01	1.2E+00	1 6E+00	1.6E-01	6.5E+00	5.5E-02	1.9E+00
242	29-Sep-93											345.04	0.45.00		1 15 01		7 05 02	2.3E-01	1.3E-01	1.2E+00	1.6E+00	1.6E-01	6.5E+00	5.5E-02	1.9E+00
243	6-Oct-93		ŀ	0.002	0.05		0.001		0.02			1.UE-04	2.16-02		4.16-04		1.02-03	2.3E-01	1.4E-01	1.2E+00	1.6E+00	1.6E-01	6.5E+00	5.6E-02	1.9E+00
244	20-Oct-93		<u> </u>															2.3E-01	1.4E-01	1.2E+00	1.6E+00	1.6E-01	6.5E+00	5.6E-02	1.9E+00
246	27-Oct-93																	2.3E-01	1.4E-01	1.2E+00	1.6E+00	1.6E-01	6.5E+00	5.7E-02	1.9E+00
247	3-Nov-93			5E-04	0.05		0.001		0.02			2.1E-04	2.1E-02		4.2E-04		7.1E-03	2.3E-01	1.4E-01	1.2E+00	1.7E+00	1.7E-01	6.5E+00	5.7E-02	1.9E+00
248	10-Nov-93		· ·													<u> </u>		2.3E-01	1.4E-01	1.2E+00	1.7E+00	1.7E-01	6.5E+00	5.8E-02	1.9E+00
250	24-Nov-93																	2.3E-01	1.4E-01	1.2E+00	1.7E+00	1.7E-01	6.5E+00	5.8E-02	1.9E+00
251	1-Dec-93			5E-04	0.05		0.001		0.02			2.1E-04	2.1E-02		4.1E-04	<u> </u>	6.2E-03	2.3E-01	1.4E-01	1.2E+00	1.7E+00	1.7E-01	6.5E+00	5.9E-02	1.9E+00
252	8-Dec-93		i			<u> </u>	<u> </u>					 				 		2.4E-01	1.4E-01	1.2E+00	1.7E+00	1.7E-01	6.5E+00	6.0E-02	1.9E+00
255	22-Dec-93					<u> </u>												2.4E-01	1.4E-01	1.2E+00	1.7E+00	1.7E-01	6.5E+00	6.0E-02	2.0E+00
255	29-Dec-93			5E-04	0.05		0.001		0.03			2.1E-04	2.1E-02		4.2E-04		1.0E-02	2.4E-01	1.4E-01	1.2E+00	1.8E+00	1.7E-01	6.5E+00	6.1E-02	2.0E+00
256	5-Jan-94					<u> </u>			<u> </u>									2.4E-01	1.5E-01	1.2C+00	1.8E+00	1.7E-01	6.5E+00	6.1E-02	2.0E+00
25/	12-Jan-94											<u> </u>						2.4E-01	1.5E-01	1.2E+00	1.8E+00	1.7E-01	6.5E+00	6.2E-02	2.0E+00
260	26. Ian 04			8E-04	0.05		0.001		0.02			3.3E-04	2.1E-02		4.2E-04		8.4E-03	2.4E-81	1:55-01	1.20+00	1.8E+00	1.8E-01	6.5E+00	6.2E-02	2.0E+00
260	8-Feb-94				1	, <u> </u>	· · · · · · · · · · · · · · · · · · ·							. – –		• •		2.4E-01	1.5E-01	1.2E+00	1.8E+00	1.8E-01	6.5E+00	6.3E-02	2.0E+00
262	16-Feb-94																	2.4E-01	1.5E-01	1.2E+00	1.9E+00	1.8E-01	6.5E+00	6.3E-02	2.0E+00
263	23.Feb.04			0.004	0.05	1	0.001		0.02			1.8E-03	2.1E-02		4.2E-04	I	7.1E-03	2.4E-01	1.5E-01	11.2E+00	11.9E+00	1.8E-01	0.01:+00	0.4E-UZ	12.00100

Samatosum Mine Humidity Cell - Column 2 (Encapsulated 3 Layers)

B3. Column 3

⁴ re-Ted ABA 8 ICP Metals D iamatosum Mine Column 3 (Encapsulated 5 Lay	ers)		Post-Test ABA iamatosum Minu >olumn 3 (Enca
nitial Sample Weight (dry) (g)		46150	' inal Sample We
BA Results: Slurry pH % S (Total) % S (Sulphate) % S (Sulphide) % S (Sulphide)		8.41 2.35	\BA Results: Paste pH % S (Total) % S (Sulphate) % S (Sulphide)
TAP (tonne CaCO3/ktonne)		73	% S (BaS04) TAP (tonne Ca
SAP (tonne CaCO3/ktonne)		70.00	SAP (tonne Cat
Carbon (%)		79.33	NP (tonne CaC) Carbon (%)
CaNP (t CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) ENNP (tonne CaCO3/ktonne)		6	CaNP (t CaCO3 TNNP (tonne C SNNP (tonne C BNNP (tonne C
TNPR SNPR RNPR		1.08	TNPR SNPR RNPR
Surface Area: Surface Area (m2/kg)		1.51	Surface Area: Surface Area (n
Aluminum Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Calcium Chromium Cobalt Copper Iron Lanthium Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Selenium Silver Sodium Strontium Thallium Tin Titanium Tungsten	AI b S A a a e b C C c c c e a b b C C c c c e a b i ggr. B a i b C C c c c e a b i ggr. B a i i ggr. S A g a a r F S T i W	Data Not A vailable	Aluminum Antimony Arsenic Barium Beryllium Bismuth C a d m i u m Calcium C h r o m i u m Cobalt Copper Iron Lanthium Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Selenium Silver Sodium Strontium Thallium Tin Titanium Tungsten

& ICP Metals Data psulated 5 Layers) ight (dry) (g) O3/ktonne) Data O3/ktonne) Not D3/ktonne) Available /ktonne) CO3/ktonne) aCO3/ktonne) aCO3/ktonne) 12/kg) Al Sb As Ва Вe Bi Сd Сa Cr Data со Not Available сu Fe La Ρb Li Mg Мň Hg Mo Ni Ρ Κ Se Ag Νa Sr ΤI Sn Ti W V Ζn

NOTE: When metals were reported as < detection *limit*, half the value of the detection limit is shown in italics, and WaS used in subsequent calculations.

١

Samatosum Mine Column 6 (Mafic Over Oxidized Footwal PAG) tial Sample Weight (dry) (g) BA Results: Taske pH & S (Sulphide) & S (Sulphide)	Pre-Test ABA & ICP Metals Da	ta		Post-Test ABA 8 ICP Metals Data	
Column 6 (Mafic Over Oxidized Footwall PAG) Itial Sample Weight (dry) (g) Pase put:	Samatosum Mine			Siamatosum Mine	
Nial Sample Weight (dry) (g) inal Sample Weight (dry) (g) BA Results: Paste pH % 5 (Total) b % 5 (Sulphate) b % 5 (Sulphate) D sta % 5 (Sulphate) Not % 5 (Sulphate) Not % 6 (Sulphate) Not % 7 (Conce CaCO3/ktonne) Not AP (tonne CaCO3/ktonne) Available Carbon (%) CaCO3/ktonne) AP (tonne CaCO3/ktonne) Available NNP (tonne CaCO3/ktonne) Not NNP (tonne CaCO3/ktonne) Surface Area: Surface Area:	Column 6 (Mafic Over Oxidized	Foot	wall PAG)	Column 6 (Mafic Over Oxidized For	hvall PAG)
wiai Sample Weight (dry) (g) inal Sample Weight (dry) (g) BA Results: raste ph & S (Cola) & S (Sulphale) &	I. +				-
Bar Results: Paste pH % 5 (Total) % 5 (Subplate) % 5 (Subplate) bate % 6 (GacO3/ktonne) Available 2arber (*%) CacO3/ktonne) API (cone CacO3/ktonne) Available 2arber (*%) CacO3/ktonne) NNP (cone CacO3/ktonne) Not NPR (cone CacO3/ktonne) Not NPR (cone CacO3/ktonne) Not Antimory Sbae Surface Area: Surface Area: Surface Area (marke) Barylin Be Berylin Be Berylin	vitial Sample Weight (drv) (g)			inal Sample Weight (drv) (g)	
BAResults: UBA Results: Faste pH 6.5 (Cola) Paste pH 6.5 (Sulphate) 6.5 (Sulphate) % 5 (Sulphate) 6.5 (Sulphate) 0.5 (Sulphate) % 5 (Sulphate) 6.5 (Sulphate) 0.5 (Sulphate) % 5 (Sulphate) 6.5 (Sulphate) 0.5 (Sulphate) % 5 (Sulphate) 7AP (conce CaCO3/ktonne) Available Not AP (conc CaCO3/ktonne) Available Not AP (conc CaCO3/ktonne) Available Not YNP (conce CaCO3/ktonne) Available Carbon (%) Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: </th <th>(dry) (g)</th> <th></th> <th></th> <th>inal campic weight (ary) (g)</th> <th></th>	(dry) (g)			inal campic weight (ary) (g)	
ass pri b S (Sulphate) b S (Sulphat	BA Results:			\BA Results:	
b & S (Subjinate) b & S (Subjinate) k & S (Subjinate) b & S (Subjinate) k & S (Subjinate) b & S (Subjinate) k & S (Backol) Available AP (conce CacC03/ktonne) Available 2arbon (%) Available 2arby (tonce CaCC03/ktonne) Available SNPP (conce CaCC03/ktonne) Available SNP (conce CaCC03/ktonne) Available SNP (conce CaCC03/ktonne) Nor NNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) NNPR SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) Nor NPR SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) SNNP (conce CaCC03/ktonne) Caccos As Saface Area (m2/kg) Ococe Caccos <t< th=""><th>K S (Total)</th><th></th><th></th><th>Masic pH</th><th></th></t<>	K S (Total)			Masic pH	
k S (Suphide) Data k S (BaS04) Data AP (conne CaCO3/ktonne) Not AP (conne CaCO3/ktonne) Available arbon (%) Available arbon (%) Available SNPR (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Available SNPR (conne CaCO3/ktonne) Not Ammony Suface Area: Surface Area: Surface Area: Barium Ba Beryllum Ba Beryllum Ba Beryllum Ba Beryllum Ba Beryllum Ba Lithium La Laad Pb Lithium La <tr< th=""><th>K S (Sulphate)</th><th></th><th></th><th>% S (Sulphate)</th><th></th></tr<>	K S (Sulphate)			% S (Sulphate)	
k S (BaS04) Data XAP (corne CaCO3/ktonne) Not AP (corne CaCO3/ktonne) Available Sarbo (%) CaCO3/ktonne) Pathe (torne CaCO3/ktonne) Available Sarbo (%) CaCO3/ktonne) SNP (corne CaCO3/ktonne) Available SNP (corne CaCO3/ktonne) Available SNP (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not SNPR (corne CaCO3/ktonne) SNNP (corne CaCO3/ktonne) RNNP (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) SNNP (corne CaCO3/ktonne) RNNP (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) Not Not Not Aurinom Aluininum Aurinom Aluininum Aurinom Aluininum Catornium Calco Cob	% S (Sulphide)			% S (Sulphide)	
Image: Application in the second state of the sec	% S (BaS04)			% S (BaS04)	
SAP (tonne CaCO3/ktonne) VP (tonne CaCO3/ktonne) Carbon (%) Nor SAP (tonne CaCO3/ktonne) NP (tonne CaCO3/ktonne) Available Carbon (%) CaNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) Nor Nor Available SNPR (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) NNP SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) NNP SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) NNP SNNP (tonne CaCO3/ktonne) NNP SNNP SNPR NNP SNNP SNNP Surface Area: Surface Area: Surface Area: Surface Area Muminum Al Antimony Sb As Barium Ba Beryllium Be Bismuth Bi Bismuth Bi Catonium Ca Calcium Ca Catinum Ca Calcium Ca Cobalt CO Not Cobalt Co Copper cu Available Nor Available Iton Fe Lanthium La Laed Lead Pb Lathium La Laed Lead Pb Maganese Mr Maganese Mr Maganese </th <th>TAP (tonne CaCO3/ktonne)</th> <th></th> <th>Data</th> <th>TAP (tonne CaCO3/ktonne)</th> <th>Data</th>	TAP (tonne CaCO3/ktonne)		Data	TAP (tonne CaCO3/ktonne)	Data
IVP (tonne CaCO3/ktonne) Available NP (tonne CaCO3/ktonne) Available Carbon (%) CaCO3/ktonne) NP (tonne CaCO3/ktonne) Available SNNP (tonne CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) SNPR SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNPR Surface Area: Surface Area: Surface Area: Surface Area (m2/kg) 0.00 Vetals: (ppm) Autimony Auminum Al Antimony Sb Arsenic As Barium Ba Beryllium Ba Beryllium Ba Beryllium Ba Beryllium Ba Calcium Ca Cadium Ca Carbait C0 Not Cobalt Cob Cobalt C0 Not Cobalt Cob Cobalt Cobal Po Lathium La Lead Pb Lithium Magnesium	SAP (tonne CaCO3/ktonne)		Not	SAP (tonne CaCO3/ktonne)	Not
2arbon (%) Carbon (%) 2ANP (CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNPR (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNPR (tonne CaCO3/ktonne) 0.00 Iurface Area: Surface Area: Surface Area (m2/kg) 0.00 fetals: (ppm) Atminum Auminum Al Antimony Sb Arenic As Barlum Ba Brinum Ba Bisnuth Bi Cator Cator Cotalt C0 Copper cu Available Copper Iron Fe Lithium La Lead Pb Lithium La Magnesum Mg Magnaese Mr Magnaese Mr Magnaese Mr Magnaese Mr Molybdenum K Selenium Se <td>NP (tonne CaCO3/ktonne)</td> <td></td> <td>Available</td> <td>NP (tonne CaCO3/ktonne)</td> <td>A vailable</td>	NP (tonne CaCO3/ktonne)		Available	NP (tonne CaCO3/ktonne)	A vailable
2aNP (CaCO3/ktonne) TNNP (conne CaCO3/ktonne) TNNP (conne CaCO3/ktonne) TNNP (conne CaCO3/ktonne) TNPR SNPR SNPR SNPR SNPR SNPR Surface Area: Surface Area: Surface Area (m2/kg) 0.00 fetals: (ppm) Auminum Antimony Ab Antimony Sb Arsenic As Barruin Ba Berryllium Be Bismuth Bi Catoruin Ca Caticum Ca Catoruin Ca Catoruin Ca Catoruin Ca Catoruin Ca Catarium Ca Cabit Co Cobait Co Copper cu Veraiscim K Cappersim Mr Magnesium Mc Molybdenum Mc Nickel Ni Phosphorus P Potassium K Stontium <t< td=""><td>Carbon (%)</td><td></td><td></td><td>Carbon (%)</td><td></td></t<>	Carbon (%)			Carbon (%)	
INNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) RNNP (tonne CaCO3/ktonne) INNP (tonne CaCO3/ktonne) INNP (tonne CaCO3/ktonne) INNP (tonne CaCO3/ktonne) SNPR SNPR RNPR Surface Area: Surface Area (m2/kg) 0.00 fetals: (ppm) Aluminum Antimony Sb Arsenic Barium Ba Beryllium Be Barium Ca Cadmium Ca Cadmium Ca Cobalt Co Iton Fe Lathium La Ladd Pb Lithium La Ladd Pb Lithium La Ladd Pb Lithium La Ladd Pb Lithium La Lathium La Lathium La Lathium La Lathium La <td< th=""><th>CaNP (t CaCO3/ktonne)</th><th></th><th></th><th>CaNP (t CaCO3/ktonne)</th><th></th></td<>	CaNP (t CaCO3/ktonne)			CaNP (t CaCO3/ktonne)	
SNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) TNPR TNPR SNPR SNPR RNPR SNPR Surface Area: Surface Area: Surface Area (m2/kg) 0.00 fetals: (ppm) Al Antimory Sb Antimory Sb Antimory Sb Barium Ba Beryllium Be Bismuth Bi Cadrium Ca Catorium Ca Cobalt Co Ithium Li Ithium K Selenium Se Silver Ag Solum Se Silver Ag Solum Ne Potassium K Selenium Se Silver Ag S	FNNP (tonne CaCO3/ktonne)			INNP (tonne CaCO3/ktonne)	
Kinke (unine CaCOS/kloine) Kinke (unine CaCOS/kloine) INPR SNPR SNPR SNPR RNPR 0.00 Jurface Area: Surface Area: (m2/kg) Jurface Area: Surface Area: (m2/kg) Auminum Al Atimony Sb Arsenic As Barium Ba Beryllium Be Bismuth Bi Cadonium Ca Chromium Cr Cadedium Ca Chromium Cr Data Cobalt Cobalt Co Cobalt Co Copper cu Iton Fe Lanthium La Lead Pb Lithium K Selenium Se Silver Ag Sodium Na Silver Ag Sodium Na Silver Ag Silver Ag Silver Ag Sodium	SNNP (tonne CaCO3/ktonne)			SNNP (tonne CaCO3/ktonne)	
INPR INPR SNPR Surface Area: Surface Area: Surface Area: Calcium Calcium Calcium Calcium Calcium Calcium Calcium				TNDD	
NPR Out of the second seco					
Image: Surface Area Surface Area Surface Area Surface Area (m2/kg) 0.00 fetals: (ppm) Aluminum Al Antimony Sb As Barium Al Berryllium Ba Berlium Ba Berlium Ba Berryllium Ba Berlium Ba Berlium Ba Bernium Cad Cadmium Cd Cadmium Cd Cadmium Cad Cadmium Cad Cadmium Cd Calium Ca Data Cobalt Co Not Cobalt CO Not Cobalt Co Not Copper cu Available Iron Fe Lanthium La Lead Pb Lithium Li Magnesium Mc Mickel Ni Magnesium Mc Nickel Ni Phosphorus P Potassium K Selenium Se Silver Ag Sodium Na Silver Ag Storium Na<	RNPR			RNPR	
Jurface Area: Surface Area (m2/kg)0.00Jurface Area: Surface Area: Surface Area (m2/kg)fetals: AuminumAl Al AntimonyAl AluminumAl AluminumAl AluminumAntimony Sb ArsenicAs BariumBa Be BismuthBa Be BismuthBa Be BismuthBeryllium BismuthBa Be CadmiumCad CadmiumCad CadmiumCad CadmiumCad CadmiumCadnium CobaltCa CobaltCobaltCo CopperCu AvailableIron IronFe Lanthium La LeadPb LithiumLithium Mc Magnesium Mc MolybdenumMc Molybdenum Mc MolybdenumMc Magnesium Mc MolybdenumMc Magnesium Mc Molybdenum NickelNi Phosphorus P Potassium Se SilverMc Magnesium Mc Magnesium Mc Molybdenum Ni Se SilverSe Silver Ag Sodium Sr Thallium Ti Tin Sil TinSilver Mg Sodium Se SilverAg Sodium Sodium Se SilverStontium Ti Tungsten ZincTi ZincZincZinc					
Surface Area (m2/kg) 0.00 Surface Area (m2/kg) Attais: (ppm) Auminum Al Antimony Al Antimony Al Antimony Al Auminum Al Auminum Al Antimony Sb Area (m2/kg) 0.00 Vetals: (ppm) Aluminum Al Antimony Sb Barium Ba Beryllium Be Bismuth Bi Ba Beryllium Be Bismuth Bi Cadmium Cd Catcium Ca Cad mium Cd Catoium Ca Chromium Cr Data Cobalt Co Not Copper cu Available Copper cu Available Pb Lithium La Lithium Li Magnesium Mg Magnesium Mg Magnesium Mg Magnese Mr Magnese Mr Molybdenum MC Nickel Ni Potassium K Selenium Se Silver Ag Sodium Na Strontium Sr Thalium Ti Tin Silver Ag Sodium Sn Sitanium Sn	u rface Area:			Surface Area	
Instruction of participation Otocol Vetails: (ppm) Aluminum Al Aluminum Al Antimony Sb Antimony Sb Arsenic As Antimony Sb Barium Ba Beryllium Be Bismuth Bi Bismuth Bi Cadmium Ca Cadmium Ca Chromium Cr Data Chromium Ca Cobalt CO Not Cobalt co Not Copper cu Available Copper cu Available Iron Fe Lathium La Lead Pb Lithium Li Lathium Li Alignesium Mc Magnesium Mg Magnesium Mc Malignesium Mc Nickel Ni Phosphorus P Phosphorus P Potassium K Se einium Se Silver Ag Sodium Na Strontium Sr Thallium T Tin <	Surface Area (m2/kg)		0.00	Surface Area (m2/kg)	
Atuminum Al Auminum Al Auminum Al Aluminum Al Antimony Sb Antimony Sb Arsenic As Arsenic As Barium Ba Barium Ba Beryllium Be Beryllium Be Bismuth Bi Cadmium Cd Catcium Ca Cadmium Cd Chromium Cr Data Chromium Cr cobalt CO Not Cobalt co Nor Copper cu Available Copper cu Available Iron Fe Iron Fe Iron Fe Lanthium La Lead Pb Lead Pb Lithium Li Magnesium Mc Magnesium Mc Mercury Hg Mercury Hg Mercury Hg Molybdenum MC Nickel Ni Nickel Ni Phosphorus P Poposphorus P P <th>······································</th> <th></th> <th>0.00</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th>	······································		0.00	· · · · · · · · · · · · · · · · · · ·	
AutiminumAiAiAutiminumAiAntimonySbAntimonySbArsenicAsArsenicAsBariumBaBariumBaBerylliumBeBerylliumBeBismuthBiCadmiumCdCadmiumCdCadmiumCdCadmiumCaCadmiumCdCobaltCONotCobaltCoCoppercuAvailableCoppercuIronFeIronFeLithiumLiLithiumLiMagnesiumMgMagnesiumMgMolydenumMCMolydenumMcNickelNiPhosphorusPPotassiumKPotassiumKSeleniumSeSilverAgSilverAgSilverAgSodiumNaSodiumNaTinTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTitaniumTiTungstenWVZinceZn <td><i>letals:</i> (ppm)</td> <td>A 1</td> <td></td> <td>Vetais: (ppm)</td> <td></td>	<i>letals:</i> (ppm)	A 1		Vetais: (ppm)	
AttendingSDAttendingSDArsenicAsBariumBaBariumBaBerylliumBeBismuthBiCadmiumCdCadrinumCdCalciumCaCalciumCaCadriumCaChromiumCrDataChromiumCobaltCoNotCobaltCoppercuAvailableCopperIronFeLathiumLaLathiumLaLathiumLaLathiumLaLathiumLaLathiumLiKangesiumMcMagnesiumMcMolybdenumMCMolybdenumKPotassiumKPotassiumKPotassiumKSeleniumSeSilverAgSodiumNaSodiumNaSodiumNaSodiumNaSodiumSrTinSrTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTiTitaniumTi <t< td=""><td>Antimony</td><td>AI Sh</td><td></td><td>Aluminum Al</td><td></td></t<>	Antimony	AI Sh		Aluminum Al	
LickingAsAsBariumBaBariumBaBariumBaBerylliumBeBismuthBiCadmiumCdCadmiumCdCalciumCaCadmiumCadmiumCalciumCaCadmiumCadmiumCalciumCaCadmiumCadmiumCobaltCONotCobaltCoCoppercuAvailableCoppercuIronFeIronFeLanthiumLaLanthiumLaLeadPbLeadPbLithiumLiLithiumLiMagnesiumMcMagnesiumMcMagnesiumMCMolybdenumMcNickelNiPhosphorusPPotassiumSeSeleniumSeSilverAgSodiumNaStrontiumSrTinSrThallumTiTianumTiTinStrontiumSrThallumTiTianumTiTinStrontiumSrTitaniumTiTianumTiTungstenWVaradiumVZincoZinZincoZin	Amanic	Δc		Anumony SD Arsenic As	
BerylliumBe BismuthBe BiBerylliumBe BerylliumBe BerylliumBismuthBi CadmiumCdCadmiumCdCalciumCaCadmiumCdChromiumCrDataChromiumCrcobaltCONotCobaltcoNotCoppercuAvailableCoppercuAvailableIronFeIronFeIronFeLanthiumLaLathtiumLaLathtiumLaLeadPbLeadPbLeadPbLithiumLiMagnesiumMgMagnesiumMgManganeseMrManganeseMrMagnesiumMcNickelNiNiNickelNiNiPotassiumKSeSeleniumSeSeleniumSilverAgSodiumNaSodiumNaStrontiumSrTinTinSrTinThalliumTiTinSilumYanadiumVVanadiumVVanadiumVVanadiumV	Barium	Ba		Barium Ba	
BismuthBi CadmiumBi CadmiumBi CadmiumBi CadmiumCalciumCa CalciumCa CalciumCa CalciumCa CalciumCa CalciumChromiumCr CopperDataChromiumCr CobaltDataCobaltCO NotNotCobaltco NotNotCoppercu AvailableAvailableCoppercu LanthiumLa LeadLeadPbLathiumLa LeadLathiumLa LeadLithiumLi ManganeseMr McMagnesiumMg MolybdenumMickelNiNi PPhosphorusP PhosphorusPotassiumK SeleniumSe SilverSilverAg SodiumStrontiumTi TinTinSn TitaniumTi TinTinSilverAg SodiumSilverAg SodiumStrontiumTi TinTinSn TitaniumTitaniumTi TinTinTi TinTungstenW VanadiumV ZincZincZn	Beryllium	Be		Beryllium Be	
CadmiumCdCadmiumCdCalciumCaCalciumCaChromiumCrDataChromiumCrCobaltCONotCobaltcoNotCoppercuAvailableCoppercuAvailableIronFeIronFeLanthiumLaLeadPbLeadPbLeadPbLithiumLiMagnesiumMgMagneseMrManganeseMrMercuryHgMolybdenumMcNickelNiNickelNiNickelNiPhosphorusPPhosphorusPPhosphorusPSodiumSeSilverAgSilverAgStrontiumSrTininSrThalliumTiTinStrontiumTiTinSnTitaniumTitaniumTiTinSnTitaniumTiTungstenWVVanadiumVZincZn	Bismuth	Bi		Bismuth Bi	
CalciumCaCalciumCaChromiumCrDataChromiumCrDatacobaltCONotCoppercuAvailableCoppercuAvailableCoppercuAvailableIronFeIronFeLanthiumLaLeadPbLeadPbLithiumLiMagnesiumMgMagnesiemMgManganeseMrManganeseMrMolybdenumMCNickelNiNickelNiPhosphorusPPotassiumSeSeleniumSeSilverAgSodiumNaStrontiumSrTinnSrThalliumTiTinnSrTitaniumTiTinnSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Cadmium	Cd		Cadmium Cd	
ChromiumCrDataChromiumCrDatacobaltC0NotCobaltcoNotCoppercuAvailableCoppercuAvailableIronFeIronFeIronFeLanthiumLaLaLeadPbLithiumLiMagnesiumMgMagnesiumMgMagnesiumMgManganeseMrMagnesiumMcMolybdenumMcNickelNiNickelNiPPhosphorusPhosphorusPPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumSrTinnSrStrontiumSrThalliumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZn	Calcium	Ca		Calcium Ca	D (
CopperCuAvailableCopperCuAvailableIronFeIronFeLanthiumLaLeadPbLeadPbLithiumLiLithiumLiMagnesiumMcMagnesiumMcManganeseMrManganeseMrMercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumSeSilverAgSilverAgSilverAgSodiumNaSodiumNaStrontiumTiTinSrThalliumTiTinSnTitaniumTiTianiumTiTitaniumTiTianiumTiTungstenWVanadiumVZincZnZincZn		Cr CO	Data	Cabolt as	Data
CopperSodFreeCopperSodFreeIronFeIronFeLanthiumLaLanthiumLaLeadPbLeadPbLithiumLiLithiumLiMagnesiumMgMagnesiumMgMercuryHgMercuryHgMolybdenumMCNickelNiPhosphorusPPhosphorusPPotassiumKSeSeleniumSilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTiTianumTiTinSi?TianumTiTitaniumTiTitaniumTiTugstenWVanadiumVZincZnZincZn	Copper		Δvailable	Copper CU	Available
InstitutLaLanthiumLaLeadPbLithiumLiMagnesiumMgMagnesiumMgMagneseMrMercuryHgMolybdenumMCNickelNiPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumSrThalliumTiTinSi?TitaniumTiTitaniumTiTitaniumTiTitaniumVVanadiumVVanadiumVZincZn	Iron	Fe	/ Wallable	Iron Fe	/ Wallable
LeadPbLithiumLiMagnesiumMgMagnesiumMgManganeseMrMercuryHgMolybdenumMCNickelNiPhosphorusPPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumSrThalliumTiTinSilverAgSodiumStrontiumTiTinSilverAgSodiumStrontiumSrTitaniumTiTitaniumTiTungstenWVanadiumVZincZn	Lanthium	La		Lanthium La	
LithiumLiLithiumLiMagnesiumMcMagnesiumMcManganeseMrMagneseMrMercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKSeleniumSeSilverAgSilverAgSodiumNaSodiumNaStrontiumSrTinThalliumTinSi?TinSnTitaniumTiTugstenWVanadiumVZincZn	Lead	Pb		Lead Pb	
MagnesiumMçMagnesiumMçManganeseMrMagnesiumMçMercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSodiumNaStrontiumSrStrontiumSrThalliumTiTinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Lithium	Li		Lithium Li	
ManganeseMrManganeseMrMercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSodiumNaStrontiumSrStrontiumSrThalliumTiTinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Magnesium	Μç		Magnesium Mg	
MercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTiThalliumTiTinSi?TinnSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Manganese	Mr		Manganese Mr	
MorybdenumMCMOrybdenumMCNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSodiumNaStrontiumSrStrontiumSrThalliumTIThalliumTITinSil?TinSnTitaniumTiTugstenWVanadiumVVanadiumVZincZnZincZn	Melyhdenum	Hg		Melubdenum Hg	
NickeiNiPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumSrStrontiumSrThalliumTiTinSilverAgStrontiumStrontiumTiTinSilverSilverSodiumStrontiumSrTinTiTinSilverSilverSodiumStrontiumSrTinTiTinSilverSilverSilverStrontiumTiTinSilverSilverSilverStrontiumSilver	Nickol			Nickel Ni	
PotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTiThalliumTiTinSt?TinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Phosphorus	P		Phosphorus	
SeleniumSeSeleniumSeSilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTiThalliumTiTinSilverSnTitaniumTiTianiumTiungstenWVanadiumVZincZnZincZn	Potassium	K		Potassium K	
SilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTIThalliumTITinSt?TinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Selenium	Se		Selenium Se	
SodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTIThalliumTITinSt?TinSnTitaniumTiTitaniumTiTungstenWVungstenWVanadiumVZincZn	Silver	Ag		Silver Ag	
StrontiumSrStrontiumSrThalliumTIThalliumTITinSI?TinSnTitaniumTiTitaniumTiTungstenWTungstenWVanadiumVZincZn	Sodium	Na		Sodium Na	
InalliumIIIhalliumIITinSt?TinSnTitaniumTiTitaniumTiTungstenWTungstenWVanadiumVVanadiumVZincZnZincZn	Strontium	Sr		Strontium Sr	
ImSIImSinTitaniumTiTitaniumTiTungstenWTungstenWVanadiumVVanadiumVZincZinZincZin		TI		I hallium Ti	
TungstenWTungstenWVanadiumVVanadiumVZincZ nZincZ n	Tin Titanium	δ!/ Ті		Titanium Ti	
VanadiumVVanadiumVZincZ nZincZ n	Tunasten	W		Tunasten W	
	Vanadium	V		Vanadium V	
	Zinc	Žn		Zinc Zn	

NOTE: When metals were **reported** as *<* detection limit. half the value of the detection limit is shown in **italics**, and was used in subsequent calculations.

	1					1																	
	ł	Analytical	Results.								Sulphate F	roduction:				Molar	NP Consumpt	ion:					
	1	Constitute of												By Surface Ar	69.			Empirical		Remaining	Theoretical		Remaining
									Acidity	Alkalinity	SO4	Cumulative	Remaining	S04	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
	1	Leachate	Weekly			Acidity	Akalinity	Sulphate	Production	Production	Production	S04	5	Production	504	Ak	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Week No	Date	Recovered	pH	Conductivity	Eh	(CeCO3	(CeCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	1504	At pH 6	At Measured pri	(mokedet)	System (%)	(makawka	(ma/ka/wk)	(%)
	ļ	(mL)	(pH units)	(umhos/cm)	(mV)	mg/L)'	ing/)*	mg/L)*	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg/wk)**	(mg/cg)	angener)	(mg/m2/mk)	(myme)		(
	OR Eat BO					-			2.65	48 54	165.0	165	99.77	109.0	109		171.8	217.7	218	99.73	341.0	341	99.57
	15-Feb-89	17500	79	948	490	7	128	435	2.65	48.54	165.0	330	99.53	109.0	218	0.28	171.8	217.7	435	99.45	341.0	682	99.14
- 2	22-Feb-89	18000	80	572	490	2	98	235	0.78	38.22	91.7	422	99.40	60.5	278	0.40	95.5	132.9	568	99.28	190.2	872	98.90
3	01-Mar-89	19300	8.0	500	470	3	95	207	1.25	39.73	86.6	508	99.28	57.2	336	0.44	90.2	128.6	697	99.12	1/9.1	1001	90.07
4	08-Mar-89	19000	8.0	522	460	4	92	232	1.65	37.88	95.5	604	99.14	63.1	399	0.38	99.0	135./	033	96.90	212.0	1461	98.16
5	15-Mar-89	19400	8.1	540	470	2	92	243	0.84	38.67	102.1	706	99.00	6/.0	400	0.30	101.4	137.1	1114	98.60	202.2	1663	97.90
6	22-Mar-89	19300	7.8	508	460	4	- 88	234	1.07	36.80	97.9	896	98.73	613	592	0.00	96.7	131.6	1246	98.43	191.5	1854	97.66
	29-Mar-89	19100	7.8	509	460	5	88	210	2.09	36.80	87.8	984	98.60	58.0	650	0.40	91.5	126.2	1372	98.27	180.9	2035	97.43
- å	12-Apr-89	19300	7.9	545			<u> </u>	- 14	1.46	39.41	105.1	1089	98.45	69.4	720		109.4	147.4	1519	98.08	217.4	2253	97.16
10	19-Apr-89	19200	7.8	582	437	2	101	294	0.83	42.02	122.3	1212	98.28	80.8	800	0.33	127.4	168.6	1688	97.87	254.0	2507	96.64
11	26-Apr-89	19000	7.8	521					1.03	40.77	117.6	1329	98.11	77.7	878		122.5	162.2	1850	97.07	243.9	2150	96.33
12	03-May-89	19000	7.5	598	468	3	96	274	1.24	39.52	112.8	1442	97.95	/4.5	1036	0.34	111.0	162.4	2168	97.27	261.1	3245	95.91
13	10-May-89	19000	7.3	674	450		- 64	320	1.67	32.00	120.1	1709	97.75	92.1	1128	0.18	145.2	168.9	2337	97.05	288.4	3534	95.55
14	17-May-89	19500	77	400	400		- 91	330	1.90	31.69	137.5	1845	97.38	90.8	1219	<u> </u>	143.3	173.1	2510	96.84	284.6	3818	95.19
10	31-May-09	19500	74	422	470	4	89	321	1.69	37.61	135.6	1981	97.19	89.6	1308	0.27	141.3	177.2	2687	96.61	280.9	4099	94.83
17	07-Jun-89	19000	7.9	436					1.87	36.71	126.3	2107	97.01	83.4	1392		131.5	166.4	2854	96.40	261.2	4360	94.50
18	14-Jun-89	19000	7.7	495	501	5	87	284	2.06	35.82	116.9	2224	96.85	71.2	1469	0.29	121.8	100.6	3142	96.04	195.6	4798	93.95
19	21-Jun-89	19400	7.9	405					1.65	35.41	94.7	2319	96.71	62.5	1032	0.45	90.0 74.4	102.4	3251	95.90	1497	4947	93.76
20	28-Jun-89	19000	7.9	466	454	3	85	176	1.24	34.99	72.5	2391	90.01	47.9	1628	0.79	763	110.7	3362	95.76	151.8	5099	93.57
21	05-Jui-89	19300	1.9	430	612		95	178	0.03	35.10	741	2538	96 40	48.9	1677	0.46	77.1	112.1	3474	95.62	153.9	5253	93.38
22	12-JU-89	19200	7.0	440	512	<u> </u>	~~~~	170	0.42	35.30	71.6	2610	96.30	47.3	1724		74.6	109.2	3583	95.48	148.5	5401	93.19
- 23	26-Jul-89	19500	7.9	388	490				0.85	35.09	69.1	2679	96.20	45.6	1770		72.0	106.2	3689	95.35	143.1	5545	93.01
25	02-Aug-89	18800	7.7	415		1			1.06	34.96	66.6	2746	96.11	44.0	1814		69.4	103.3	3792	95.22	137.7	2682	92.64
26	09-Aug-89	19600	7.9	388	440	3	82	151	1.27	34.83	64.1	2810	96.01	42.4	1856	0.52	66.8	100.4	3893	95.09	132.3	5942	92.51
27	16-Aug-89	19300	7.8	391					1.17	34.19	61.9	2872	95.93	40.9	1897	Į	62.2	91.0	4085	04.85	123.3	6066	92 35
28	23-Aug-89	18200	7.9	391	518	1		·	1.06	33.55	59.1	2931	90.04	39.4	1930		50.8	91.8	4177	94.74	118.7	6184	92.20
29	30-Aug-89	19800	8.1	364	265		76	130	0.96	32.91	55.2	3044	95.76	36.5	2011	0.56	57.5	88.9	4266	94.62	114.2	6299	92.06
30	12 Sep 89	19000	7.9	371	305		- 70	130	1.05	30.86	56.3	3100	95.60	37.2	2048		58.6	88.4	4354	94.51	116.2	6415	91.91
32	20-Sep-89	19600	7.6	363	475				1.26	29.45	57.4	3158	95.52	37.9	2086		59.7	87.9	4442	94.40	118.2	6533	91.76
33	27-Sep-89	19500	7.9	268					1.46	28.04	58.4	3216	95.44	38.6	2124	I	60.9	87.4	4529	94.29	120.3	6775	91.01
34	04-Oct-89	19200	7.6	350	370	4	64	143	1.66	26.63	59.5	3276	95.35	39.3	2164	0.43	62.0	80.9	4010	94.10	107.6	6883	91.32
35	11-Oct-89	19000	8.0	390	ļ				1.88	27.08	52.6	3328	95.28	34.7	2196		47.5	73.0	4769	93.99	93.0	6976	91.21
36	18-Oct-89	19200	7.0	280	┣				2.09	27.03	387	3413	95.16	25.6	2254		40.3	66.0	4835	93.90	78.3	7054	91.11
38	01-Nov-89	19300	7.6	260	430	6	68	76	2.51	28.44	31.8	3444	95.11	21.0	2275	0.86	33.1	59.0	4894	93.83	63.7	7118	91.03
39	08-Nov-89	19200	7.8	267					1.98	28.64	32.8	3477	95.07	21.7	2297		34.2	60.8	4955	93.75	66.3	7184	90.94
40	15-Nov-89	19400	7.8	253					1.46	28.83	33.8	3511	95.02	22.3	2319	L	35.2	62.6	5018	93.67	71.6	7325	90.00
41	22-Nov-89	19500	8.0	288	-		74	07	0.94	29.03	34.8	3546	94.97	23.0	2342	0.78	30.3	66.1	5148	93.51	74.2	7399	90.67
42	29-Nov-89	19000	7.9	283	368	1		6/	0.41	29.23	35.0	3617	94.87	23.6	2389	<u>, , , , , , , , , , , , , , , , , , , </u>	37.2	65.8	5214	93.43	73.6	7473	90.58
43	13-Dec-89	19400	80	264		t			1.05	29.54	35.6	3653	94.82	23.5	2413		37.0	65.5	5280	93.34	73.0	7546	90.49
45	20-Dec-89	19300	8.0	260	<u> </u>	1			1.36	29.69	35.4	3688	94.77	23.4	2436		36.9	65.2	5345	93.26	72.5	7618	90.40
46	27-Dec-89	19400	7.8	260	385	4	71	84	1.68	29.85	35.3	3724	94.72	23.3	2459	0.81	36.8	64.9	5410	93.18	71.9	7690	90.31
47	03-Jan-90	19300	8.0	258		L			1.58	29.95	33.7	3757	94.67	22.3	2482		35.1	63.5	5525	93.10	65.5	7824	90.14
48	10-Jan-90	19300	7.9	248		ļ			1.47	30.06	32.2	3/89	94.62	21.2	2003		31.0	60.7	5596	92.95	62.3	7887	90.06
49	17-Jan-90	19500	7.9	260	AFF		72	69	1.3/	30.10	29.0	3849	94.50	19.2	2542	1.00	30.2	59.2	5655	92.87	59.2	7946	89.98
50	24-Jan-90	19400	1.2	204	440	1 3		09	1.00	28 71	28.7	3878	94.50	18.9	2561	t	29.9	57.6	5713	92.80	58.7	8005	89.91
57	07-Feb-90	19600	80	233	t	1			0.73	27.16	28.3	3906	94.46	18.7	2580		29.5	55.9	5769	92.73	58.3	8063	89.84
53	14-Feb-90	19000	8.1	196		1			0.47	25.61	28.0	3934	94.42	18.5	2598		29.2	54.3	5823	92.66	57.9	8121	89.76
54	21-Feb-90	18500	8.2	259	360	1	60	69	0.20	24.05	27.7	3962	94.38	18.3	2617	0.83	28.8	52.7	5876	92.59	5/.4	8240	89.69
55	28-Feb-90	19700	8.2	224					0.15	24.48	29.7	3991	94.34	19.6	2636		31.0	50.3	5980	92.52	66 1	8306	89.53
56	07-Mar-90	19000	8.0	271	 	+			0.10	24.91	31.0	4023	94.29	21.0	2680	I	35.3	60.6	6049	92.37	70.5	8377	89.44
57	14-Mar-90	19100	8.0	20/	100		61	85	0.05	25.34	35.9	4093	94.19	23.7	2703	0.69	37.4	63.2	6113	92.29	74.8	8452	89.35
59	28-Mar-90	19000	8.2	205	1.00	1	<u> </u>	<u> </u>	0.00	26.70	37.0	4130	94.14	24.4	2728		38.5	65.2	6178	92.21	77.0	8529	89.25
60	04-Apr-90	8500	8.2	303		1			0.00	27.63	38.0	4168	94.09	25.1	2753		39.6	67.2	6245	92.13	79.2	8608	89.15 80 AE
61	11-Apr-90	19300	8.2	326					0.00	28.56	39.1	4207	94.03	25.8	2779	0.74	40.7	69.3	6314	92.04	81.4 12.2	8773	88.00
62	18-Apr-90	18900	8.3	303	190	0	72	98	0.00	29.49	40.1	4247	93.98	26.5	2805	0./1	- 21.3	70.3	6456	91.86	80.6	8853	88.84
63	25-Apr-90	19600	8.2	282			 		0.00	30.00	37.2	4323	93.82	24.6	2856		38.8	69.3	6525	91.77	77.6	8931	88.74
65	02-May-90	19000	8.1	305					0.00	31.02	35.8	4359	93.82	23.7	2879		37.3	68.3	6594	91.69	74.7	9006	88.65

. .

		Analytical	Requite		 						Sulnhate	I Production:				Molar	NP Consumpt	ion:					
		Concent liver	TYPE WILL											By Surface Ar	ea:			Empirical		Remaining	Theoretical		Remaining
									Acidity	Akalinity	S04	Cumulative	Remaining	504	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekly		<u> </u>	Acidity	Alkalinity	Sulphate	Production	Production	Production	SO4	S	Production	<u>\$04</u>	Alk	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Ciosed-
Week No.	Date	Recovered	pH (nHumis)	Conductivity	Eh	(CaCO3	(CeCO3	(SO4	Kate (moAcodet)**	Kate (mo/ko/wk)**	Kate (moAcoAnk)**	(market)	(% of entoinel)	rate (ma/m2/wio***	(mo/m2)	1504	(ma/ka/vita)	AL Measured pri (mo/ko/wk)	(mg/kg/wk)	System (%)	(mg/kg/wk)	(mgAgAvk)	<u>- System</u> (%)
-		(***)	Q. 1																				
198	25-Nov-92	18300	7.36	192					1.24	10.95	28.7	9472	86.56	19.0	6257		29.9	39.6	14254	82.03	58.6	19521	75.39
199	02-Dec-92	19100	7.36	182	460	3	26	68	1.24	10.76	28.1	9501	86.52	18.6	6275	0.37	29.3	38.8	14293	81.98	57.4	19578	75.32
200	09-Dec-92	18500	7.3	202					1.18	10.36	27.6	9528	86.48	18.2	6294		28.7	37.9	14368	81.93 81.89	55.1	19635	75.25
201	16-Dec-92 23-Dec-92	19200	73	178					1.11	9.90	21.0	9582	86.41	17.5	6329		27.5	36.0	14404	81.84	54.0	19744	75.11
203	30-Dec-92	15100	7.44	200	460	3	28	79	0.98	9.16	25.8	9607	86.37	17.1	6346	0.34	26.9	35.1	14439	81.80	52.9	19797	75.05
204	06-Jan-93	9800	7.44	230					1.03	9.04	27.1	9635	86.33	17.9	6364		28.2	36.2	14475	81.75	55.4	19852	74.98
205	13-Jan-93	19700	7.3	162					1.08	8.92	28.3	9663	86.29	18.7	6382		29.5	37.3	14513	81.71	57.9	19910	74.90
206	20-Jan-93	19100	7.28	180				70	1.13	8.80	29.5	9692	86.25	19.5	6402	0.27	30.8	38.4	14001	81.61	62.9	20033	74.03
207	27-Jan-93 03.5eb.03	10400	7.5	160	450				1.10	8.87	30.6	9754	86 16	20.3	6442	0.21	31.9	39.2	14630	81.56	62.2	20095	74.67
209	10-Feb-93	19200	7.2	212			· · · · · · · · · · · · · · · · · · ·		1.83	9.07	30.4	9784	86.12	20.1	6463		31.7	38.9	14669	81.51	61.5	20157	74.59
210	17-Feb-93	19600	7.1	160					2.15	9.27	30.2	9814	86.08	20.0	6483		31.5	38.6	14707	81.46	60.8	20218	74.51
211	24-Feb-93	19000	7.2	182	410	6	23	73	2.47	9.47	30.1	9844	86.04	19.9	6502	0.30	31.3	38.3	14746	81.41	60.1	20278	74.44
212	03-Mar-93	19000	7.13	158	· · · · · · · · · · · · · · · · · · ·				2.74	9.12	30.3	9875	85.99	20.0	6522		31.6	37.9	14/84	81.30	60.6	20338	74.30
213	10-Mar-93	19200	7.15	170					3.01	8.42	30.5	9900	85.91	20.2	6563		32.0	37.2	14858	81.27	60.8	20460	74.21
215	24-Mar-93	14900	7.47	196	210	11	25	96	3.55	8.07	31.0	9967	85.86	20.5	6583	0.25	32.3	36.8	14895	81.22	61.0	20521	74.13
216	31-Mar-93	19300	7.08	180					3.08	8.11	31.0	9998	85.82	20.5	6604		32.3	37.3	14932	81.18	61.4	20582	74.06
217	07-Apr-93	20000	7.27	160					2.60	8.15	30.9	10029	85.77	20.4	6624		32.2	37.8	14970	81.13	61.9	20644	73.98
218	14-Apr-93	19300	7.39	1/5	430	-	20	75	2.12	8.19	30.9	10060	85.69	20.4	6665	0.26	32.2	38.8	15047	81.03	62.7	20769	73.82
219	28-Apr-93	19000	7.1	162	430		20		1.65	8.13	30.3	10121	85.64	20.0	6685	0.20	31.5	38.0	15085	80.98	61.4	20830	73.74
221	05-May-93	19000	7	176					1.65	8.03	29.6	10151	85.60	19.6	6705		30.9	37.3	15122	80.94	60.1	20890	73.67
222	12-May-93	19000	7	194					1.65	7.93	29.0	10180	85.56	19.2	6724		30.2	36.5	15159	80.89	58.8	20949	73.59
223	19-May-93	19000	6.96	180	420	4	19	69	1.65	7.82	28.4	10208	85.52	18.8	6743	0.26	29.6	30.8	15233	80.85	627	21007	73.44
224	26-May-93	19000	7.31	198					1.00	7.13	33.2	10239	85.43	22.0	6785		34.6	40.8	15274	80.75	67.8	21137	73.36
226	09-Jun-93	19000	7	208					1.34	7.54	35.7	10308	85.38	23.6	6808		37.1	43.3	15317	80.69	72.9	21210	73.26
227	16-Jun-93	19100	7.18	195	430	3	18	92	1.24	7.45	38.1	10346	85.33	25.1	6834	0.19	39.7	45.9	15363	80.63	78.1	21288	73.17
228	23-Jun-93	19000	7.2	430					1.25	7.81	38.3	10384	85.27	25.3	6859		39.9	46.4	15410	80.58	78.5	21367	73.07
229	30-Jun-93	19200	7.27	220					1.25	8.16	38.5	10423	85.22	25.4	6884		40.1	47.0	15457	80.52	70.2	21440	72.97
230	07-Jul-93	19300	7.36	190	420			02	1.20	8.52	38.7	10401	85.10	25.5	6935	0.22	40.5	47.5	15552	80.40	79.7	21605	72.77
232	21-Jul-93	20000	7.4	212	420	<u> </u>		- 32	1.17	8.93	40.7	10541	85.05	26.9	6962		42.4	50.2	15602	80.33	83.7	21688	72.66
233	28-Jul-93	19800	7.36	200					1.07	8.99	42.6	10583	84.99	28.2	6991		44.4	52.3	15655	80.27	87.7	21776	72.55
234	04-Aug-93	11000	7.36	258					0.97	9.04	44.5	10628	84.92	29.4	7020		46.4	54.4	15709	80.20	91.7	21868	72.43
235	11-Aug-93	20000	7.36	130	400	2	21	107	0.87	9.10	46.4	10574	84.86	30.6	7051	0.19	48.3	0.00	15/00	80.13	93.7	22056	72.31
230	25-Aug-93	19100	7.32	108					0.86	10 10	44.0	10762	84 74	29.0	7108		44.6	53.8	15875	79.99	88.4	22144	72.09
238	01-Sep-93	18800	7.25	240					0.86	10.60	41.0	10803	84.68	27.1	7135		42.8	52.5	15927	79.92	84.7	22229	71.98
239	08-Sep-93	19700	7.28	198	380	2	26	92	0.85	11.10	39.3	10842	84.62	25.9	7161	0.27	40.9	51.2	15978	79.86	81.0	22310	71.88
240	15-Sep-93	19600	7.24	174					0.95	10.90	39.0	10881	84.57	25.8	7187		40.7	50.6	16029	79.79	80.4	22390	71.68
241	22-Sep-93	19400	7.43	193					1.04	10.70	38.5	10920	84.46	20.0	7238		40.4	49.5	16128	79.67	79.1	22549	71.58
243	06-Oct-93	19000	7.38	198	330	3	25	93	1.24	10.29	38.3	10997	84,40	25.3	7263	0.26	39.9	48.9	16177	79.61	78.5	22627	71.48
244	13-Oct-93	19000	7.31	196				-	1.24	9.71	38.6	11035	84.35	25.5	7289		40.3	48.7	16226	79.55	79.3	22707	71.38
245	20-Oct-93	19000	7.26	195					1.24	9.12	39.0	11074	84.29	25.8	7315		40.6	48.5	16275	79.48	80.0	22787	71.28
246	27-Oct-93	19200	7.1	199	330	3	10	05	1.25	8.53	39.4	11114	84.24	26.0	7367	0.19	41.0	48.1	16371	79.42	81.5	22949	7107
248	10-Nov-93	19000	7.41	177					1.25	7.83	36.9	11190	84.13	24.4	7391		38.4	45.0	16416	79.31	75.6	23024	70.98
249	17-Nov-93	19500	7.03	182					1.25	7.72	34.0	11224	84.08	22.5	7414		35.4	41.9	16458	79.25	69.6	23094	70.89
250	24-Nov-93	19000	7.31	169					1.25	7.60	31.2	11255	84.03	20.6	7434		32.4	38.8	16497	79.20	63.6	23158	70.81
251	01-Dec-93	19200	7.27	165	300	3	18	68	1.25	7.49	28.3	11284	83.99	18.7	7453	0.25	29.5	35.7	16560	- 19.16 - 70.44		23215	70.66
252	15-Dec-93	19400	7.1	104					1.25	7.06	29.0	11344	83.90	20.4	7493		32.2	38.0	16607	79.07	63.1	23339	70.58
254	22-Dec-93	19300	7.13	176					1.24	6.84	32.2	11376	83.86	21.3	7514		33.6	39.2	16646	79.02	65.9	23405	70.50
255	29-Dec-93	19100	7.3	180	290	3	16	81	1.24	6.62	33.5	11410	83.82	22.1	7536	0.19	34.9	40.3	16687	78.97	68.6	23473	70.41
256	05-Jan-94	19300	7.51	164					1.14	7.04	33.1	11443	83.77	21.9	7558		34.5	40.4	16727	78.91	67.8	23541	70.32
257	12-Jan-94	19400	7.3	201					1.03	7.45	32.7	11476	83.72	21.6	7580		34.1	40.5	16809	78.85	<u> </u>	23676	70 16
250	26-Jan-94	19000	7.72	205	280	2	20	77	0.83	8.28	31.9	11540	83.63	21.3	7622	0.25	33.2	40.6	16849	78.76	65.6	23740	70.07
260	02-Feb-94	19000	7.56	208					0.83	8.37	31.6	11572	83.59	20.9	7643		32.9	40.5	16889	78.71	65.0	23805	69.99
261	09-Feb-94	19000	7.53	203					0.83	8.46	31.4	11603	83.54	20.7	7664		32.7	40.3	16930	78.66	64.5	23870	69.91
262	16-Feb-94	18200	7.47	194					0.82	8.55	31.1	11634	83.50	20.6	7684		32.4	40.2	16970	78.61	64.0	23934	69.83
263	23-Feb-94	19000	7.53	196	315	2	21	75	0.82	8.65	30.9	11665	83.45	20.4	//05	0.27	32.2	40.0	1/010	18.06	03.0	23931	09.70

• • •

South States

	1					I .								1				1	I				
		Analytical	Results:			<u> </u>					Sulphate	Production				Molar	NP Consumpt	tion:					
					<u> </u>									By Surface Ar	88:			Empirical		Remaining	Theoretical		Remaining
		Lavahata	18/2014		┣──	Anista	Allenketh	O the basts	Acidity	Alkalinity	SO4	Cumulative	Remaining	SO4	Cumulative	All	Theoretical NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
Week No.	Date	Recovered	oH	Conductivity	Eh.	(CeCO3	/CaCO3	(\$04	Rate	Rate	Rate	Production	rs of	Rate	Production	1504	At oH 6	At Measured off	Open-System	System	Above pH 6.5	Closed-System	Svsiam
		(mL)	(pH units)	(umhos/cm)	(mV)	mg/L)*	mg/L)*	mgA.)	(mg/kg/wk)**	(mg/kg/wk)**	(mgAtgAvik)**	(mg/kg)	original)	(mg/m2/wk)***	(mg/m2)		(mgAcpAnk)	(mg/kg/wk)	(mg/kg/wk)	(%)	(mg/kg/wk)	(mg/kg/wit)	(%)
																I							
132	21-Aug-91	19400	8.0	338					0.84	12.32	42.7	7223	89.75	28.2	4771		44.4	55.9	11054	86.07	88.0	14912	81.20
133	20-AU0-91 04-Sep-91	6800	77	538	275		31	240	0.04	4.57	354	7298	89.65	23.0	4820	0.12	36.8	40.4	11143	85.95	73.2	15066	81.01
135	11-Sep-91	20000	7.3	306	210				0.76	7.80	36.3	7334	89.60	24.0	4844	<u> </u>	37.9	44.9	11188	85.90	75.0	15141	80.91
136	18-Sep-91	18700	7.8	285					1.07	11.03	37.3	7371	89.54	24.6	4869		38.9	48.8	11237	85.84	76.7	15218	80.82
137	25-Sep-91	19800	7.8	238					1.39	14.27	38.3	7409	89.49	25.3	4894		39.9	52.8	11290	85.77	78.4	15296	80.72
138	02-Oct-91	19700	8.0	245	180		41	92	1.71	17.50	39.3	7449	89.43	25.9	4920	0.43	40.9	56.7	11347	85.70	80.1	15376	80.62
139	16.001.01	19000	7.0	234	280	3			1.24	17.40	37.3	7621	80.30	24.0	4945		36.0	52.8	11454	85.56	72.1	15525	80.32
141	23-Oct-91	19100	7.7	235					1.44	17.38	33.2	7555	89.28	22.0	4990		34.6	50.6	11505	85.50	67.8	15593	80.34
142	30-Oct-91	19100	7.8	238					1.54	17.33	31.2	7586	89.24	20.6	5011		32.5	48.3	11553	85.44	63.5	15656	80.26
143	06-Nov-91	19000	7.6	260	300	4	42	71	1.65	17.29	29.2	7615	89.20	19.3	5030	0.57	30.4	46.1	11599	85.38	59.3	15715	80.19
144	13-Nov-91	19700	7.6	230					1.65	17.81	30.3	7645	89.16	20.0	5050		31.5	47.7	11647	85.32	61.4	15777	80.11
145	20-Nov-91	19000	7.8	250		ļi			1.65	18.32	31.3	7677	89.11	20.7	5070		32.6	49.3	11696	85.20	63.0	15840	79.05
140	27-NOV-91 04-Dec-91	19000	76	225	320	4	47	81	1.00	19.35	33.3	7742	89.07	21.3	5114	0.56	34.7	52.4	11800	85.13	67.8	15974	79.86
148	11-Dec-91	19000	7.5	222					1.55	19.32	33.0	7775	88.97	21.8	5136	0.00	34.3	52.1	11852	85.06	67.1	16041	79.78
149	18-Dec-91	18700	7.8	230					1.45	19.29	32.6	7808	88.93	21.5	5157		33.9	51.8	11903	84.99	66.4	16107	79.70
150	25-Dec-91	19900	7.8	200					1.35	19.27	32.2	7840	88.88	21.3	5178		33.5	51.4	11955	84.93	65.7	16173	79.61
151	01-Jan-92	19300	7.6	214	300	3	46	76	1.25	19.24	31.8	7872	88.83	21.0	5199	0.58	33.1	51.1	12006	84.87	65.U 64.7	16238	79.53
152	15-Jan-92	19000	7.6	225					125	17 73	31.0	7935	88.74	20.9	5241		32.8	49.3	12105	84.74	64.4	16367	79.37
154	22-Jan-92	19500	7.6	180					1.25	16.98	31.3	7966	88.70	20.7	5262		32.7	48.4	12154	84.68	64.1	16431	79.29
155	29-Jan-92	19200	7.8	200	310	3	39	75	1.25	16.23	31.2	7997	88.66	20.6	5282	0.50	32.5	47.5	12201	84.62	63.8	16495	79.21
156	05-Feb-92	19300	7.5	200					1.14	15.39	32.7	8030	88.61	21.6	5304		34.0	48.3	12250	84.56	66.9	16562	79.12
15/	12-F60-92	19300	7.6	185	———				1.04	13.73	34.1	8100	88.51	22.5	5320		37.1	49.1	12299	84.43	73.2	16705	78.94
159	26-Feb-92	19200	7.8	227	310	2	31	89	0.83	12.90	37.0	8137	88,46	24.5	5374	0.33	38.6	50.6	12399	84.37	76.3	16781	78.85
160	04-Mar-92	19100	7.8	175					0.83	13.07	36.6	8173	88.41	24.2	5399		38.1	50.4	12450	84.31	75.5	16857	78.75
161	11-Mar-92	19000	7.8	220					0.83	13.24	36.2	8210	88.36	23.9	5423		37.7	50.1	12500	84.24	74.6	16931	78.66
162	18-Mar-92	19000	7.6	205	_				0.83	13.41	35.8	8245	88.30	23.7	5446		37.3	49.9	12550	84.18	73.8	17005	78.56
163	25-Mar-92	19000	7.7	227	380	2	33	86	0.82	13.59	35.4	8281	88.25	23.4	5470	0.37	36.9	49.6	12599	84.12	72.9	17154	78.38
165	08-Apr-92	19400	76	215					102	15 76	38.5	8356	88 15	25.4	5519		40.1	54.8	12706	83.98	79.1	17233	78.28
166	15-Apr-92	19100	7.7	235					1.12	16.84	40.0	8396	88.09	26.4	5546		41.7	57.4	12764	83.91	82.2	17315	78.17
167	22-Apr-92	18800	7.6	255	400	3	44	102	1.22	17.92	41.6	8438	88.03	27.4	5573	0.41	43.3	60.0	12824	83.84	85.3	17401	78.07
168	29-Apr-92	19400	7.6	230					1.05	14.78	38.7	8476	87.98	25.5	5599		40.3	54.0	12878	83.77	79.5	17480	77.97
169	06-May-92	19200	7.9	250					0.88	11.63	35.8	8512	87.93	23.6	5622		37.3	48.0	12926	83.71	73.7	17554	77 70
170	13-May-92	9200	77	223	275		20	160	-0.63	6.40	32.9	8575	87.84	10.8	5664	0.17	34.5	96.1	12900	83.61	62.0	17684	77 71
172	27-May-92	19700	7.6	250	0/0	⊢ × −	~~	100	0.71	8.01	28.6	8604	87.80	18.9	5683	- 0.11	29.8	37.1	13041	83.56	58.9	17743	77.63
173	03-Jun-92	16300	7.6	290					0.88	10.69	27.2	8631	87.76	17.9	5701		28.3	38.1	13079	83.51	55.7	17798	77.56
174	10-Jun-92	19900	7.6	220					1.06	13.37	25.7	8657	87.72	17.0	5718		26.8	39.1	13118	83.46	52.5	17851	77.50
175	17-Jun-92	19000	7.6	260	420	3	39	59	1.24	16.06	24.3	8681	87.69	16.0	5734	0.63	25.3	40.1	13158	83.41	49.4	17900	77.26
177	01-1L02	19000	77	235					1.24	15.72	30.6	8730	87.60	20.2	5772		20.0	46 1	13247	83.30	62.6	18019	77 29
178	08-Jul-92	19300	7.5	230					1.25	15.05	33.8	8773	87.56	22.3	5795		35.2	49.0	13296	83.24	69.2	18088	77.20
179	15-Jul-92	19400	7.7	218	400	3	35	88	1.26	14.71	37.0	8810	87.50	24.4	5819	0.38	38.5	52.0	13348	83.17	75.8	18164	77.10
180	22-Jul-92	19000	7.8	270					1.25	14.23	36.6	8846	87.45	24.2	5843		38.1	51.1	13399	83.11	75.0	18239	77.01
181	29-Jul-92	19000	1.8	2/0					1.25	13.74	36.2	8883	87.40	23.9	3867	— —	31.7	<u>5U.2</u>	13450	83.00	73.3	18386	76.82
183	12-Aug-92	19000	7.38	230	380	3	31	86	1.24	12.20	35.6	8954	87.30	23.0	5914	0.35	369	48.4	13547	82.97	72.5	18459	76.73
184	19-Aug-92	19000	7.3	256			_,		1.23	12.44	35.6	8989	87.25	23.5	5938		37.0	48.3	13596	82.86	72.9	18532	76.64
185	26-Aug-92	19000	7.49	228					1.23	12.11	35.7	9025	87.20	23.6	5961		37.2	48.1	13644	82.80	73.2	18605	76.55
186	02-Sep-92	18900	7.35	240	460				1.23	11.79	35.9	9061	87.15	23.7	5985	0.24	37.4	47.9	13692	82.74	73.5	18679	76.45
188	16-Sen-92	19000	7.54	190	400		_20		123	12 22	36.0	9134	87.04	24.3	6033	0.31	384	49.0	13780	82.62	756	18828	76 27
189	23-Sep-92	19000	7.56	208			—— †		1.24	12.98	37.7	9172	86.99	24.9	6058		39.2	51.0	13840	82.55	77.3	18905	76.17
190	30-Sep-92	19100	7.61	212					1.24	13.73	38.5	9210	86.94	25.4	6083		40.1	52.6	13892	82.49	79.0	18984	76.07
191	07-Oct-92	19100	7.64	236	460	3	35	95	1.24	14.49	39.3	9249	86.88	26.0	6109	0.35	41.0	54.2	13947	82.42	80.7	19065	75.97
192	14-Oct-92	19100	7.3	200					1.24	13.75	37.1	9287	86.83	24.5	6134		38.7	51.2	13998	82.36	76.1	19141	15.87
193	21-001-92	19000	736	205					124	12.27	327	9354	86 73	23.U 21.R	6170		- 30.3	451	14091	82.24	66.8	19279	75,70
195	04-Nov-92	19000	7.45	188	475	3	28	74	1.24	11.53	30.5	9385	86.69	20.1	6199	0.36	31.7	42.0	14133	82.18	62.2	19341	75.62
196	11-Nov-92	19000	7.65	198					1.24	11.34	29.9	9414	86.65	19.7	6218		31.1	41.2	14174	82.13	61.0	19402	75.54
197	18-Nov-92	19200	7.33	176					1.24	11.14	29.3	9444	86.60	19.4	6238		30.5	40.4	14215	82.08	59.8	19462	75.47

		Dissolv	ed Mete							Metal Le	ach Rate	a :						Cumula	tive Metr	l Leach	Rates:		[<u> </u>
												Ï								<u> </u>	[
Mark No.	Data	Antimony	Arsenic	Copper	Iron.	Lead	Manganese	Silver	Zinc	Antemony	Arsenic	Copper	Iron D.Eo	Leed D.Ph	Manganese Du Min	Silver	Zinc D.7n	Antimony	Arsenic DLAs	Copper	The Pon	Lead D.Ph	Manganese D_Min	D-Ag	D-7n
VVEEK NO.	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mgA)	(mg/L)	(mg/L)	(mg/sg/mk)	(mg/kg/wk)	(1040/44)	(mg/kg/wk)	(mg/ig/wk)	(mg/kg/wk)	(mghghik)	(mg/kg/wk)	(mg/kg)	(mg/kg)	(mgAig)	(mgAcg)	(mg/kg)	(mgAcg)	(mg/kg)	(mgAcg)
	8.Feb.80					<u> </u>				<u> </u>			<u> </u>					3 0E-03	6 1E-03	1.3E-03	3.4E-03	3.8E-04	1.4E-03	7.6E-05	3.8E-0
1	15-Feb-89	0.008	0.016	0.004	0.009	0.001		2E-04	0.01	3.0E-03	6.1E-03	1.3E-03	3.4E-03	3.8E-04		7.6E-05	3.8E-03	6.1E-03	1.2E-02	2.7E-03	6.8E-03	7.6E-04	2.8E-03	1.5E-04	7.6E-0
2	22-Feb-89	0.004	0.016	0.001	0.005	0.001		2E-04	0.05	1.6E-03	6.2E-03	5.1E-04	2.0E-03	3.9E-04		7.8E-05	2.0E-02	7.6E-03	1.8E-02	3.2E-03	8.8E-03	1.1E-03	4.3E-03	2.3E-04 3.1E-04	2.7E-0
4	8-Mar-89	0.002	0.008	0.001	0.017	0.001		2E-04	0.05	8.2E-04	3.3E-03	5.8E-04	7.0E-03	4.1E-04		8.2E-05	2.1E-02	9.7E-03	2.6E-02	5.0E-03	1.8E-02	2.0E-03	7.1E-03	4.0E-04	6.9E-0
5	15-Mar-89	0.001	800.0	5E-04	0.005	0.001		2E-04	0.05	4.2E-04	3.4E-03	2.1E-04	2.1E-03	4.2E-04		8.4E-05	2.1E-02	1.0E-02	3.0E-02	5.2E-03	2.0E-02	2.4E-03	8.5E-03	4.8E-04	9.0E-0
7	22-Mar-89 29-Mar-89	0.001	0.008	02-04	0.005	0.001		20-104	0.03	4.22-04	2.56-03	2.15-04	2. IE-03	9.46-04		0.42-00	2.16-02	1.1E-02	3.3E-02	5.8E-03	2.3E-02	3.0E-03	1.1E-02	6.1E-04	1.2E-0
8	5-Apr-89																	1.1E-02	3.4E-02	6.2E-03	2.4E-02	3.2E-03	1.3E-02	6.5E-04	1.4E-0
9 10	12-Apr-89 19-Apr-89	0.001	0.002	0.004	0.005	0.001		2E-04	0.08	4.2E-04	8.3E-04	1.5E-03	2.1E-03	4.2E-04		8.3E-05	3.3E-02	1.2E-02	3.5E-02	8.1E-03	2.7E-02	3.9E-03	1.6E-02	7.7E-04	1.8E-0
11	26-Apr-89																	1.2E-02	3.6E-02	8.6E-03	3.2E-02	4.1E-03	1.7E-02	8.1E-04	2.0E-0
12	3-May-89			 	 						 							1.25-02	3.12-02	9.0E-03	3.8E-02	4.50-03	2 0F-02	0.0C-04	2 12-0
14	17-May-89	0.002	IO.006	SE-04	0.044	0.001	1	2E-04	0.05	8.5E-04	2.5E-03	3.8E-04	1.9E-02	4.2E-04		8.5E-05	2.1E-02	1.3E-02	4.1E-02	9.9E-03	6.1E-02	4.9E-03	2.1E-02	9.8E-04	2.5E-0
16	31-May-89]			-				[· · · ·						1.4E-02	4.3E-02	1.0E-02	7.3E-02	5.3E-03	2.4E-02	1.1E-03	2.7E-0
17	7-Jun-89								1								-	1.5E-02	4.4E-02	1.0E-02	7.8E-02	5.5E-03	2.6E-02	1.1E-03	2.8E-0
18 19	21-Jun-89	0.002	0.006	9E-04	0.01	0.001		25-04	0.05	8.2E-04	2 <u>5E-03</u>	3.7E-04	4.1E-03	4.12-04		8.2E-05	2.16-02	1.0E-02	4.6E-02	1.1E-02	8.4E-02	6.2E-03	2.8E-02	1.2E-03	3.1E 01
20	28-Jun-89						İ											1.6E-02	4.9E-02	1.1E-02	8.6E-02	6.4E-03	3.0E-02	1.3E-03	3.2E-01
21	5-Jul-89 12-Jul-89	0.001	0.005	5E-04	0.005	0.001	 	2E-04	0.04	4.2E-04	2.1E-03	2.1E-04	2.1E-03	4.2E-04		8.3E-05	1.7E-02	1.0E-02 1.7E-02	5.2E-02	1.1E-02	8.9E-02	7.0E-03	3.3E-02	1.4E-03	3.4E-01
23	19-Jul-89					2.22.												1.7E-02	5.3E-02	1.2E-02	9.0E-02	7.2E-03	3.4E-02	1.4E-03	3.5E-01
24	26-Jul-89 2-Aug-09		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·									1.7E-02	5.5E 02	1.3E-02	9.1E-02 9.2E-02	7.6E-03	3.6E-02 3.7E-02	1.5E-03	3.0E-0
26	9-Aug-89	0.001	0.004	0.006	0.005	0.001		2E-04	0.05	4.2E-04	1.7E-03	2.4E-03	2.1E-03	4.2E-04		8.5E-05	2.1E-02	1.8E-02	5.7E-02	1.6E-02	9.5E-02	8.0E-03	3.8E-02	1.6E-03	3.9E-01
27	16-Aug-89 23-Aug-89																	1.8E-02	5.8E-02 5.9E-02	1.7E-02	9.8E-02	8.5E-03	4.0E-02 4.1E-02	1.7E-03	4.1E-01
29	30-Aug-89											-		4 05 04		A	4.05.00	1.8E-02	6.0E-02	1.8E-02	1.0E-01	8.7E-03	4.3E-02	1.7E-03	4.2E-01
30	6-Sep-89 13-Sep-89	0.001	0.005	0.002	0.012	0.001		2E-04	0.03	4.2E-04	2.16-03	1.62-04	5.1E-03	4.2E-04		8.0E-00	1.35-02	1.9E-02	6.2E-02	1.9E-02	1.1E-01	9.1E-03	4.4E-02	1.8E-03	4.3E-01
32	20-Sep-89																	1.9E-02	6.3E-02	1.9E-02	1.1E-01	9.3E-03	4.7E-02	1.9E-03	4.4E-01
33	27-Sep-89 4-Oct-89					<u> </u>												1.9E-02 2.0E-02	6.3E-02	1.9E-02	1.1E-01	9.4E-03	4.0E-02 5.0E-02	1.9E-03	4.5E-01
35	11-Oct-89																	2.0E-02	6.4E-02	1.9E-02	1.1E-01	9.6E-03	5.1E-02	1.9E-03	4.5E-01
36	18-Oct-89 25-Oct-89					<u> </u>												2.0E-02	6.4E-02	2.0E-02 2.0E-02	1.16-01	9.7E-03 9.8E-03	5.4E-02	2.0E-03	4.6E-01
38	1-Nov-89	0.002	0.003	5E-04	0.005	0.001		2E-04	0.05	8.4E-04	1.3E-03	2 1E-04	2.1E-03 I	4.2E-04		8.4E-05	2.1E-02	2.1E-02	6.6E-02	2.0E-02	1.1E-01	1.0E-02	5.5E-02	2.1E-03	4.8E-01
<u>39</u> 40	8-NOV-89 15-Nov-89					<u> </u>												2.15-02	6.7E-02	3.45-02	1.2E-01	1.1E-02	5.8E-02	2.1E-03	5.0E-01
41	22-Nov-89					0.004		05.04			0.05.04	0.05.00	100 00	445.04		0.05.05	4.05.00	2.2E-02	6.8E-02	4.2E-02	1.2E-01	1.1E-02	6.0E-02	2.2E-03	5.1E-01
42	29-Nov-89 6-Dec-89	0.001	0.002	0.07	0.011	0.001		2E-04	0.03	4.1E-04	6.2E-U4	2.95-02	4.0E-03	4.1E-04		0.2E-00	1.20-02	2.2E-02 2.2E-02	6.9E-02	8.5E-02	1.2E-01	1.1E-02	6.3E-02	2.3E-03	5.2E-0
44	13-Dec-89																	2.3E-02	6.9E-02	1.0E-01	1.3E-01	1.2E-02	6.4E-02	2.3E-03	5.3E-01
45	20-Dec-89 27-Dec-89	0.001	0.002	0.07	0.006	0.001		2E-04	0.02	4.2E-04	8.4E-04	2.9E-02	2.5E-03	4.2E-04		8.4E-05	8.4E-03	2.3E-02 2.3E-02	7.0E-02 7.0E-02	1.1E-01 1.4E-01	1.3E-01	1.2E-02 1.2E-02	6.7E-02	2.4E-03	5.4E-01
47	3-Jan-90																	2.3E-02	7.1E-02	1.5E-01	1.3E-01	1.3E-02	6.8E-02	2.5E-03	5.5E-01
48	10-Jan-90 17-Jan-90																	2.4E-02	7.1E-02 7.2E-02	1.6E-01 1.7E-01	1.3E-01	1.3E-02	7.0E-02 7.1E-02	2.6E-03	0.5E-01
50	24-Jan-90	0.001	0.002	5E-04	0.005	0.001		2E-04	0.03	4.2E-04	8.4E-04	2.1E-04	2.1E-03	4.2E-04		8.4E-05	[1.3E-02]	2.4E-02	7.3E-02	1.7E-01	1.4E-01	1.3E-02	7.3E-02	2.7E-03	5.7E-01
61 52	31 Jan 90 7-Feb-90						· · ·											2.5E-02	7.3E-02	1.7E-01	1.4E-01	1.4E-02	7.5E-02	2.8E-03	5.8E-01
53	14-Feb-90													4 45 44		0.05.05	4.05.00	2.5E-02	7.4E-02	1.7E-01	1.4E-01	1.4E-02	7.7E-02	2.8E-03	5.9E-01
54 55	21-1-eb-90 28-Feb-90	0.001	0.002	8E-04	0.005	0.001		22-04	0.03	4.UE-04	6.UC-04	3.2E-04	2.UE-03	4.UE-04		0.05-00	1.20-02	2.5E-02 2.6E-02	7.5E-02	1.7E-01	1.4E-01	1.5E-02	8.0E-02	3.0E-03	6.1E-01
56	7-Mar-90																	2.6E-02	7.6E-02	1.7E-01	1.4E-01	1.5E-02	8.1E-02	3.1E-03	6.1E-01
58 21	-Mar-90 0	.002	0.004	0.002	0.01	0.002		0.001	0.03	8.5E-04	1.7E-03	7.6E-04	4.2E-03	8.5E-04		4.2E-04	1.3E-02	2.7E-02	7.8E-02	1.7E-01	1.5E-01	1.6E-02	8.4E-02	3.7E-03	6.3E-01
59	28-Mar-90																	2.8E-02	7.9E-02	1.7E-01	1.5E-01	1.7E-02	8.5E-02	3.9E-03	6.4E-01
60	4-Apr-90																	2.8E-02	8.1E-02	1.7E-01	1.5E-01	1.7E-02	8.8E-02	4.3E-03	6.5E-01
62	18-Apr-90	0.002	0.004	0.001	0.005	0.002		0.001	0.03	8.2E-04	1.6E-03	4.1E-04	2.0E-03	8.2E-04		4.1E-04	1.2E-02	2.9E-02	8.2E-02	1.7E-01	1.6E-01	1.8E-02	9.0E-02	4.7E-03	6.6E-01
63 64	2-May-90																	3.0E-02	8.4E-02	1.72-01	1.6E-01	1.9E-02	9.2E-02	5.1E-03	6.7E-01
65	9-May-90																	3.0E-02	8.4E-02	1.7E-01	1.6E-01	1.9E-02	9.4E-02	5.3E-03	6.8E-01

1																							
		Anabeles	Peaulter								Sulphate I	Production			1	Molar	NP Consumpt	ion:					
		One ducing												By Surface Ar	**:			Empirical		Remaining	Theoretical		Remaining
									Acidity	Alkalinity	S04	Cumulative	Remaining	SO4	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachata	Manit			Addity	Akalnity	Subbate	Production	Production	Production	SO4	S	Production	S04	Alk	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
March Ma	Data	Recovered	OH	Conductivity	Eb	(CaCO3	(CaCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	/SO4	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
VVCCK NO.		(ml)	(oH units)	(umbos/cm)	(10)	mad.)'	mod.)*	ma/L)*	(markahid)**	(mg/kg/wk)**	(mg/kg/wk)**	(mgArg)	original)	(mg/m2/wk)***	(mg/m2)		(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(%)	(mg/kg/wk)	(mg/kg/wk)	(%)
																						0.1004	
264	02-Mar-94	19300	7.36	187					0.93	8.34	31.1	11696	83.41	20.5	7725		32.4	39.8	17050	78.51	63.8	24061	69.67
265	09-Mar-94	19000	7.59	210					1.03	8.03	31.3	11727	83.37	20.7	7746		32.6	39.6	17089	78.46	64.2	24120	60.54
266	16-Mar-94	19200	7.45	202					1.13	7.72	31.5	11759	83.32	20.8	7767		32.8	39.4	17128	78.41	64.0	24190	60.42
267	23-Mar-94	19000	7.61	212	300	3	18	11	1.24	7.41	31.7	11791	83.28	20.9	7788	0.22	33.0	39.2	1/168	78.30	04.0	24200	60.24
268	30-Mar-94	19000	7.56	196					1.62	7.33	32.3	11823	83.23	21.3	7809		33.6	39.3	1/20/	78.31	03.0	24320	60.26
269	06-Apr-94	19300	7.25	200					2.00	7.25	32.8	11856	83.18	21.7	7831		34.2	39.4	17240	70.20	67.4	24301	60 17
270	13-Apr-94	18800	7.41	205					2.38	7.18	33.4	11889	83.14	22.0	7853		34.8	39.5	17280	78.21	67.0	24522	60.00
271	20-Apr-94	18200	7.46	221	370	7	18	86	2.76	7,10	33.9	11923	83.09	22.4	7875	0.20	35.3	39.7	17320	70.10	68.1	24590	60.00
272	27-Apr-94	20000	7.41	170					2.28	7.00	33.8	11957	83.04	22.3	7898		35.2	39.9	17300	70.11	69.4	24658	68.92
273	04-May-94	19400	7.16	204					1.80	6.89	33.7	11990	82.99	22.2	7920		35.1	40.2	17400	78.00	68.6	24727	68.83
274	11-May-94	19000	7.26	172					1.32	6.79	33.6	12024	82.94	22.2	/942		35.0	40.4	47407	77.06	0.00	24796	68.74
275	18-May-94	19300	7.4	201	375	2	16	80	0.84	6.69	33.5	12057	82.90	22.1	/964	0.19	34.8	40.7	17520	77.90	60.5	24865	68.66
276	25-May-94	19200	7.23	207					0.83	6.36	33.7	12091	82.85	22.3	7966		30.1	40.6	17569	77.85	70.0	24935	68.57
277	01-Jun-94	18900	7.4	214					0.83	6.02	34.0	12125	82.80	22.5	8009		30.4	40.0	17600	77.80	70.6	25006	68 48
278	08-Jun-94	18900	7.47	231		· · · ·			0.83	5.69	34.3	12159	82.75	22.1	8032	0.15	30.1	40.6	17649	77 75	712	25077	68.39
279	15-Jun-94	19000	7.46	218	250	2	13	84	0.82	5.35	34.6	12194	82.70	42.0	8077	0.15	36.0	41.0	17690	77 70	71.4	25148	68.30
280	22-Jun-94	19000	7.39	240					0.82	0.66	34.7	12229	82.00	22.9	8100		36.2	41.0	17732	77.65	71.7	25220	68.21
281	29-Jun-94	19000	7.47	211					0.82	5.97	34.0	12204	82.60	23.0	8123		36.3	418	17774	77.60	71.9	25292	68.12
282	06-Jul-94	19300	7.42	205		·			0.82	0.20	34.9	12230	92.50	23.0	8146	0.18	36.5	42.2	17816	77.54	72.1	25364	68.03
283	13-Jul-94	19000	7.38	206	270	2	16	85	0.62	0.59	35.0	42269	82.46	23.1	8170	<u><u>v</u>. <u>v</u></u>	36.5	42.2	17858	77.49	72.1	25436	67.94
284	20-Jul-94	19400	7.43	200					0.02	6.59	26.0	12300	82.40	23.1	8193		36.5	42.2	17900	77.44	72.1	25508	67.85
285	27-Jul-94	19600	7.28	207		 	i		0.62	6.59	25.0	12403	82.36	23.1	8216		36.5	42.2	17942	77.38	72.1	25580	67.75
286	03-Aug-94	19200	7.19	192		 			0.82	0.09		12430	02.30	20.1					112.12				
			0.00	040	510	11	128.0	426	3.65	48.54	165.0	12438	99.77	109.0	8216	1.00	171.8	217.7	17942	99.73	341.0	25580	99.57
Maximum		2000	8.30	120	180		13.0	59	0.00	4.57	24.3	165	82.36	16.0	109	0.12	25.3	35.1	218	77.38	49.4	341	67.75
MINIMUM		10000	7.64	272	263	1 1	60.3	124	1 16	18.53	43.3	7291	89.66	28.6	4816	0.42	45.1	62.5	10882	86.28	89.1	15029	81.05
Mean		10100	7.61	247	373	3	47.0	92	1 14	17.46	36.2	7615	89.20	23.9	5030	0.38	37.7	52.7	11599	85.38	74.7	15715	80.19
Median	9 Weeks	10024	731	107	348	1 Å	19.8	84	1.39	8.02	34.3	11079	84.29	22.7	7318	0.23	35.8	42.4	16274	79.49	70.1	22795	71.27
Mical) 1921	O FVEEKS	13024	1.31	- 197					1.00			<u> </u>											
75% Dama	ining (Mkc)			l		<u> </u>			l	t			437		Î.					331			204
50% Dame	ining (WKS)					<u> </u>				t		1	950							798			487
25% Rema	ining (Wite)	[<u> </u>	1				1			1462		T					1266			770
0% Remain	ning (Wks)	t	 	1	1		t	· · · · · · · · · · · · · · · · · · ·					1975							1734	ļ		1052
- re i vanida				t	1	<u> </u>	1		1					-									
		** If measu	red sulph	te, alkalinity	and/or ad	cidity value	es were un	available, d	lata was inte	arpolated fro	m existing d	lata and use	t in subsequ	ent equations									
		1		T	T	T	[
	1	1		T	1	1	I						1		ļ								
					1					I			1	L	L	L	L	<u> </u>		L	I		

				4.1.11			1		I	88-4-1 8 4									ilua Mate	i Ti sechī	 Betec:				
		Dissolve	<u>d me</u>			1	I			Metal <u>Le</u>	ach Kates	1. 			1		1	Cumuia		i	L				1
		Antimony	Arsenic	Copper	Iron	Lead	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	iron	Lead	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	aron	Load	Mengenese	Silver	Zinc
Week No	Date	D-Sb (mol)	D-As (mol.)	D-Cu (mol.)	D-Fe	D-Pb (mak)	D-Mn (ma/L)	D-Ag (mol.)	D-Zn (mol.)	D-Sb (mg/kg/wk)	D-As (mphones)	D-Cu (mg/ng/wk)	D-Fe (mg/ng/mk)	D-PD (mp/sp/wk)	D-Mn (monorma)	D-Ag (mg/sg/wk)	D-Zn (mgtq/uk)	(mg/kg)	(mg/kg)	(mgArg)	(mg/kg)	(mg/kg)	(mgAg)	(mg/kg)	(mg/log)
																-		745.00	4 45 04	0.05.04	0.05.04	4.65.00	4 35 04	2 25 02	1 15.00
132	21-Aug-91											· · · ·						7.1E-02 7.2E-02	1.4E-01	2.0E-01	2.8E-01	4.6E-02	1.3E-01	2.2C-02 2.3E-02	1.1E+00
134	4-Sep-91	0.002		0.004 I	0.009		0.035	0.001 (0.04	2.9E-04 1		5.2E-04	1.3E-03		5.2E-03	1.5E-04	5.2E-C ³	7.2E-02	1.4E-01	2.0E-01	2.8E-01	4.6E-02	1.3E-01	2.3E-02	1.1E+00
135	11-Sep-91											-						7.2E-02	1.4E-01	2.0E-01	2.8E-01	4.7E-02	1.4E-01	2.3E-02 2.3E-02	1.1E+00
130	25-Sep-91												· · · · · · ·					7.3E-02	1.4E-01	2.0E-01	2.8E-01	4.88-02	1.42-01	2.3E-02	1.12+00
138	2-Oct-91	0.003	Ì	0.001	0.01	-	0.0012	0.001	0.06	1.3E-03		4.3E-04	4.3E-03		5.1E-04	4.3E-04	2.6E-02	7.5E-02	1.4E-01	2.0E-01	2.9E-01	4.8E-02	1.4E-01	2.4E-02	1.1E+00
139	9-Oct-91				<u> </u>										1	1	l	7.5E-02	1.5E-01	2.0E-01	2.9E-01	4.9E-02	1.4E-01	2.4E-02	1.2E+00
141	23-Oct-91																	7.6E-02	1.5E-01	2.0E-01	3.0E-01	4.9E-02	1.4E-01	2.4E-02	1.2E+00
142	30-Oct-91	0.000		05.04	0.000		0.0014	0.0011		0.05.04		2 25 04	1 25 021		4.55-04	4 1E-04	9 1E-03	1.6E-02	1.5E-01	2.0E-01	3.0E-01	5.0E-02	1.4E-01	2.4E-02	1.2E+00
143	13-NOV-91	0.002		00-04	0.028		0.00111	0.0011	0.02	0.2E-04		3.35-04	1.25-02		1	4.16-04	0.12-00	1.7E-02	1.0E-01	2.0E-01	3.12-01	5.1E-02	1.40-01	2.5E-02	1.2E+00
145	20-Nov-91															-		7.8E-02	1.5E-01	2.0E-01	3.2E-01	5.1E-02	1.4E-01	2.5E-02	1.2E+00
146	27-Nor-91	0.001		-8F-04-	0.016		0.0008		-0.01	A 1E-04		T3 3E-04	7 4E-03		3 3E-04	A 1E-04	4.5E-03	7.8E-02	1.5E-01	2.0E-01	3.3E-01	5.1E-02 5.2E-02	1.4E-01	2.5E-02 2.6E-02	1.2E+00
148	11-Dec-91	0.001			0.010		0.0000	0.001	0.01	4,10.04		0.02 01	1.42.00		0.02-04	4.12-04	4.02.00	7.9E-02	1.5E-01	2.0E-01	3.4E-01	6.2E-02	1.4E-01	2.6E 02	1.2E+00
149	18-Dec-91																	7.9E-02	1.5E-01	2.0E-01	3.4E-01	5.3E-02	1.4E-01	2.6E-02	1.2E+00
150	25-Dec-91	0.001		6F-04	0.005		0.0007	0.001	0.02	4 2E-04		2.5E-04	2.1E-031		2.9E-04	4.2E-04	6.3E-03	7.9E-02	1.6E-01	2.0E-01	3.4E-01	5.4E-02	1.4E-01	2.7E-02	1.2E+00
152	8-Jan-92			02-04				0.001	0.02	1.20						1		8.0E-02	1.6E-01	2.0E-01	3.5E-01	5.4E-02	1.46-01	2.7E-02	1.2E+00
153	15-Jan-92		1													<u> </u>		8.0E-02 8.0E-02	1.6E-01	2.0E-01	3.5E-01 3.6E-01	5.4E-02 5.5E-02	1.4E-01	2.7E-02 2.7E-02	1.2E+00
154	22-Jan-92	0.001		5E-04	0.05		0.004	0.001	0.02	4.2E-04		2.1E-04	2.1E-02		1.7E-03	4.2E-04	7.9E-C 3	8.0E-02	1.6E-01	2.0E-01	3.8E-01	5.5E-02	1.5E-01	2.8E-02	1.2E+00
156	5-Feb-92																	8.1E-02	1.6E-01	2.1E-01	3.9E-01	5.6E-02	1.5E-01	2.8E-02	1.2E+00
157	12-Feb-92	<u> </u>		1		1	1			1			. I					6.1E-02	1.6E-01	2.1E-01	4.1E-01	5.6E-02	1.5E-01	2.8E-02	1.2E+00
159	26-Feb-92	0.001		L0.003 L	0.05		0.002	0.001	0.01	4.2E-04		1.4E-03 I	2.1E-02		8.3E-04	4.2004	4.2E-03	8.1E-02	1.6E-01	2.1E-01	4.3E-01	5.7E-02	1.5E-01	2.9E-02	1.2E+00
160	4-Mar-92																	8.2E 02 8.2E-02	1.6E-01	2.1E-01 2.1E-01	4.4E-01	5.7E-02	1.5E-01 1.5E-01	2.9E-02	1.2E+00
162	18-Mar-92																	8.2E-02	1.7E-01	2.1E-01	4.6E-01	5.8E-02	1.5E-01	2.9E-02	1.2E+00
163	25-Mar-92	0.001		5E-04	0.05		0.002	0.001	0.01	4.1E-04		2.1E-04	2.1E-02		8.2E-04T	4.1E-04T	2.9E-B3	8.3E-02	1.7E-01	2.1E-01	4.8E-01	5.8E-02	1.5E-01	3.0E-02	1.3E+00
164	8-Apr-02																	8.3E-02	1.7E-01	2.1E-01	5.0E-01	5.9E-02	1.5E-01	3.0E-02	1.3E+00
166	15-Apr-92		1.1															8.3E-02	1.7E-01	2.1E-01	5.1E-01	6.0E-02	1.5E-01	3.0E-02	1.3E+00
167	22-Apr-92	0.001		6E-04	0.05	<u> </u>	0.001	0.001	0.01	4.1E-04		2.4E-04	2.0E-02		4.1E-04	4.1E-04	2.4E-03	8.4E-02 8.4E-02	1.7E-01 1.7E-01	2.1E-01 2.1E-01	5.4E-01	6.1E-02	1.5E-01 1.5E-01	3.1E-02	1.3E+00
169	6-May-92																	8.4E-02	1.7E-01	2.1E-01	5.5E-01	6.1E-02	1.5E-01	3.1E-02	1.3E+00
170	13-May-92							0.001		6 35 44		275.04	0.05.02		1 95 02	1 05 04	2 55 02	8.4E-02	1.7E-01	2.1E-01	5.6E-01	6.1E-02	1.5E-01	3.1E-02	1.3E+00
171	20-May-92 27-May-92	0.003		0.002	0.05		0.01	0.001	0.01	5.3E-04		3.72-04	0.96-03		1.02-03	1.05-04	2.5E-03	8.5E-02	1.7E-01	2.1E-01	5.7E-01	6.2E-02	1.6E-01	3.2E-02	1.3E+00
173	3-Jun-92																	8.6E-02	1.7E-01	2.1E-01	5.8E-01	6.3E-02	1.6E-01	3.2E-02	1.3E+00
174	10-Jun-92	0.004		65.04	0.05	1	0.004	0.001	0.01	165.02		2 15.04	215.02		1.6E-03	A 1E-04	2 9E-03	8.6E-02 8.8E-02	1.8E-01	2.1E-01	5.9E-01	6.3E-02 6.3E-02	1.6E-01	3.2E-02 3.2E-02	1.3E+00 1.3E+00
175	24-Jun-92	0.004		00-04	0.00		0.004	0.001	0.01	1.02-03		2.15-04	2. IL-V2		1.02-00	4.12-04	2.02-00	8.9E-02	1.8E-01	2.1E-01	6.2E-01	6.4E-02	1.6E-01	3.3E-02	1.3E+00
177	1-Jul-92																	9.0E-02	1.8E-01	2.1E-01	6.3E-01	6.4E-02	1.6E-01	3.3E-02	1.3E+00
178	8-Jul-92	0.003		0.001	0.05		0.001	0.001	0.03	135-03		5 9E-04	2 1E-02		4 2E-04	4 2E-04	1 2E-02	9.0E-02 9.2E-02	1.8E-01 1.8E-01	2.1E-01 2.1E-01	6.4E-01	6.5E-02	1.6E-01	3.3E-02 3.3E-02	1.3E+00
180	22-Jul-92	0.000	· · · ·	0.001	0.00		0.001	0.001	0.00	1.02 00				- "				9.2E-02	1.8E-01	2.1E-01	6.7E-01	6.6E-02	1.6E-01	3.4E-02	1.3E+00
181	29-34-92					···												9.3E-02	1.8E-01	2.1E-01	6.8E-01	6.6E-02	1.6E-01	3.4E-02	1.3E+00
182	12-Aug-92	0.003		8E-04	0.05		0.001	0.001	0.01	1.2E-03		3.3E-04	2.1E-02		4.1E-04	4.1E-04	4.1E-03	9.5E-02	1.8E-01	2.1E-01	7.1E-01	6.7E-02	1.6E-01	3.4E-02	1.3E+00
184	19-Aug-92																	9.5E-02	1.8E-01	2.1E-01	7.2E-01	6.7E-02	1.6E-01	3.5E-02	1.3E+00
185	26-Aug-92					[9.5E-02 9.6E-02	1.8E-01	2.1E-01 2.1E-01	7.3E-01 7.4E-01	6.8E-02	1.6E-01	3.5E-02	1.3E+00
187	9-Sep-92	0.001		5E-04	0.05		0.003	0.001	0.07	4.1E-04		2.0E-04	2.0E-02		1.2E-03	4.1E-04	2.9E-02	9.6E-02	1.9E-01	2.1E-01	7.6E-01	6.8E-02	1.6E-01	3.5E-02	1.4E+00
188	16-Sep-92																	9.7E-02	1.9E-01	2.1E-01	7.7E-01	6.9E-02	1.7E-01	3.6E-02	1.4E+00
189	23-Sep-92 30-Sep-92						· · · ·		<u> </u>									9.7E-02	1.9E-01	2.1E-01	7.9E-01	7.0E-02	1.7E-01	3.6E-02	1.4E+00
191	7-Oct-92	0.002		6E-04	0.05		0.009	0.001	0.01	8.3E-04		2.5E-04	2.1E-02		3.7E-03	4.1E-04	5.0E-03	9.8E-02	1.9E-01	2.1E-01	8.2E-01	7.0E-02	1.7E-01	3.6E-02	1.4E+00
192	14-Oct-92							<u> </u>										9.8E-02	1.9E-01 1.9E-01	2.1E-01 2.1E-01	6.3E-01 8.4E-01	7.1E-02	1.7E-01 1.8E-01	3.7E-02	1.4E+00
194	28-Oct-92																	9.9E-02	1.9E-01	2.1E-01	8.5E-01	7.1E-02	1.8E-01	3.7E-02	1.4E+00
195	4-Nov-92	0.002		5E-04	0.05		0.014	0.001	0.02	8.2E-04		2.1E-04	2.1E-02		5.8E-03	4.1E-04	6.2E-03	1.0E-01	1.9E-01	2.1E-01	8.7E-01	7.2E-02	1.9E-01	3.7E-02	1.4E+00
195	11-NOV-92	 ∤																1.05-01	1.9E-01	2.2E-01	8.9E-01	7.3E-02	1.9E-01	3.8E-02	1.4E+00

		Dissolv	d Mate							Motal La	ach Rate	:						Cumula	live Meta	Lesch	Rates:				
																0 1	7104	A	Annania	Comment		land	Mannanasa	Shar	Zine
Week No.	Date	Antimony D-Sb	Arsenic D-As	Copper D-Cu	D-Fe	D-Pb	D-Mn	Silver D-Aq	Zinc D-Zn	Antemony D-Sb	Arsenic D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
		(mg/L)	(mgl.)	(mgA.)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mghghuis		(mg/(g/wi))	(mgngne)	(mg/kg/wk)	(mg/1g/vik)	(1997-944)	(hetgitigen)	(mg/kg)	(mg/kg)	(mgAgg)	(mg/tgp)	(mgAcg)	(mg/kg)	(mg/kg)	(mgAcg)
66	16-May-90	0.002	0.003	6E-04	0.005	0.001		0.001	0.02	8.2E-04	1.2E-03	2.5E-04	2.0E-03	4.1E-04		4.1E-04	8.2E-03	3.1E-02	8.6E-02	1.7E-01	1.6E-01	2.0E-02	9.5E-02	5.7E-03	6.9E-01
67	23-May-90																	3 2E-02	8.6E-02	1.7E-01	1.6E-01	2.0E-02	9.7E-02 9.8E-02	5.9E-03 6.2E-03	6.9E-01 6.9E-01
68	30-May-90 6-Jun-90					· ·												3.2E-02	8.7E-02	1.7E-01	1.7E-01	2.0E-02	1.0E-01	6.4E-03	7.0E-01
70	13-Jun-90	0.002	0.002	6E-04	0.014	0.001	0.0034	0.001	0.01	8.4E-04	8.4E-04	2.5E-04	5.9E-03	4.2E-04	1.4E-03	4.2E-04	4.6E-03	3.3E-02	8.8E-02	1.7E-01	1.7E-01	2.1E-02	1.0E-01	6.8E-03	7.0E-01
71	20-Jun-90																	3.4E-02	9.0E-02	1.7E-01	1.8E-01	2.1E-02	1.0E-01	7.2E-03	7.1E-01
73	4-Jul-90	0.000		0.002	0.007	0.001	0.003	0.001	0.02	1 26-03		1 25 02	2 05 02	4 45 04	1 25 02	4 15-04	7.9E-03	3.3E-U2	9.1C-UZ	1./E-UI	1.0C-01	2.10-02 2.2F-02	1.0E-01	7.+E-03 7.8E-03	7.1E-01 7.2E-01
75	18-Jul-90	0.003		0.003	0.007	0.001	0.000	0.001	0.02	1.26-00		1.36-03	4.3L-03	4.16-04	1.22-00	4.12-04		3.7E-02	9.2E-02	1.7E-01	1.8E-01	2.2E-02	1.1E-01	8.0E-03	7.2E-01
76	25-Jul-90																	3.7E-02 3.8E-02	9.3E-02 9.4E-02	1.7E-01	1.9E-01	2.2E-02 2.3E-02	1.1E-01 1.1E-01	8.2E-03 8.4E-03	7.3E-01 7.3E-01
77	1-Aug-90 8-Aug-90	0.003		0.001	0.005		0.0053	0.001	0.03	1.2E-03		4.9E-04	2.1E-03		2.2E-03	4.1E-04	1.4E-02	3.9E-02	9.5E-02	1.8E-01	1.9E-01	2.3E-02	1.1E-01	8.8E-03	7.5E-01
79	15-AUg-90																	4.0E-02	0.6E 02	1.8E-01	1.9E-01	2.4E-02	1.1E-01	9.1E-03 9.3E-03	7.5E-01 7.6E-01
80	22-Aug-90 29-Aug-90																	4.1E-02	9.7E-02	1.8E-01	1.9E-01	2.5E-02	1.1E-01	9.5E-03	7.6E-01
82	5-Sep-90	0.002		0.005	0.007		0.001	0.001	0.01	8.6E-04		2.3E-03	3.0E-03		4.3E-04	4.3E-04	5.6E-03	4.2E-02	9.8E-02	1.8E-01	2.0E-01	2.5E-02	1.1E-01	9.9E-03	7.7E-01
83	12-Sep-90				·													4.2E-02	1.0E-01	1.8E-01	2.0E-01	2.6E-02	1.1E-01	1.0E-02	7.7E-01
85	26-Sep-90																	4.3E-02	1.0E-01	1.8E-01	2.0E-01	2.6E-02	1.1E-01	1.1E-02	7.7E-01
86	3-Oct-90	0.002		0.006	0.005		0.001	0.001	0.01	8.2E-04		2.4E-03	2.1E-03		4.1E-04	4.1E-04	3.3E-03	4.4E-02	1.0E-01	1.9E-01	2.0E-01	2.7E-02	1.1E-01	1.1E-02	7.8E-01
88	17-Oct-90																	4.5E-02	1.0E-01	1.9E-01	2.0E-01	2.7E-02	1.1E-01	1.1E-02	7.8E-01
89	24-Oct-90	b 002		65.04	0.005		0.001	0.001	0.01	8 3E-04		2 1E-04	2.1E-03		4.2E-04	4.2E-04	4 0E-03	4.6E-02	1.0E-01	1.9E-01	2.1E-01	2.8E-02	1.1E-01	1.2E-02	7.9E-01
91	7-Nov-90	0.002		56-04	0.005		0.001		0.01	0.02-04		2.12						4.6E-02	1.1E-01	1.02 01	2.16-01	2.9E-02	1.1E-01	1.2E-02	7.9E-01
92	14-Nov-90																	4.7E-02	1.16-01	1.9E-01	2 1E-01	3.0E-02	1.1E-01	1.3E-02	8.0E-01
94	28-Nov-90	0.002		5E-04	0.017		0.001	0.001	0.02	8.4E-04		2.1E-04	7.1E-03		4.2E-04	4.2E-04	9.6E-03	4.8E-02	1.1E-01	1.9E-01	2.2E-01	3.0E-02	1.1E-01	1.3E-02	8.1E-01
95	5-Dec-90																	4 8L-02 4 9E-02	1.1E-01	1.9E-01	2.2E-01	3.1E-02	1.1E-01	1.3E-02 1.3E-02	8.2E-01
97	12-Dec-90																	4 9E 02	1.1E-01	1.9E-01	2.2E-01	3.1E-02	1.2E-01	1.4E-02	8.2E-01
98	26-Dec-90	0.002		_5E-04_			0.001	0.001	0.02	8.5E-04_		2.1E-04			4.2E-04	4.2E-04	7.6E-03	5.0E-02	1.1E-01	1.9E-01	2.2E-01	3.2E-02 3.2E-02	1.2E-01 1.2E-01	1.4E-02 1.4E-02	8.3E-01 8.3E-01
100	9-jan-91														ĺ			5.1E-02	1.1E-01	1.9E-01	2.3E-01	3.2E-02	1.2E-01	1.4E-02	8.4E-01
101	16-Jan-91	0.002		5E-04	0.005		0.001 1	0.001	0.02	7.75-04		1 9F-04	 		3 8E-04	3 8E-04T	6.8E-CI3	5.1E-02 5.2E-02	1.1E-01 1.1E-01	1.9E-01	2.3E-01 2.3E-01	3.3E-02 3.3E-02	1.2E-01	1.5E-02	8.5E-01
102	30-Jan-91	0.002			0.005		0.0011			1.10.04					1			5.2E-02	1.2E-01	1.9E-01	2.3E-01	3.4E-02	1.2E-01	1.5E-02	8.5E-01
104	6-Feb-91																	5.3E-02 5.3E-02	1.2E-01 1.2E-01	1.9E-01	2.3E-01 2.3E-01	3.4E-02 3.4E-02	1.2E-01	1.6E-02	8.6E-01
105	20-Fet-91	0.003		5E-04	0.005		0.001	0.001	0.02	1.3E-03		2 1E-04	2.1E-03		4.3E-04	4.3E-04	6.1E-C 3	5.5E-02	1.2E-01	1.9E-01	2.3E-01	3.5E-02	1.2E-01	1.6E-02	8.7E-01
107	27-Feb-91																	5.5E-02 5.6E-02	1.2E-01 1.2E-01	1.9E-01	2.4E-01	3.5E-02 3.6E-02	1.2E-01 1.2E-01	1.6E-02 1.7E-02	8.7E-01 8.8E-01
109	13-Mar-91																	5.6E-02	1.2E-01	1.9E-01	2.4E-01	3.6E-02	1.2E-01	1.7E-02	8.8E-01
110	20-Mar-91	0.002		_5E-04_I	0.005		0.001	0.001 0	.03	8.2E-04	1	2.1E-04	2.1E-03		4.1E-04	4.1E-04	1.0E-02	5.7E-02	1.2E-01 1.2E-01	1.9E-01	2.4E-01	3.7E-02 3.7E-02	1.2E-01 1.2E-01	1.7E-02 1.7E-02	8.9E-01 9.0E-01
112	3-Apr-91		I		L													0.0E-02	1.2C-01	1.90-01	2.4E-01	3.7E-02	1.2E-01	1.8E 02	0.0E 01
113	10-Apr-91	0.002		0.001	0.005		0.001	0.001	0.03	8 3E-04		5 4E-04	216-03		4 1E-04	4 1E-04	1 1E-02	5.8E-02 5.9E-02	1.2E-01 1.2E-01	1.9E-01	2.4E-01	3.8E-02 3.8E-02	1.2E-01 1.2E-01	1.8E-02	9.1E-01
114	24-Apr-91	0.002		0.001	0.005		0.001	0.001	0.03	0.32-04		3.42-04	2.12-00		4.12.04	4.12.01		6.0E-02	1.3E-01	1.9E-01	2.5E-01	3.9E-02	1.2E-01	1.8E-02	9.3E-01
116	1-May-91																	6.0E-02	1.3E-01	1.9E-01	2.5E-01	3.9E-02	1.2E-01	1.9E-02	9.3E-01 9.4E-01
117	8-May-91 15-May-91	0.001		5E-04	0.005		0.001	0.001	0.04	4.2E-04		2.1E-04	2.1E-03		4.2E-04	4.2E-04	1.5E-02	6.1E-02	1.3E-01	1.9E-01	2.5E-01	4.0E-02	1.2E-01	1.9E-02	9.6E-01
119	22-May-91																	6.1E-02	1.3E-01	1.9E-01	2.5E-01	4.0E-02 4 1E-02	1.2E-01 1.2E-01	1.9E-02 2.0E-02	9.6E-01 9.7E-01
120	29-May-91 6 Jun 01																	6.2E-02	1.3E-01	1.9E-01	2.5E-01	4.1E-02	1.2E-01	2.0E-02	9.7E-01
122	12-Jun-91	0.004		5E-04	0.005			0.001	0.02	1.7E-03		2.1E-04	2.1E-03			4.1E-04	6.6E-03	6.5E-02	1.3E-01 1.3E-01	1.9E-01 1.9E-01	2.6E-01	4.2E-02 4.2E-02	1.2E-01	2.0E-02 2.0E-02	9.9E-01
123	26-Jun-91																	6.5E-02	1.3E-01	1.9E-01	2.6E-01	4.2E-02	1.2E-01	2.1E-02	1.0E+00
125	3-Jul-91_	0.004		0.000	0.040		0.0011	0.001 -	0.14	146-02		2 1E-02	5 55.02		3.85.04	3 4F-04	3 8F-07	6.7E-02	1.3E-01 1.3E-01	1.9E-01 2.0E-01	2.0E-01	4.3E-02	1.2E-01 1.2E-01	2.1E-02 2.1E-02	1.0E+00
120	17-ju-91				1 0.016		0.0011	0.001	J.11	1.76-03		6.10703			0.05-04	3.46-04		6.8E-02	1.4E-01	2.0E-01	2.7E-01	4.4E-02	1.2E-01	2.1E-02	1.1E+00
126	24-Jul-91																	6.9E-02 6.9E-02	1.4E-01	2.0E-01 2.0E-01	2.7E-01 2.7E-01	4.4E-02	1.2E-01 1.2E-01	2.2E-02 2.2E-02	1.1E+00
129	7-Aug-91	0.003	I	0.002	0.006		0.0043	0.001 I	0.01	1.2E-03		6.1E-04	2.5E-03		1.8E-031	4.1E-041	3.3E-03	7.1E-02	1.4E-01	2.0E-01	2.7E-01	4.5E-02	1.2E-01	2.2E-02	1.1E+00
131	14-Aug-91																	7.1E-02	1.4E-01	Z.0E-01	2.8E-01	4.5E-02	1.3E-01	2.2E-02	1.1E+00

Dissolved Metals*: Metal Leach Rates: Cumulative Metal Leach R													l													
Artimory Artimory Arsenic Copper Iron Leed Mangarese Silver Zinc Artimory th> <th></th> <th>Dissolve</th> <th>ed Meta</th> <th>ls*:</th> <th></th> <th>Γ</th> <th></th> <th></th> <th></th> <th>Metal Le</th> <th>ach Rate</th> <th>8:</th> <th></th> <th>1</th> <th>T</th> <th></th> <th>· ·</th> <th>Cumula</th> <th>tive Meta</th> <th>al Leach</th> <th>Rates:</th> <th></th> <th></th> <th></th> <th></th>			Dissolve	ed Meta	ls*:		Γ				Metal Le	ach Rate	8:		1	T		· ·	Cumula	tive Meta	al Leach	Rates:				
Aritmory Aritmory							1			<u> </u>				1	<u> </u>	1	1				<u> </u>					
Week No. Date D-Sb D-As D-Cu D-Fe D-Pb D-Mn D-Ag D-Zn D-Sb D-As D-Cu D-Fe D-Pb D-Mn D-Ag D-Zn (mptu)			Antimony	Arsenic	Copper	Iron	Lood	Menganese	Silver	Zinc	Antomony	Arsenic	Copper	Iron	Lood	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	tron	Losd	Manganese	Silver	Zinc
(mpL) (mpL) <th< th=""><th>Week No.</th><th>Date</th><th>D-Sb</th><th>D-As</th><th>D-Cu</th><th>D-Fe</th><th>D-Pb</th><th>D-Mn</th><th>D-Ag</th><th>D-Zn</th><th>D-Sb</th><th>D-As</th><th>D-Cu</th><th>D-Fe</th><th>D-Pb</th><th>D-Mn</th><th>D-Ag</th><th>D-Zn</th><th>D-Sb</th><th>D-As</th><th>D-Cu</th><th>D-Fe</th><th>D-Pb</th><th>D-Mn</th><th>D-Ag</th><th>D-Zn</th></th<>	Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
264 2-Mar-94 1.5E-01 2.5E-01 2.6E-01 1.7E+00 1.0E-01 1.3E+00 1.0E-01 2.0E-02 2.0E-03 2.1E-02 3.7E-02 1.1E+02 1.5E-01 2.5E-01 1.2E+00 1.0E-01 1.3E+00 6.4E-02 2.0E 266 16-Mar-94 0.005 0.09 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E+02 1.5E-01 2.5E-01 1.8E+00 1.0E-01 1.4E+00 6.4E-02 2.0E 268 30-Mar-94 0.005 0.09 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E+02 1.2E+00 1.0E+01 1.4E+00 6.4E-02 2.0E 268 30-Mar-94 0.005 0.09 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E+00 1.2E+00 1.4E+00 6.5E-02 2.0E			(mgA_)	(mg/L)	(mg/L)	(mg/L)	(mgA.)	(mgA.)	(mg/L)	(mgA.)	(mphghik)	(mg/ng/mk)	(mg/ig/wk)	(mg/ig/wk)	(1101-014)	(mghghuk)	(/10/10/14)	(mg/kg/wk)	(mgAcg)	(mg/kg)	(mg/kg)	(mgArg)	(mgAcg)	(mgAcg)	(mgAig)	(mg/kg)
264 2-Mar-94 1.5E-01 2.5E-01 2.6E-01 1.7E+00 1.0E-01 1.3E+00 6.3E-02 2.0E 265 9-Mar-94 1.5E-01 2.5E-01 2.6E-01 1.7E+00 1.0E-01 1.3E+00 6.4E-02 2.0E 266 16-Mar-94 1.5E-01 2.5E-01 2.6E-01 1.8E+00 1.0E-01 1.3E+00 6.4E-02 2.0E 267 23-Mar-94 0.005 0.09 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E-01 2.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.4E-02 2.0E 268 30-Mar-94 1.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 268 30-Mar-94 1.5E-01 2.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 269 6-Apr-94 1.5E-03 2.7E-01 1.8E+00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																										
265 9-Mar-94 1.5E-01 2.5E-01 2.6E-01 1.7E+00 1.0E-01 1.3E+00 6.4E-02 2.0E 266 16-Mar-94 1.5E-01 2.5E-01 2.5E-01 2.5E-01 1.8E+00 1.0E-01 1.3E+00 6.4E-02 2.0E 267 23-Mar-94 0.005 0.05 0.09 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E-01 2.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.4E-02 2.0E 268 30-Mar-94 0.005 0.05 0.09 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E-01 2.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 269 6.Apr-94 0.01 0.02-01 1.4E+00 6.5E-02 2.0E 2.0E 1.8E+01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 269 6.Apr-94 0.04 0.05 0.08 0.03 1.5E-03 2.7E-01 1.8E+00 1	264	2-Mar-94								ł						1. A. A. A. A. A. A. A. A. A. A. A. A. A.			1.5E-01	2.5E-01	2.6E-01	1.7E+00	1.0E-01	1.3E+00	6.3E-02	2.0E+00
266 16-Mar-94 15E-01 2.5E-01 2.6E-01 1.8E+00 1.0E-01 1.3E+00 6.4E-02 2.0E 267 23-Mar-94 0.005 0.09 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E-02 1.5E-01 2.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.4E-02 2.0E 268 3.0-Mar-94 0 0 0 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E-02 1.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.4E-02 2.0E 269 6-Apr-94 0 0 0.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 270 13-Apr-94 0 0 0.05 0.08 0.03 1.5E-03 2.0E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 270 13-Apr-94 0 0.05 0.08 0.03 1.5E-03 2.7E-01 1.8E+00 1.0E-01 1.6E-02 2.0E <td>265</td> <td>9-Mar-94</td> <td></td> <td></td> <td>1.5E-01</td> <td>2.5E-01</td> <td>2.6E-01</td> <td>1.7E+00</td> <td>1.0E-01</td> <td>1.3E+00</td> <td>6.4E-02</td> <td>2.0E+00</td>	265	9-Mar-94															1		1.5E-01	2.5E-01	2.6E-01	1.7E+00	1.0E-01	1.3E+00	6.4E-02	2.0E+00
267 23-Mar-94 0.005 0.09 0.03 2.0E-03 2.1E-02 3.7E-02 1.1E-02 1.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.4E-02 2.0E 268 30-Mar-94 1.5E-01 2.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 269 6-Apr-94 1.6E-01 2.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 270 13-Apr-94 1.6E-01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 270 13-Apr-94 1.6E-01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 270 13-Apr-94 0.004 0.05 0.08 0.03 1.5E-03 2.0E-02 1.3E-00 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 271 2.0Apr-94 0.004 0.05 0.08 0.03 1.5E-02 3.2E-02 1.3E-02 <	266	16-Mar-94																	1.5E-01	2.5E-01	2.6E-01	1.8E+00	1.0E-01	1.3E+00	6.4E-02	2.0E+00
268 30-Mar-94 1.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 269 6-Apr-94 1.6E-01 2.5E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 270 13-Apr-94 1.6E-01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 270 13-Apr-94 0.004 0.05 0.08 0.03 1.5E-02 3.2E-02 1.3E-01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 271 2.0Apr-94 0.004 0.05 0.08 0.03 1.5E-02 3.2E-02 1.3E-01 2.6E-01 1.2E-01 1.8E+00 1.6E-02 2.0E	267	23-Mar-94			0.005	0.05		0.09		0.03			2.0E-03	2.1E-02		3.7E-02		1.1E-02	1.5E-01	2.5E-01	2.7E-01	1.8E+00	1.0E-01	1.4E+00	6.4E-02	2.0E+00
269 6.Apr-94 1.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.5E-02 2.0E 270 13-Apr-94 1.0E-01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E 271 13-Apr-94 0.004 0.05 0.08 0.03 1.5E-03 2.0E-02 3.2E-02 1.3E-00 1.8E+00 1.6E-01 2.6E-01 2.7E-01 1.8E+00 6.6E-02 2.0E	268	30-Mar-94					1												1.5E-01	2.5E-01	2.7E-01	1.8E+00	1.0E-01	1.4E+00	6.5E-02	2.0E+00
270 13-Apr-94 1.6E-01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 1.3E-01 1.8E+01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 1.3E-01 1.8E+01 2.6E-01 2.7E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 1.3E-01 1.8E+01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 1.3E-01 1.8E+01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 1.3E-01 1.3E-01 1.8E+01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 1.3E-01 1.3E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 1.3E-01 1.3E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 3.2E-02 1.3E-01 1.3E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 3.2E-02 1.3E-01 1.3E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 3.2E-02 1.3E-01 1.3E-01 1.8E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 3.2E-02 1.3E-01 1.3E-01 1.4E+00 1.0E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 3.2E-02 1.3E-01 2.6E-01 2.7E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 3.2E-02 1.3E-01 2.6E-01 2.7E-01 1.4E+00 6.6E-02 2.0E-02 3.2E-02 3.2E-02 3.2E-02 3.2E-01 2.7E-01 3.2E-01 3.2E-01 3.2E-01 3.2E-00	269	6-Apr-94					1										1		1.6E-01	2.5E-01	2.7E-01	1.8E+00	1.0E-01	1.4E+00	6.5E-02	2.0E+00
271 20 Anr. 94 0.05 0.08 0.03 15E.03 20E.02 32E.02 13E.02 16E.01 27E.01 18E400 10E.01 14E400 16 6E.02 20E	270	13-Apr-94					1									1	1		1.6E-01	2.6E-01	2.7E-01	1.8E+00	1.0E-01	1.4E+00	6.6E-02	2.0E+00
	271	20-Apr-94			0.004	0.05		0.08		0.03			1.5E-03	2.0E-02		3.2E-02		1.3E-02	1.6E-01	2.6E-01	2.7E-01	1.8E+00	1.0E-01	1.4E+00	6.6E-02	2.0E+00
272 27-Apr-94 1.6E-01 2.7E-01 1.8E+00 1.0E-01 1.5E+00 6.6E-02 2.0E-	272	27-Apr-94																	1.6E-01	2.6E-01	2.7E-01	1.8E+00	1.0E-01	1.5E+00	6.6E-02	2.0E+00
273 4-May-94 16E-01 2.7E-01 1.8E+00 1.0E-01 1.5E+00 6.7E-02 2.0E-	273	4-May-94																	1.6E-01	2.6E-01	2.7E-01	1.8E+00	1.0E-01	1.5E+00	6.7E-02	2.0E+00
274 11-May-94 1.6E-01 2.6E-01 2.7E-01 1.9E+00 1.0E-01 1.5E+00 6.7E-02 2.0E+	274	11-May-94																	1.6E-01	2.6E-01	2.7E-01	1.9E+00	1.0E-01	1.5E+00	6.7E-02	2.0E+00
275 18-May-94 0.003 0.05 0.07 0.03 1.3E-03 2.1E-02 2.9E-02 1.4E-02 1.6E-01 2.6E-01 2.7E-01 1.9E+00 1.0E-01 1.5E+00 6.8E-02 2.1E-02	275	18-May-94			0.003	0.05		0.07		0.03			1.3E-03	2.1E-02		2.9E-02	1	1.4E-02	1.6E-01	2.6E-01	2.7E-01	1.9E+00	1.0E-01	1.5E+00	6.8E-02	2.1E+00
276 25-May-94 1.6E-01 2.6E-01 2.8E-01 1.9E+00 1.1E-01 1.5E+00 6.8E-02 2.1E-	276	25-May-94																	1.6E-01	2.6E-01	2.8E-01	1.9E+00	1.1E-01	1.5E+00	6.8E-02	2.1E+00
277 1-Jun-94 16E-01 2.6E-01 2.8E-01 1.9E+00 1.1E-01 1.5E+00 6.9E-02 2.1E4	277	1-Jun-94																	1.6E-01	2.6E-01	2.8E-01	1.9E+00	1.1E-01	1.5E+00	6.9E-02	2.1E+00
278 8-Jun-94 1.6E-01 2.6E-01 2.6E-01 2.8E-01 1.9E+00 1.1E-01 1.6E+00 6.9E-02 2.1E+	278	8-Jun-94																	1.6E-01	2.6E-01	2.8E-01	1.9E+00	1.1E-01	1.6E+00	6.9E-02	2.1E+00
279 15-Jun-94 0.009 0.05 0.07 0.03 3.8E-03 2.1E-02 2.9E-02 1.4E-02 1.6E-01 2.6E-01 9	15-Jun-94			0.009	0.05		0.07		0.03			3.8E-03	2.1E-02		2.9E-02		1.4E-02	1.6E-01	2.6E-01	2.8E-01	1.9E+00	1.1E-01	1.6E+00	6.9E-02	2.1E+00	
280 22-Jun-94 1.6E-01 2.6E-01 2.8E-01 1.9E+00 1.1E-01 1.6E+00 7.0E-02 2.1E-0	280	22-Jun-94																	1.6E-01	2.6E-01	2.8E-01	1.9E+00	1.1E-01	1.6E+00	7.0E-02	2.1E+00
281 29-Jun-94 11.7E-01 2.6E-01 2.9E-01 2.0E+00 1.1E-01 1.6E+00 7.0E-02 2.1E+	281	29-Jun-94																	1.7E-01	2.6E-01	2.9E-01	2.0E+00	1.1E-01	1.6E+00	7.0E-02	2.1E+00
282 6-Jul-94 1.7E-01 2.7E-01 2.9E-01 2.0E+00 1.1E-01 1.6E+00 7.1E-02 2.1E+	282	6-Jul-94																	1.7E-01	2.7E-01	2.9E-01	2.0E+00	1.1E-01	1.6E+00	7.1E-02	2.1E+00
283 13-Jul-94 0.009 0.05 0.08 0.03 3.8E-03 2.1E-02 3.3E-02 1.4E-02 1.7E-01 2.7E-01 2.0E+00 1.1E-01 1.7E+00 7.1E-02 2.1E+0	283	13-Jul-94			0.009	0.05		0.08		0.03			3.8E-03	2.1E-02		3.3E-02		1.4E-02	1.7E-01	2.7E-01	2.9E-01	2.0E+00	1.1E-01	1.7E+00	7.1E-02	2.1E+00
284 20-Jul-94 1.7E-01 2.7E-01 2.0E+00 1.1E-01 1.7E+00 7.1E-02 2.1E+	284	20-Jul-94																	1.7E-01	2.7E-01	3.0E-01	2.0E+00	1.1E-01	1.7E+00	7.1E-02	2.1E+00
285 27-Jul-94 11.7E-01 2.7E-01 3.0E-01 2.0E+00 1.1E-01 1.7E+00 7.2E-02 2.1E+	285	27-Jul-94																	1.7E-01	2.7E-01	3.0E-01	2.0E+00	1.1E-01	1.7E+00	7.2E-02	2.1E+00
286 3-Aux-94 17E-01 2.7E-01 3.0E-01 2.0E+00 1.1E-01 1.8E+00 7.2E-02 2.2E+	286	3-Aug-94																	1.7E-01	2.7E-01	3.0E-01	2.0E+00	1.1E-01	1.8E+00	7.2E-02	2.2E+00
				· · · · · · · · · · · · · · · · · · ·																					3 65 66	
Maximum 0.008 0.016 0.07 0.05 0.002 0.11 0.001 0.11 3.0E-03 6.2E-03 2.9E-02 2.2E-02 8.2-04 4.7E-02 4.3E-04 1.3.8E-02 1.7.E-01 3.0E-01 2.0E-00 1.1E-01 1.8E-00 7.2E-02 2.2E-02 8.2-04 1.4.7E-02 4.3.8E-02 1.7.E-01 2.7.E-01 3.0E-01 2.0E-00 1.1E-01 1.8E-00 7.2E-02 2.2E-02 8.2-04 1.4.7E-02 4.3.8E-02 1.7.E-01 1.3.0E-01 2.0E-00 1.1E-01 1.8E-00 7.2E-02 2.2E-02 8.2-04 1.4.7E-02 4.3.8E-02 1.7.E-01 1.3.0E-01 2.0E-00 1.1E-01 1.8E-00 7.2E-02 2.2E-02 8.2-04 1.4.7E-02 4.3.8E-02 1.7.E-01 1.3.0E-01 2.0E-00 7.2E-02 2.2E-02 8.2-04 1.4.7E-02 4.3.8E-02 1.7.E-01 1.3.0E-01 2.0E-00 7.2E-02 2.2E-02 8.2-04 1.4.7E-02 4.3.8E-02 1.7.E-01 1.3.0E-01 2.0E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 4.3.8E-02 1.7.E-01 1.3.0E-01 2.0E-00 7.2E-02 2.2E-02 8.2-04 1.4.7E-02 1.4.7E-02 1.7.E-01 1.3.0E-01 1.8E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-02 1.7.E-01 1.3.0E-01 1.8E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-02 1.7.E-01 1.3.0E-01 1.8E-00 7.2E-02 1.2.E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-01 1.3.0E-01 1.3.0E-01 1.8E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-01 1.3.0E-01 1.8E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-01 1.8E-00 1.7.E-01 1.8E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-01 1.2.E-01 1.3.0E-01 1.8E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-01 1.2.E-01 1.3.0E-01 1.8E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-01 1.3.0E-01 1.2.E-00 7.2E-02 1.2.E-02 8.2-04 1.4.7E-02 1.4.7E-01	Maximum		0.008	0.016	0.07	0.05	0.002	0.11	0.001	0.11	3.0E-03	<u>6.2E-03</u>	2.9E-02	2.2E-02	8X-04	4.7E-02	4.3E-04	3.8E-02	1./2-01	2.7E-01	3.0E-01	2.0E+00	1.1E-01	1.8E+00	1.2E-02	2.2E+00
Minimum 0.001 0.002 0.000 5 0.00 5 0.001 0.0007 2E-04 0.0 1 29E-04 8.0E-04 1.9E-04 1.3E-03 3.8E-04 29E-04 7.6E-05 24E-03 3.0E-03 6.1E-03 1.3E-03 3.8E-04 1.4E-03 7.6E-05 3.8E-04 1.3E-03 3.8E-04 1.4E-03 7.6E-05 3.8E-04 1.3E-03 3.8E-04 1.4E-03 7.6E-05 3.8E-04 1.3E-03 3.8E-04 1.3E-03 3.8E-04 1.3E-03 3.8E-04 1.4E-03 7.6E-05 3.8E-04 1.3E-03 1.3E-03 3.8E-04 1.3E-03 1.3E-	Minimum		0.00	1 0.00	020.0	005 (0.005	0.001 0	.000	7 2E-	040.01	2.9E-04	8.0E-04	1.9E-04	.3E-03 3	8E-04 2.9	<u>E-04 7.6</u>	-05 2.4E	03 3.0E	<u>03 6.1E-</u>	<u>03 1.3E-</u>	0 <u>3 3.4E-C</u>	3 3.8E-0	4 1.4E-03	7.6E-05	3.8E-03
Mean 0.002 0.00 6 0.00 4 0 0.02 8 0.001 0.0298 8E-04 0.03 1 8 3E-04 2.3E-03 1.6E-03 1.1E-02 4.5E-04 1.2E-02 7.7E-02 1.5E-01 1.8E-016 4E-01 5.1E-02 3.4E-01 2.7E-02 1.1E-100	Mean		0.002	0.00	60.0	040 (028	D.001 C	0298 8	E-04 0	.0318	<u>3E-04 2</u>	3E-03 1.0	E-03 1.1	-02 4.5	-04 1.2E-	02 3.0E-0	4 1.2E-02	7.7E-02	1.5E-01	1.8E-01	6.4E-01 5	1E-02	3.4E-01 2.0	E-02 1.1	E+00
Median 0.002 D . 0 0 # 0.001 4 0 . 0 7 0.001 0 . 0 4 5 3 0.001 0 0 3 0 82E-04 1.7E-03 5 1E-04 7.1E-03 4.2E-04 1.8E-03 4.1E-04 1.2E-02 7.7E-01 2.0E-01 3.1E-01 3.0E-02 1.4E-01 2.0E-02 1.2E-00 1.2E-01 2.0E-02 1.2E-02 1.2E-02 1.2E-01 2.0E-02 1.2E-02	Median		0.002	0.00	4 0.001	40.0	7_0.0	0 <u>1</u> 0.00	53 O	001 0	0308	2E-04_1.	7E-03_5.1	E-04 7.1	-03 4.2E	-04 1.8E-	03 4 1E-0	4 1.2L-02	1./E-02	1.0E-01	2.0E-01	3.1E-01	0.0E-02	4E-01 2	DE-02 1.2	/E+00
Mean Last 8 Weeks 1.0.0093 (0.050 0.0750 0.034 3.8E-03 (2.1E-02 3.1E-02 1.4E-03 (2.1E-02 1.7E-01 (2.7E-01 (2.9E-01 (2.0E+00 1.1E-01 (1.7E+00 1.1E-01 (2.1E+00 1.1E-00 1.1E-00 1.1E-00 (2.1E+00 1.1E-00 1.1E-00 1.1E-00 1.1E-00 1.1E	Mean Lest	8 Weeks			0.0093	0.050		0.0750		0.034			3.8E-03	2.1E-02		3.1E-02		1.4E-02	1.7E-01	2.7E-01	2.9E-01	2.0E+00	1.1E-01	1.7E+00	7.1E-02	2.1E+00
75% Remaining (Wiss)	75% Rema	ining (Wks)																								
[<u>50% Remaining (WKs) </u>	50% Rema	ning (VVks)																								
125% Remaining (VMRS)	25% Remain	ning (Wks)																								
	0% Kemain	ing (vvks)								<u> </u>																

		Dissolv	d Meta	n*:						Motal Lo	ach Rate	•:						Cumula	tive Mete	l Leac
																		A attances	A	Canada
	Dete	Antimorry	Arsenic	Copper	tron	Load	Manganese	Silver	Zinc D. 7n	Antemony D. Sh	Arsenic	Copper	ton D.F.	Leed	Manganese D_Mm	D-An	D-7n	D-Sb	D-As	D-Ci
YVOOK NO.		(mg/L)	(mgl)	(mp/L)	(mpl.)	(mpl)	(mgA.)	(mpl.)	(mgA.)	(mg/kg/mk)	(10040044)	(10040444)	{mg/mg/wic)	(mg/sg/wk)	(mg/rg/wh)	(mghghuk)	(mg/kg/uk)	(mg/kg)	(mg/kg)	(mgAy
							 					ļ						1 0F-01	2 0F-01	2 2E-(
198 199	25-Nov-92 2-Dec-92	0.002		0.002	0.05		0.021	0.001	0.02	8.3E-04		7.0E-04	2.1E-02		8.7E-03	4.1E-04	6.6E-03	1.0E-01	2.0E-01	2.2E-(
200	9-Dec-92																	1.0E-01	2.0E-01	2.2E-(
201	16-Dec-92		-								 							1.0E-01	2.0E-01	2.2E-
202	30-Dec-92	0.002		0.001	0.05		0.021	0.001	0.02	6.5E-04		3.9E-04	1.6E-02		6.9E-03	3.3E-04	6.5E-03	1.0E-01	2.0E-01	2.2E-(
204	6-Jan-93					[I							1.0E-01	2.0E-01	2.2E-(
205	13-Jan-93 20- Jan-93				<u> </u>	<u> </u>							·					1.0E-01	2.0E-01	2.2E-(
207	27-Jan-93	0.002		0.002	0.05		0.033	0.001	0.05	7.9E-04		7.9E-04	2.0E-02		1.3E-02	3.9E-04	1.8E-02	1.1E-01	2.0E-01	2.2E-(
208	3-Feb-93						· · · · · · · · · · · · · · · · · · ·				 							1.1E-01	2.0E-01	2.2E-
210	17-Feb-93					·		· · · · ·										1.1E-01	2.1E-01	2.2E-(
211	24-Feb-93	0.002		0.001	0.05		0.039	0.001		8.2E-04		4.9E-04	2.1E-02		1.6E-02	4.1E-04		1.1E-01 1.1E-01	2.1E-01 2.1E-01	2.2E-
212	3-Mar-93 10-Mar-93						<u> </u>											1.1E-01	2.1E-01	2.2E-(
214	17-Mar-93	[0.05	[0.05		0.00			775.04	1.65 02		1 65 07		7 15-03	1.1E-01	2.1E-01	2.2E-(
215	24-Mar-93 31-Mar-93		┨────	0.002	0.05		0.05		0.02			1.16-04	1.00-02		1.02-02		1.12-00	1.1E-01	2.1E-01	2.2E-(
217	7-Apr-93																	1.1E-01	2.1E-01	2.2E-(
218	14-Apr-93			0.001	0.05		0.043		0.04			4.5E-04	2 1E-02		1.8E-02	<u> </u>	1.7E-02	1.1E-01	2 1E-01	2.2E-(
219	28-Apr-93			0.001	0.00		0.045		0.04									1.2E-01	2.1E-01	2.2E-(
221	5-May-93						1				· · · · ·				ļ	 		1.2E-01	2.1E-01	2.3E-
222	12-May-93	 		0.006	0.05		0.056		0.04	·		2.6E-03	2.1E-02		2.3E-02		1.5E-02	1.2E-01	2.2E-01	2.3E-(
224	26-May-93										1							1.2E-01	2.2E-01	2.3E-(
225	2-Jun-93		ļ						 		 				 			1.2E-01	2.2E-01	2.3E-
220	9-Jun-93		<u>`</u>	0.002	0.05		0.057		0.05			9.9E-04	2.1E-02		2.4E-02		2.2E-02	1.2E-01	2.2E-01	2.3E-(
228	23-Jun-93										I					ļ		1.2E-01	2 2E-01	2.3E-(
229	30-Jun-93	 	 												<u> </u>			1.2E-01	2.2E-01	2.3E-(
230	14-Jul-93			0.002	0.05		0.07		0.03			9.7E-04	2.1E-02		3.0E-02		1.2E-02	1.2E-01	2.2E-01	2.3E-(
232	21-Jul-93								<u> </u>									1.3E-01 1.3E-01	2.2E-01	2.4E-0
233	4-Aug-93				<u> </u>													1.3E-01	2.3E-01	2.4E-(
235	11-Aug-93			0.003	0.05		0.09		0.03		ļ	1.2E-03	2.2E-02		3.9E-02		1.5E-02	1.3E-01	2.3E-01	2.4E-(
230	25-Aug-93				<u> </u>		<u> </u>				1							1.3E-01	2.3E-01	2.4E-(
238	1-Sep-93						<u> </u>						0.45.00		4 75 00		1.65.00	1.3E-01	2.3E-01	2.4E-(
239	8-Sep-93		h	0.008	0.05		0.11		0.04			3.3E-03	2.15-02		4./E-02		1.02-02	1.3E-01	2.3E-01	2.5E-0
241	22-Sep-93																	1.3E-01	2.3E-01	2.5E-(
242	29-Sep-93		<u> </u>	0.002	0.05	ļ	0.09		0.03			1.0E-03	2 1E-02		3.7E-02		1.4E-02	1.3E-01	2.3E-01	2.5E-
243	13-Oct-93	<u> </u>		0.003	0.00		0.03		0.00		· · · ·	1.02-00	2.12.02					1.3E-01	2.3E-01	2.5E-(
245	20-Oct-93	<u> </u>																1.4E-01	2.3E-01	2.5E-(
246	27-Oct-93			0.003	0.05	<u> </u>	0.08		0.04			1.3E-03	2.1E-02		3.3E-02		1.7E-02	1.4E-01	2.4E-01	2.5E-
248	10-Nov-93			0.000	0.00													1.4E-01	2.4E-01	2.5E-(
249	17-Nov-93			ļ	<u> </u>	ļ		<u> </u>	<u> </u>				 					1.4E-01 1.4E-01	2.4E-01	2.0E-
250	1-Dec-93			0.002	0.05		0.07		0.03	·		8.7E-04	2.1E-02		2.9E-02		1.4E-02	1.4E-01	2.4E-01	2.5E-(
252	8-Dec-93	[I								L			·				1.4E-01	2.4E-01	2.5E-
253	15-Dec-93	<u> </u>		<u> </u>	 								 					1.4E-01	2.4E-01	2.5E-
255	29-Dec-93			0.003	0.05	1	0.08		0.04			1.0E-03	2.1E-02		3.3E-02		1.7E-02	1.4E-01	2.4E-01	2.6E-0
256	5-Jan-94					<u> </u>												1.4E-01 1.5E-01	2.4E-01 2.4E-01	2.6E-0
258	19-Jan-94										İ							1.5E-01	2.5E-01	2.6E-0
259	28-Jan-94			0.003	0.05	<u> </u>	0.06		0.03		ļ	1.1E-03	2.1E-02		2.5E-02		1.2E-02	1.5E-01 1.5E-01	2.5E-01 2.5E-01	2.6E-(2.6E-(
260	9-Feb-94	 	<u>├</u>		<u> </u>	<u> </u>												1.5E-01	2.5E-01	2.6E-0
262	16-Feb 94					<u> </u>			0.00		I	145.00	245.00		A 15 m	-	1 2E 02	1.5E-01	2.5E-01	2.6E-(
263	23-Feb-94	·	1	0.003	0.05	1	1 0.1		0.03		L	1.46-03	2.15-02		1 9.1E-0Z		1.20-02	1.00-01	10.05-01	1 6 .06-4

* If values were reported as < detection limit, 1/2 the detection limit is shown in Italcs and was used in subsequent calculations.

B4. Column 4

iamatosum Mine Column 4 (Mafic Pyroclastic Co	ntrol)		Samatosum Mine Solumn 4 (Mafic Pyroclastic Cor
nitial Sample Weight (dry) (g)		11450	Final Sample Weight (dry) (g)
IBA Results: Slurry pH % S (Total) % S (Sulphate) % S (Sulphide)		8.6 0.14	\BA Results: Paste pH % S (Total) % S (Sulphate) % S (Sulphide)
% S (BaSU4) TAP (tonne CaCO3/ktonne) SAP (tonne CaCO3/ktonne) NP (tonne CaCO3/ktonne)		4 110.5	% S (BaS04) TAP (tonne CaCO3/ktonne) SAP (tonne CaCO3/ktonne) NP (tonne CaCO3/ktonne)
Carbon (%) CaNP (t CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne)		106	Carbon (%) CaNP (t CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne)
RNNP (tonne CaCO3/ktonne) TNPR S N P R RNPR		25.26	RNNP (tonne CaCO3/ktonne) TNPR SNPR RNPR
S urface Area: Surface Area (m2/kg)		1.27	Surface Area: Surface Area (m2/kg)
Attals: (ppm) Aluminum Antimony Arsenic Barium Barium Beryllium Bismuth Cadmium Cadmium Cadmium Copper Iron Lanthium Lead Lithium Magnesium Magnese Mercury Molybdenum Nickel Phosphorus Potassium Selenium Silver	AI SAS BB CC CC CC CC CC CC CC CC CC CC CC CC	Data Not Available	Wetals: (ppm) Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Calcium Chromium Cobalt Copper Iron Lanthium Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Selenium Silver Sodium

Data

Not

Available

Data

Not

Available

NOTE: When metals were **reported** as < detection limit, half the value of the detection **limit** is shown in **italics**, and was used in subsequent calculations.

Samatosum Mine Humidity Cell Data -Column 4 (Mafic Pyroclastic Control)

								l]				1	1								
		Dissolved Metals*:			Jissolved Metals*: Me						ach Rate	i:					Cumula	tive Meta	Leach	Rates:					
																		i							
		Antimony	Arsenic	Copper	iron	Lood	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	tron	Leed	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	Iron	Leed	Manganese	Silver	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	0-50	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
-		(mg/L)	(mgA_)	(mg/L)	(mg/L)	(mgA.)	(mg/L)	(mg/L)	(mg/L)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mg/ig/wk)	(199/10/44)	(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(mgAg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
																						1 05 00		0.05.04	7 45 00
0	8-Feb-89						· · · · ·										-	6.6E-03	4.9E-03	3.4E-03	8.2E-03	1.6E-03	NA	3.3E-04	7.4E-03
1	15-Feb-89	0.004	0.003	0.002	0.005	0.001		2E-04	0	6.6E-03	4.9E-03	3.4E-03	8.2E-03	1.6E-03		3.3E-04	7.4E-03	1.3E-02	9.9E-03	6.9E-03	1.6E-02	3.3E-03	NA	6.6E-04	1.5E-02
2	22-Feb-89	0.003	0.004	8E-04	0.005	0.001		2E-04	0.01	4.8E-03	6.5E-03	1.3E-03	8.1E-03	1.6E-03		3.2E-04	1.4E-02	1.8E-02	1.6E-02	8.2E-03	2.4E-02	4.9E-03	NA	9.8E-04	2.9E-02
3	1-Mar-89	0.002	0.003	0.001	0.005	0.001		2E-04	0.01	3.3E-03	4.9E-03	1.6E-03	8.2E-03	1.6E-03		3.3E-04	1.6E-02	2.1E-02	2.1E-02	9.8E-03	3.3E-02	6.5E-03	NA	1.3E-03	4.5E-02
4	8-Mar-89	0.003	0.003	7E-04	0.011	0.001		2E-04	0.01	4.6E-03	4.6E-03	1.1E-03	1.7E-02	1.5E-03		3.1E-04	1.8E-02	2.6E-02	2.6E-02	1.1E-02	5.0E-02	8.1E-03	NA	1.6E-03	6.3E-02
5	15-Mar-89	0.003	0.005	7E-04	0.005	0.001		2E-04	0.01	5.0E-03	8.3E-03	1.2E-03	8.3E-03	1.7E-03		3.3E-04	2.2E-02	3.1E-02	3.4E-02	1.2E-02	5.8E-02	9.7E-03	NA	1.9E-03	8.5E-02
6	22-Mar-89	0.002	0.005	5E-04	0.005	0.001		2E-04	0.01	3.4E-03	8.4E-03	8.4E-04	8.4E-03	1.7E-03		3.4E-04	1.9E-02	3.4E-02	4.3E-02	1.3E-02	6.6E-02	1.1E-02	NA	2.3E-03	1.0E-01
7	29-Mar-89																	3.6E-02	4.8E-02	1.3E-02	7.1E-02	1.2E-02	NA	2.5E-03	1.1E-01
8	5-Apr-89																	3.8E-02	5.3E-02	1.4E-02	7.5E-02	1.3E-02	NA	2.6E-03	1.2E-01
9	12-Apr-89																	3.9E-02	5.8E-02	1.5E-02	8.0E-02	1.4E-02	NA	2.8E-03	1.2E-01
10	19-Apr-89	0.002	0.007	8E-04	0.006	0.001		2E-04	0.01	3.3E-03	1.2E-02	1.3E-03	1.0E-02	1.7E-03		3.3E-04	8.3E-03	4.3E-02	6.9E-02	1.6E-02	9.0E-02	1.6E-02	NA	3.1E-03	1.3E-01
11	26-Apr-89																	4.5E-02	7.6E-02	1.6E-02	1.0E-01	1.6E-02	NA	3.3E-03	1.4E-01
12	3-May-89																	4.7E-02	8.2E-02	1.7E-02	1.1E-01	1.7E-02	NA	3.4E-03	1.5E-01
13	10-May-89																	4.9E-02	8.9E-02	1.8E-02	1.2E-01	1.8E-02	Š	3.6E-03	1.5E-01
14	17-May-89	0.003	0.009	6E-04	0.018	0.001		2E-04	0.01	4.7E-03	1.4E-02	9.4E-04	2.8E-02	1.6E-03		3.1E-04	2.2E-02	5.3E-02	1.0E-01	1.9E-02	1.5E-01	2.0E-02	Š	3.9E-03	1.8E-01
15	31-May-89																	5.82-82	1.22=81	1.8E-82	1.9E=81	2.9E-82	NA	1 /E-83	2.8E=81
17	7-Jun-89																	6.1E-02	1.2E-01	2.0E-02	1.8E-01	2.2E-02	NA	4.4E-03	2.1E-01
18	14-Jun-89	0.003	IO.008	8E-04	0.009	0.001		2E-04	0.01	5.0E-03	1.3E-02	1.3E-03	1.5E-02	1.7E-03		3.3E-04	1.7E-02	6.6E-02	1.4E-01	2.2E-02	1.9E-01	2.4E-02	NA	4.7E-03	2.2E-01
40	21-Jun-69				1		1 1										,	7.1E-02	1.5E-01	2.3E-02	2.1E-01	2.5E-02	NA	5.1E-03	2.4E-01
20	28-Jun-89																	7.6E-02	1.6E-01	2.4E-02	2.2E-01	2.7E-02	NA	5.4E-03	2.6E-01
																1	1								
Maximum		0 004	0.009	0.002	0.018	0.001	NA	2E-04	0.01	6.6E-03	1.4E-02	3.4E-03	2.8E-02	1.7E-03	NA	3.4E-04	2.2602	7.6E-02	1.6E-01	2.4602	2.2E-01	2.7E-02	NA	5.4E-03	2.6E-01
Minimum		0.002	0.003	0.0005	0.005	0.001	NA	2E-04	0	3.3E-03	4.6E-03	8.4E-04	8.1E-03	1.5E-03	NA	3 1E-04	7.4E-W	6.6E-03	4.9E-03	3.4E-03	8.2E-03	1.6E-03	NA	3.3604	7.4E-03
Mean		0.003	0.005	0.0009	0.01	0.001	NA	0.0002	0.010	4.5E-03	8.5E-03	1.5E-03	1.2E-02	1.6E-03	NA	3.3E-04	1.6E-02	4.2E-02	7.3802	1.5E-02	1.0E-01	1.5E-02	NA	3.0E-03	1.3E-01
Median		0.003	0.005	0.0008	0.005	0.001	NA	0.0002	0.010	4.7E-03	8.3E-03	1.3E-03	8.4E-03	1.6E-03	NA	3.3E-04	1.7E-02	4.3E-02	6.9E-02	1.6E-02	9.0E-02	1.6E-02	NA	3 1E-03	1.3E-01
Mean Last	⁵ weeks			0.0007	0.014			0.9002	0.012			1.1E-03	2.2E-02		NA		1.9E-02	6.3E-02	1.3E-01	2.1E-02	1.8E-01	2.3802	NA	4.6E-03	2.1E-01
																		Ì							
75% Remain	ning (WKS)															1									
50% Rema	ining (Wks)															Ī									
25% Rema	ining (Wks)																								
0% Remain	ning (Wks)	1														Ī		1							
																i i									

i de la complete

in.

Samatosum Mine Humidity Cell Data -Column 4 (Mafic Pyroclastic Control)

		1	1	I			L	1	l		I					L	l	1
		Analytical	Results;								Sulphate	Production				Molar	NP Consum	otion:
							· · ·							By Surface	Area:	Ratio:	Theoretical	Empirical
		· · · ·							Acidity	Alkalinity	504	Cumulative	Remaining	SO4	Cumulative		NP	Open-System
		Leachate	Weekly			Acidity	Alkalinity	Sulphate	Production	Production	Production	SO4	S	Production	SO4	Alk	Consumption	NP Consumption
Week No.	Date	Recovered	pH	Conductivity	Eh	(CaCO3	(CaCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	/SO4	AtpH6	At Measured ph
		(mL)	(pH units)	(umhos/cm)	(mV)	mg/L)*	mgA.)*	mg/L)*	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg)	original)	(mg/m2/wk)**	(mg/m2)		(mg/kg/w/k)	(mg/kg/wk)
													1				Į	
0	08-Feb-89								4.93	118.2	14.28	14	99.66	11.28	11.3		14.88	128.2
1	15-Feb-89	18800	7.6	137	480	3	72	9	4.93	118.2	14.28	29	99.32	11.28	22.6	7.9	14.88	128.2
2	22-Feb-89	18500	7.8	106	475	2	56	4	3.23	90.5	6.46	35	99.17	5.10	27.7	13.4	6.73	94.0
3	01-Mar-89	18800	8.0	96	460	2	52	3	3.28	85.4	4.93	40	99.05	3.89	31.5	16.6	5.13	87.2
4	08-Mar-89	17500	7.8	100	450	5	54	2	7.64	82.5	3.06	43	98.98	2.41	34.0	25.9	3.18	78.1
5	15-Mar-89	19000	7.8	85	470	2	48	2	3.32	79.7	2.82	46	98.91	2.23	36.2	27.1	2.94	79.3
6	22-Mar-89	19300	7.8	84	440	2	54	1	3.37	91.0	1.69	48	98.87	1.33	37.5	51.8	1.76	89.4
7	29-Mar-89	19400	7.7	86					5.06	86.0	1.69	49	98.83	1.33	38.8		1.76	82.7
8	05-Apr-89	19300	7.9	90	430	4	48	1	6.74	80.9	1.69	51	98.79	1.33	40.2	46.1	1.76	75.9
9	12-Apr-89	19300	7.9	93					5.04	84.7	2.34	53	98.73	1.85	42.0		2.44	82.1
10	19-Apr-89	19100	7.8	90	438	2	53	2	3.34	88.4	3.00	56	98.66	2.37	44.4	28.3	3.13	88.2
11	26-Apr-89	19000	7.5	82			1		4.16	88.2	3.16	59	98.59	2.50	46.9		3.29	87.3
12	03-May-89	19000	7.4	98	450	3	53	2	4.98	87.9	3.32	63	98.51	2.62	49.5	25.4	3.46	86.4
13	10-May-89	18700	7.3	98			<u> </u>		4.85	85.6	3.23	66	98.43	2.55	52.1		3.37	84.2
14	17-May-89	18000	7.4	100	440	3	53	2	4.72	83.3	3.14	69	98.35	2.48	54.5	25.4	3.28	81.9
15	24-May-89	19000	7.6	83					4.85	85.6	3.23	72	98.28	2.55	57.1		3.37	84.2
16	31-May-89	19000	7.6	76	445	3	53	2	4.98	87.9	3.32	76	98.20	2.62	59.7	25.4	3.46	86.4
17	07-Jun-89	19000	7.8	79					4.98	88.8	2.49	78	98.14	1.96	61.7		2.59	86.4
18	14-Jun-89	19000	7.6	91	487	3	54	1	4.98	89.6	1.66	80	98.10	1.31	63.0	51.8	1.73	86.4
19	21-Jun-89	19100	7.8	80					4.15	86.3	2.49	82	98.04	1.96	65.0		2.59	84.7
20	28-Jun-89	19000	7.9	104	460	2	50	2	3.32	83.0	3.32	86	97.96	2.62	67.6	24.0	3.46	83.1
						1												
Maximum		19400	8.00	137	487	5	72.0	9	7.64	118.2	14.28	86	99.66	11.28	67.6	51.8	14.88	128.2
Minimum		17500	7.30	76	430	2	48.0	1	3.23	79.7	1.66	14	97.96	1.31	11.3	7.9	1.73	75.9
Mean		18890	7.70	93	456	2.8	53.8	2	4.61	89.1	4.08	57	98.65	3.22	44.9	28.4	4.25	88.8
Median		19000	7.80	91	450	3.0	53.0	2	4.85	86.3	3.14	56	98.66	2.48	44.4	25.4	3.28	86.4
Mean Last	5 Weeks	19020	7.74	86	464	3	52.3	2	4.48	87.1	2.66	80	98.09	2.10	63.4	33.8	2.77	85.4
75% Rema	ining (Wks)												383					
50% Rema	ining (Wks)												778					
25% Rema	ining (W/ks)												1173					
0% Remain	ing (Wiks)												1568					
		** If measu	ed sulph:	to, alkalinity	nd/or a	idity value	s were un	vailable, (ata was inte	rpolated fro	n existing d	ata and used	in subsequ	nt equation				
											1	ļ						
		1	1	1			1	1										

- 1

Samatosum Mine Humidity Cell - Column 4 (Mafic Pyroclastic Control)

B5. Column 5

iamatosum Mine Solumn 5 (Blend Control Alkali	nity R	emoved)	Samatosum Mine Column 5 (Blend Control Alkalinity F	Remove
nitial Sample Weight (dry) (g)		17210	'inal Sample Weight (dry) (g)	
ABA Results:			\BA Results:	
Paste pH		8.3	Paste pH	
% S (Total)		3.62	% S (Total)	
% S (Sulphate)			% S (Sulphate)	
% S (Sulphide)			% S (Sulphide)	
% S (BaS04)			% S (BaS04)	
TAP (tonne CaCO3/ktonne)		113	TAP (tonne CaCO3/ktonne)	D
SAP (tonne CaCO3/ktonne)		C4 F	SAP (tonne CaCO3/ktonne)	۸. ۱
NP (tonne CaCO3/ktonne)		61.5	NP (tonne CaCO3/ktonne)	Avai
			Carbon $(\%)$	
		50		
SNNP (tonne CaCO3/ktonne)		-52	SNNP (tonne CaCO3/ktonne)	
RNNP (tonne CaCO3/ktonne)			RNNP (tonne CaCO3/ktonne)	
TNPR		0.54	TNPR	
SNPR		0.01	SNPR	
RNPR			RNPR	
Surface Area: Surface Area (m2/kg)		1.66	Surface Area: Surface Area (m2/kg)	
Watalay (nom)				
Aluminum	A 1		Aluminum	
Antimony	Sh		Aluminum Al	
Arsenic	Δs		Anumony SD Arsenic As	
Barium	Ra		Rarium Ba	
Bervllium	Be		Bervllium Be	
Bismuth	Bi		Bismuth Bi	
Cadmium	Cd		Cadmium Cd	
Calcium	Са		Calcium Ca	
Chromium	Cr	Data	Chromium Cr	D
Cobalt	со	Not	Cobalt co	1
Copper	сu	Available	Copper cu	Ava
Iron	Fe		Iron Fe	
Lanthium	La		Lanthium La	
Lead	Pb		Lead Pb	
Lithium	Li		Lithium Li	
Magnesium	Mg		Magnesium Mg	
Manganese	Mn		Manganese Mn	
	Hg		Mercury Hg	
Nickol	MO N:		Molybdenum Mo	
Nickel			Nickei Ni	
r nosphorus Datassium	г V		Prosphorus P Potossium	
rulassium Salanium	N So		FULASSIUIII N Salanium Sa	
Silver	Δn		Silver Ar	
Sodium	Na		Sodium Na	
Strontium	Sr		Strontium	
Thallium	TI		Thallium Ti	
Tin	Sn		Tin Sn	
Titanium	Ti		Titanium Ti	
Tungsten	W		Tungsten W	
Vanadium	V		Vanadium V	
Zinc	7n		Zinc Zin	

NOTE: When metals were reported as < detection limit, half the value of the detection limit is shown in italics, and was used in subsequent calculations.

Samatosum Mine Humidity Cell Data - Column 5 (Blend Control Alkalinity Removed)

l		Γ			1	I				1				Τ		I							
		Analytical	Results:	· · · · · · · · · · · · · · · · · · ·		1				1	Sulphate	Production				Molar	NP Consumpt	ion:					
		I												By Surface	Area:	Ratio:		Empirical		Remaining	Theoretical		Remaining
				1					Acidity	Alkalinity	SO4	Cumulative	Remaining	S04	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekly			Acidity	Alkalinity	Suiphate	Production	Production	Production	504	S	Production	S04	Alk	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Week No.	Date	Recovered	DH	Conductivity	Eh	(CeCO3	(CeCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	/SO4	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
		(mL)	(pH units)	(umhos/cm)	(mV)	mg/L)*	mgA.)"	mg/L)*	(mg/kg/wk)"	(mg/kg/w/k)"	(mg/kg/wk)**	(mgAcg)	(langho	(mg/m2/wk)**	(mg/m2)		(mg/kg/wk)	(mg/kg/wk)	(mgA(gAvAc)	(10)	(mg/kg/wk)	(mg/kg/wk)	(%)
												L											
66	24-Oct-90	19300	2.9	825	630	30		214	33.6	0.00	240.0	52230	51.91	145	31553	NA	250.0	216.3	25708	58.20	466.3	80035	-30.14
67	31-Oct-90	19300	2.5	775	585	25		200	28.0	0.00	224.3	52455	51.70	135	31688	NA	233.6	205.6	25914	57.80	439.2	804/4	-30.65
68	07-Nov-90	19300	2.7	783	635	15		214	16.8	0.00	240.0	52695	51.48	145	31833	NA	250.0	233.2	26147	57.48	463.2	80957	-31.04
69	14-Nov-90	19300	2.8	773	630	25		202	28.0	0.00	226.5	52921	51.27	137	31970	NA	236.0	207.9	26355	57.15	443.9	81401	-32.30
70	21-Nov-90	19400	2.8	747	590	10		215	11.3	0.00	242.4	53163	51.05	140	32110	NA	202.0	291.2	20090	30.13	433.0	82328	-22.97
	28-Nov-90	19400	2.6	905	595	26		197	29.3	0.00	222.1	53386	50.84	134	32251	NA .	231.3	202.0	20/90	56.02	433.3	82948	-33.07
	05-Dec-90	19300	2.7	1080	602	15		230	16.8	0.00	257.9	53643	50.60	100	32400		200.1	201.9	27030	55.70	300.0	82248	-35.36
	12-Dec-90	19400	2.7	800	590	14		1//	15.8	0.00	199.5	53843	50.42	121	32321	. 104	207.0	192.1	27426	55.40	385.0	83633	-35.00
74	19-Dec-90	19300	2.9	1145	560	15		1/2	16.8	0.00	192.9	54036	50.07		32043	NA	107.6	176.7	27601	55.12	372.8	84006	-36.60
- /5	26-Dec-90	19200	3.0	030	000	~~~		1/0	22.3	0.00	160.0	54220	40.07	07	22956	NA	467.6	146.1	27748	54.88	3137	84320	-37 11
	U2-Jan-91	19500	2.9	110	000	1.13		194	21.5	0.00	128.1	64524	49.32		32030	NA	143.8	126.6	27874	54.68	270.4	84590	-37.54
$\frac{11}{70}$	U9-J81-91	19000	3.0	680	612	10		193	20.3	0.00	105.7	54720	49.61	118	33057	NA	203.8	183.5	28058	54.38	387.3	84977	-38,17
	10-Jair-91	40400	2.9	676	600	- 13		466	20.5	0.00	197.1	54007	40.01	113	33170	NA	194.9	1724	28230	54.10	367.3	85345	-38,77
- 19	23-Jan-91	10300	2.9	565	525	10	<u> </u>	132	11 2	0.00	148.0	55055	49.30	89	33259	NA	154.2	143.0	28373	53.87	297.2	85642	-39.26
	Of Fah 01	18900	2.0	674	615	15		154	16.5	0.00	169 1	55224	49.15	102	33361	NA	176.2	159.7	28533	53.61	335.9	85978	-39.80
82	13-Feb_01	18300	29	675	640	13	I	161	13.8	0.00	171.2	55396	48.99	103	33465	NA	178.3	164.5	28697	53.34	342.8	86321	-40.36
83	20-Feb-91	18200	29	752	620	10		151	10.6	0.00	159.7	55555	48.84	96	33561	NA	166.3	155.8	28853	53.08	322.1	86643	-40.88
84	27-Feb-91	19300	2.9	618	680	7		141	7.9	0.00	158.1	55713	48.70	96	33657	NA	164.7	156.9	29010	52.83	321.6	86964	-41.41
85	06-Mar-91	19000	2.7	620	620	13		147	14.4	0.00	162.3	55876	48.55	98	33755	NA	169.1	154.7	29164	52.58	323.8	87288	-41.93
86	13-Mar-91	18800	2.9	600	640	9		139	9.8	0.00	151.8	56028	48.41	92	33847	NA	158.2	148.3	29313	52.34	306.5	87595	-42.43
87	20-Mar-91	18500	2.9	600	590	13		138	14.0	0.00	148.3	56176	48.27	90	33936	NA	154.5	140.6	29453	\$2.11	295.1	87890	-42.91
88	27-Mar-91	16800	3.0	622	600	15		162	14.6	0.00	158.1	56334	48.13	96	34032	NA	164.7	150.1	29603	51.86	314.8	88204	-43.42
89	03-Apr-91	17500	3.0	540	590	8		136	8.1	0.00	138.3	56472	48.00	84	34115	NA	144.1	135.9	29739	51.64	280.0	88484	-43.88
90	10-Apr-91	18900	3.1	560	598	13		122	14.3	0.00	134.0	56606	47.88	81	34196	NA	139.6	125.3	29865	51.44	264.8	88/49	-44.31
91	17-Apr-91	12600	3.1	578	600	9		143	6.6	0.00	104.7	56711	47.78	63	34259	NA	109.1	102.5	29967	51.27	211.5	88901	-44.00
92	24-Apr-91	18900	2.9	660	650	10		191	11.0	0.00	209.8	56921	47.59	127	34386	NA	218.5	207.5	301/5	50.94	420.0	69367	-40.34
93	01-May-91	19200	3.1	512	590	13		106	14.5	0.00	118.3	57039	47.48	71	34458	NA	123.2	108.7	30283	50.76	231.9	80013	-90.72
94	08-May-91	19000	3.0	550	610	13		134	14.4	0.00	147.9	57187	47.34	89	34547	NA	154.1	139.7	30423	50.03	293.8	00306	46.69
95	15-May-91	19200	3.1	550	590	12		132	13.4	0.00	147.3	57334	47.21	89	34636	NA	153.4	140.0	30003	50.30	293.4	90200	47.00
96	22-May-91	19300	3.2	498	620	13		114	14.6	0.00	127.8	57462	47.09	77	34/13	NA	133.2	110.0	30002	40.02	251.0	90710	-47.50
97	29-May-91	19500	3.0	520	580	13		113	14.7	0.00	128.0	57720	40.97	11	34/91	NA NA	146.2	131.3	30000	49.70	277.5	90987	-47.95
98	05-Jun-91	19800	3.2	532	610	13		122	15.0	0.00	140.4	57074	40.04	00	34675	NA NA	146.8	135.7	31067	49.48	282.5	91270	-48.41
	12-JUN-91	19100	3.0	510	620	10		107		0.00	140.9	57000	46.60		36031	NA	121.8	107.6	31175	4931	229.3	91499	-48.78
100	19-Jun-91	18800	3.0	520	5/0			107	24.7	0.00	117.9	59106	46.50	71	35102	NA	122.7	98.0	31273	49 15	220.6	91720	-49.14
- 101	02 14 01	10200	3.1	530	610	20		103	27.7	0.00	120.5	58227	46.38	73	35175	NA	125.5	103.2	31376	48.98	228.7	91948	-49.51
102	10 14 01	19200	2.4	478	640	10		124	111	0.00	137.6	58364	46.26	83	35258	NA	143.4	132.3	31508	48.77	275.6	92224	-49.96
103	17- bLQ1	19300	31	490	570	16		113	17.9	0.00	1267	58491	46 14	77	35335	NA	132.0	114.1	31622	48.58	246.1	92470	-50.36
105	24. 14.91	19300	30	516	570	16		124	17.9	0.00	139.1	58630	46.01	84	35419	NA	144.9	126.9	31749	48.38	271.8	92742	-50.80
105	31- 1401	18700	31	560	590	20			217	0.00	177.6	58808	45.85	107	35526	NA	185.0	163.3	31912	48.11	348.3	93090	-51.37
107	07-Aug-91	17800	3.0	550	590	16		209	16.5	0.00	216.2	59024	45.65	131	35657	NA	225.2	208.6	32121	47.77	433.8	93524	-52.07
108	14-Aug-91	19200	3.0	535	570	16			17.9	0.00	168.0	59192	45.50	102	35758	NA	175.0	157.2	32278	47.51	332.2	93856	-52.61
109	21-Aug-91	18100	2.8	546	610	16		114	16.8	0.00	119.9	59312	45.39	72	35830	NA	124.9	108.1	32386	47.34	233.0	94089	-52.99
110	28-Aug-91	17500	3.1	505	560	23		118	23.4	0.00	120.0	59432	45.27	72	35903	NA	125.0	101.6	32488	47.17	226.6	94316	-53.36
111	04-Sep-91	7000	3.1	533	604	67		208	27.3	0.00	84.6	59516	45.20	51	35954	NA	88.1	60.9	32549	47.08	149.0	94465	-53.60
112	11-Sep-91	19300	3.1	650	585	75		148	84.1	0.00	166.0	59682	45.04	100	36054	NA	172.9	88.8	32638	46.93	261.7	94726	-54.03
113	18-Sep-91	17400	3.1	447	560	59]	59.7	0.00	141.6	59824	44.91	86	36140	NA	147.5	87.9	32/25	46.79	235.4	94962	-04.41
114	25-Sep-91	19400	3.2	384	573	54		104	60.9	0.00	117.2	59941	44.81		36211	NA	122.1	61.2	32/87	46.69	183.4	90140	-04./1
115	02-Oct-91	19300	3.2	345	530	23		80	25.8	0.00	89.7	60031	44.72	54	36265	NA	93.0	01.1	32604	40.00		90300	-04.8/
	09-Oct-91	19200	3.1	302	570	10		84	11.2	0.00	93.7	60124	44.64	57	36322	NA	97.6		32941	40.44	104.1	05692	-55.50
117	16-Oct-91	19000	3.1	335	580	10		90	11.0	0.00	99.4	60224	44.55	60	36382	NA NA	103.5	94.5	33033	40.29	190.0	95865	-55.88
- 118	23-Oct-91	19300	3.2	285	590	3		- 1	10.1	0.00	90.8	60309	44.40	50	30430			09.U	33183	46.04	1624	96018	-56.13
- 119	30-001-91	19400	3.2	305	000	19		- 14	21.4	0.00	02.7	60400	44.00	50	36642	NA	07.5	710	33264	45.93	168.5	96186	-56 40
120	12 Mere 01	19900	3.2	354	660	23			20.0	0.00	101 0	60504	44.30	10/	36605	NA NA	106.0	80.6	33335	45.80	186 6	96373	-56.70
122	20.Nev 04	19900	3.3	320	550	10		- 20	23.4	0.00	963	60600	44 12	58	36663	NA	100.3	78.8	33414	45.67	179.1	96552	-57.00
123	27-NoL-91	19300	33	265	560	17	<u> </u>	70	19.1	0.00	78.5	60768	44.04	47	36710	NA	81.8	62.7	33476	45.57	144.5	96696	-57.23
124	Of Dec.01	19200	32	292	550	15			16 7	0.00	85.9	60854	43.96	52	36762	NA	89.5	72.7	33549	45.45	162.2	96859	-57.49
125	11-De01	18100	32	328	600	15		78	15.8	0.00	82.0	60936	43.89	50	36812	NA	85.5	69.7	33619	45.34	155.1	97014	-57.75
126	18-Dec-91	19600	3.4	268	560	13		80	14.8	0.00	91.1	61027	43.81	55	36867	NA	94.9	80.1	33699	45.21	175.0	97189	-58.03
127	25-Dec-91	19300	3.2	240	550	17		68	19.1	0.00	76.3	61104	43.74	46	36913	NA	79.4	60.4	33759	45.11	139.8	97329	-58.26
128	01-Jan-92	19500	3.2	289	540	17		72	19.3	0.00	81.6	61185	43.66	49	36962	NA	85.0	65.7	33825	45.00	150.7	97479	-58.50
129	08-Jan-92	19200	3.2	290	540	18		73	20.1	0.00	81.4	61267	43.59	49	37012	NA	84.8	64.8	33890	44.89	149.6	97629	-56.75
130	15-Jan-92	16800	3.4	324	560	17		93	16.6	0.00	90.8	61357	43.50	55	37066	NA	94.6	78.0	33968	44.77	172.5	97801	-59.03
131	22- Jan-92	19800	32	290	590	14		70	16 1	0.00	80.5	61438	43 43	49	37115	NA	83.9	67.8	34035	44.66	151.7	97953	-09.27
Samatosum Mine Humidity Cell Data -Column 5 (Blend Control Alkalinity Removed)

				1									1	1	1		I						
		Anabelical	Pequite:								Sulphate	Production			·····	Molar	NP Consumpt	lon:					
		CONTRACTOR OF												By Surface	Area:	Ratio:		Empirical		Remaining	Theoretical	Orm MD	Remaining
									Acidity	Alkalinity	SO4	Cumulative	Remaining	S04	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Contraction	Closed
		Leachate	Weekly			Acidity	Akalnity	Sulphate	Production	Production	Production	S04	S	Production	<u>\$04</u>	Ak	Consumption	NP Consumption	Consumption	Open-	Above pH 6.5	Consumption	Evaluation
Neek No.	Date	Recovered	pH	Conductivity	Đ	(CeCO3	(CeCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate (molecile)**	Production	1504	(maka/wk)	ma/ka/wki	(mo/ko/wk)	(%)	(mgAgAvk)	(mg/kg/wk)	(%)
		(mL)	(pH units)	(umhos/cm)	(1114)	mg/L)'	mgA.)*	mg/L)*	(mg/kg/wk)"	(mg/kg/wk)**	(mg/kg/wk)*	(mg/kg)	ongeseg	(mpm.com)	(myma)								
	10 64 90								205.0	0.00	2391.6	2392	97.80	1445	1445		2491.3	2286.3	2286	96.28	4777.6	4778	92.23
	19-JU-09	10600	20	2950	528	180		2100	205.0	0.00	2391.6	4783	95.60	1445	2890	NA	2491.3	2286.3	4573	92.56	4777.6	9555	84.46
	02-44-89	19100	30	2150	575	128		1690	142.1	0.00	1875.6	6659	93.87	1133	4023	NA	1953.7	1811.7	6384	89.62	3765.4	13321	78.34
3	09-Aug-89	19600	3.1	2190	572	92		1580	104.8	0.00	1799.4	8458	92.21	1087	5110	NA	1874.4	1769.6	8154	86.74	3644.0	10500	68.45
4	16-Aug-89	19600	3.2	1583	524	66		1060	75.2	0.00	1207.2	9665	91.10	729	5839	NA	1257.5	1182.3	9330	83.70	1397.3	20802	66.18
5	23-Aug-89	19500	3.3	1057	585	23		603	26.1	0.00	683.2	10349	90.47	413	6615	NA NA	454.4	420.4	10442	83.02	874.8	21677	64.75
6	30-Aug-89	19500	3.3	764	512	30		385	34.0	0.00	430.2	11153	80.07	207	6737	NA	383.2	337.6	10780	82.47	720.8	22397	63.58
	06-Sep-89	19600	3.3	6/1	550	40		375	89.3	0.00	418.4	11571	89.35	253	6990	NA	435.8	346.5	11126	81.91	782.3	23180	62.31
- 8	20 Sep-89	19200	20	1690	602	268	· · · ·	940	305.2	0.00	1070.5	12642	88.36	647	7637	NA	1115.1	809.9	11936	80.59	1925.1	25105	59.18
10	27-Sep-89	19100	28	1394	625	320		750	355.1	0.00	832.4	13474	87.59	503	8140	NA	867.0	511.9	12448	79,76	1379.0	20484	54.04
11	04-Oct-89	19200	2.7	1752	550	532		1010	593.5	0.00	1126.8	14601	86.56	681	8820	NA	1173.7	580.2	13029	78.82	1704.0	20230	51.00 61.00
12	11-Oct-89	19000	2.7	1741	627	581		840	641.4	0.00	927.4	15528	85.70	560	9381	NA	906.0	324.0	13729	77 68	1455.5	30984	49.62
13	18-Oct-89	19000	2.6	1825	622	640		940	706.6	0.00	1037.8	16566	84.75	600	10008		1173.0	384 7	14112	77.05	1557.8	32542	47.09
14	25-Oct-89	19000	2.2	1786	640	714		1020	768.3	0.00	1027 6	1/092	03./1 82.75	627	11315	NA	1080.8	290.9	14403	76.58	1371.7	33913	44.86
15	01-Nov-89	19200	21	1/30	640	75.0		930	709.9 847 R	0.00	1150.6	19880	81.69	695	12010	NA	1198.5	350.7	14754	76.01	1549.3	35462	42.34
10	15 Nov-89	19000	23	1484	615	570		586	629.3	0.00	646.9	20527	81.10	391	12401	NA	673.9	44.6	14799	75.94	718.5	36181	41.17
18	22-Nov-89	19200	2.2	1711	600	730		1602	814.4	0.00	1787.2	22314	79.45	1080	13480	NA	1861.7	1047,3	15846	74.23	2909.0	39090	36.44
19	29-Nov-89	19300	2.4	1726	620	625		903	700.9	0.00	1012.7	23327	78.52	612	14092	NA_	1054.9	304.0	16502	73.17	1346.5	41845	31.96
20	06-Dec-89	19100	2.4	1737	609	668		903	741.4	0.00	1002.2	24329	77.60	605	14697	NA NA	1043.9	246.6	16749	72.77	1362.2	43207	29.74
21	13-Dec-89	19200	2.3	1826	610	779		960	869.1	0.00	10/1.0	20400	75.78	544	15888	NA	938.0	155.3	16904	72.51	1093.3	44301	27.97
	20-Dec-89	19300	2.4	1599	610	698		803	814.4	0.00	070.5	27280	74.88	592	16480	NA	1020.3	205.9	17110	72.18	1226.3	45527	25.97
23	27-Dec-89	19200	2.3	1626	625	756		785	839.0	0.00	871.2	28151	74.08	526	17006	NA	907.5	68.5	17179	72.07	976.0	46503	24.39
- 25	10-Jan-90	19000	2.6	1598	635	710		880	783.8	0.00	971.5	29123	73.18	587	17593	NA	1012.0	228.2	17407	71.70	1240.2	4//43	22.37
26	17-Jan-90	19200	2.4	1551	640	789		733	880.2	0.00	817.8	29941	72.43	494	18087	NA_	851.8	0.0	17407	71.70	988.6	49555	19.42
27	24-Jan-90	19200	2.5	1686	640	718		770	801.0	0.00	859.0	30800	70.70	519	10000		054.0	243.9	17744	71.15	1207.6	50763	17.46
28	31-Jan-90	19000	2.4	1768	610	652	 	638	719.8	0.00	925.2	32439	70.13	431	19596	NA	743.6	0.0	17744	71.15	691.7	51455	16.33
29	07-Feb-90	19500	2.6	1038	622	468		595	516.7	0.00	656.9	33096	69.53	397	19993	NA	684.3	167.6	17912	70.87	851.8	52306	14.95
30	21-Feb-90	19400	25	1506	590	488	1	595	550.1	0.00	670.7	33766	68.91	405	20398	NA	698.7	148.6	18061	70.63	847.2	53154	13.57
32	28-Feb-90	19100	2.6	1572	605	510		650	566.0	0.00	721.4	34488	68.24	436	20834	NA	751.4	185.4	18246	70.33	936.9	54091	10.22
33	07-Mar-90	19000	2.5	1565	640	584		770	644.7	0.00	850.1	35338	67.46	514	21348	NA	885.5	240.8	18487	69.94	928.0	56145	8.71
34	14-Mar-90	19000	2.5	1634	565	524	ļ	655	578.5	0.00	723.1	36061	66.79	43/	21/80		A33.8	2067	18868	69.32	1040.4	57185	7.02
	21-Mar-90	19000	2.5	1680	635	568		725	600 4	0.00	756.2	37618	65.36	457	22725	NA	787.8	178.3	19047	69.03	966.1	58151	5.44
36	28-Mar-90	19000	2.0	1530	003	488		578	552.9	0.00	654.9	38273	64.76	396	23121	NA	682.2	129.3	19176	68.82	811.5	58963	4.13
- 31	11-40-90	19000	25	1639	620	512		667	565.3	0.00	736.4	39009	64.08	445	23566	NA	767.1	201.8	19378	68.49	968.9	59932	2.55
39	18-Apr-90	19000	2.5	1593	620	468		583	516.7	0.00	643.6	39653	63.49	389	23954	NA	670.5	153.8	19531	68.24	824.2	60/56	1.21
40	25-Apr-90	19100	2.5	1653	610	496		652	550.5	0.00	723.6	40376	62.82	437	24391	NA NA	753.8	203.3	19735	67.51	958.5	62671	-1.90
41	02-May-90	19000	2.5	1650	625	486		650	536.5	0.00	717.6	41094	61.60	434	25192	NA NA	632.5	162.2	20108	67.30	794.7	63466	-3.20
42	09-May-90	19000	2.5	1544	615	420		540	4/0.3	0.00	564 B	42266	61.08	341	25533	NA	588.3	182.5	20290	67.01	770.8	64237	-4.45
- 43	110-May-90	18700	2.0	1622	625	452	1	595	491 1	0.00	646.5	42912	60.49	391	25924	NA	673.5	182.3	20473	66.71	855.8	65093	-5.84
	30-May-90	19200	26	1120	612	448	<u> </u>	465	499.8	0.00	518.8	43431	60.01	313	26237	NA	540.4	40.6	20513	66.65	581.0	65674	-6.79
46	06-Jun-90	19100	2.6	1308	612	390		445	432.8	0.00	493.9	43925	59.55	298	26535	NA	514.4	81.6	20595	66.51	596.1	66207	-1./0
47	13-Jun-90	19200	2.6	1320	620	375		450	418.4	0.00	502.0	44427	59.09	303	26839		523.0	104.6	20852	66.09	731.0	67628	-9.96
48	20-Jun-90	19100	2.6	1370	620	383	 	500	425.1	0.00	554.9	44982	58.00	330	2/1/4		529.5	121 1	20973	65.90	650.5	68279	-11.02
	27-Jun-90	19100	2.6	1476	618	368		458	408.4	0.00	200.3	45981	57.66	297	27777	NA	511.3	154.3	21128	65.65	665.7	68945	-12.10
	04-Jul-90	19200	20	1300	612	200	<u> </u>	405	333.6	0.00	451.8	46433	57.24	273	28050	NA	470.7	137.1	21265	65.42	607.7	69552	-13.09
	18_14.00	11500	25	1976	630	105	1	845	70.2	0.00	564.6	46998	56.72	341	28391	NA	588.2	518.0	21783	64.58	1106.2	70658	-14.89
53	25-Jul-90	19000	2.5	1395	615	72	1	555	79.5	0.00	612.7	47610	56.16	370	28762	NA	638.3	558.8	22342	63.67	1197.0	/1855	-10.54
54	01-Aug-90	18600	2.6	1508	620	86		515	92.9	0.00	556.6	48167	55.65	336	29098		579.8	486.8	22829	62 17	930.9	73853	-20.09
55	08-Aug-90	19200	2.7	1330	605	51	ļ	425	56.9	0.00	474.1	48641	55.21	286	29384		493.9	415.8	23681	61.49	878.2	74731	-21.51
56	15-Aug-90	19100	2.6	1300	630	220	 	360	46.6	0.00	4016	49000	54.43	200	29895	NA	418.4	172.9	23854	61.21	591.3	75322	-22.48
	20-4-1-00	19200	26	1144	600	87		330	96.0	0.00	364.3	49851	54.10	220	30115	NA	379.5	283.5	24138	60.75	663.0	75985	-23.55
59	05-Sep-90	19300	2.6	1035	600	195	1	295	218.7	0.00	330.8	50182	53.79	200	30315	NA	344.6	125.9	24264	60.55	470.5	76456	-24.32
60	12-Sep-90	19200	2.6	1040	570	168		260	187.4	0.00	290.1	50472	53.53	175	30490	NA I	302.1	144.3	243/8	60 13	512.7	77386	-25.83
61	19-Sep-90	18900	2.6	1134	590	204	<u> </u>	322	224.0	0.00	303.6	51440	52 02	178	30882	NA	306.4	114.4	24637	59.94	420.7	77806	-26.51
62	126-Sep-90	19100	2.6	005	590	1/3	<u> </u>	200	17.8	0.00	264.1	51384	52.69	160	31041	NA	275.1	257.4	24894	59.52	532.5	78339	-27.38
64	10-00-90	19200	27	826	620	15	t	320	16.7	0.00	357.0	51741	52.36	216	31257	NA	371.9	355.1	25250	58.94	727.0	79066	-28.56
	17 04 00	10100	1 28	817	630	1 16	1	225	17.8	0.00	249.7	51990	52.13	151	31408	I NA	260.1	242.4	25492	58.55	502.5	/9568	-29.38

Samatosum Mine Humidity Cell Dab - Column 5 (Blend Control Alkalinity Removed)

			1					· · · ·					I								1				
l					<u>↓</u>					Matri	ah Det					ł		Cumul	ive M-+-	leach D	ates:				
		UISSOIVE	C Meta	8":						metal Lei	ICH Kate		L			·		Comole	ITTO MOLE	Feacu y	a(48;				
																L	L								
		Antimony	Arsenic	Copper	tron	Lead	Manganese	Silver	Zinc	Anternolity	Arsenic	Copper	iron	Leed	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	iron	Land	Manganasa	SIM	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	0-50	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
		(mail)	(mod.)	(mod.)	(mal)	(mail)	(mod.)	(mail)	(mail)	(monowk)	(mg/kg/wk)	(mg/ig/mi)	(mgngnik)	(mgngAllk)	(mghahik)	(mg/kg/mk)	(mghqhuk)	(mgAg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/icg)	(mg/kg)	(mg/kg)
		<u></u>	1.2-7		<u> </u>				1.1.1																
	40 44 90																	6 8E-03	1 6E-02	3.6E-01	3.5E+01	3.4E-01	2 9E+00	1.5E-03	1.1E+00
<u> </u>	19-JU-09						· · · · ·		0.04	C 05 00		A OF AL	265.04	2 45 04		1.55.02	1 15.00	4.4E 02	3 15 02	7 25 04	7 15401	6 95 01	6 95.00	3 OF-02	2 15-00
1	26-Jul-89	0.006		0.32	31	0.3		0.001	0.94	0.8E-03		3.0E-U1	3.00101	3.4E-U1		1.56-03	1.10100	1.95-02	3.1E-02	1.30-01	7.16101	7.70 04	9.7E (00	2 05 03	205-00
2	2-Aug-89	0.003	0.014	0.18	4.3	0.08		8E-04	0.68	3.3E-03	1.65-02	2.0E-01	4.8E+00	8.9E-02		8.95-04	1.5E-01	1.7E-02	4./E-02	9.3E-U1	1.00+01	1.10-01	0.1C+00	3.0E-03	2.95700
3	9-Aug-89	0.007	0.016	0.21	5.1	0.02		0.002	0.8	8.0E-03	1.8E-02	2.4E-01	5.8E+00	2.3E-02		1.7E-03	9.1E-01	2.5E-02	6.5E-02	1.2E+00	8.1E+01	7.9E-01	1.2E+01	5.6E-03	3.8E+00
4	16-Aug-89	0.002	0.017	0.25	5.3	0.01		0.001	0.84	2.3E-03	1.9E-02	2.8E-01	6.0E+00	1.1E-02		1.3E-03	9.6E-01	2.7E-02	8.4E-02	1.5E+00	8.7E+01	8.1E-01	1.5E+01	6.8E-03	4.8E+00
5	23-Aug-89	0.002	0.019	0.15	3.4	0.05		3E-04	0.58	2.3E-03	2.2E-02	1.7E-01	3.9E+00	5.7E-02		3.4E-04	6.6E-01	3.0E-02	1.1E-01	1.6E+00	9.1E+01	8.6E-01	1.7E+01	7.1E-03	5.4E+00
6	30.4 0.89	0.002	0.016	01	0.66	0.02		2E-04	0.29	2.3E-03	18E-02	1.1E-01	7.6E-01	2.3E-02		2.3E-04	3.3E-01	3.2E-02	1.2E-01	1.7E+00	9.2E+01	8.9E-01	2.0E+01	7.4E-03	5.7E+00
— <u> </u>	6 6 90	0.002	0.046	0.16		0.01		35.04	0.46	2 36 02	175.02	1.85-01	1 6E+00	1 15-02		3 4E-04	5 1E-01	34F-02	14F-01	19E+00	93E+01	9 0F-01	2 3E+01	7.7E-03	6 3E+00
	42.0 80	0.002	0.015	0.10	1.7	0.01		25 04	0.70	2 25 02	1.05 02	275 01	C CEAOO	1 45 02		2 25 04	8 5E-01	3 65-02	1.65-01	2 2E+00	1 0E+02	9 1E-01	2.6E+01	7 95-03	7 1E+00
8	13-Sep-89	0.002	0.010	0.24	5.9	0.01		20-04	0.70	2.20-03	1.00-02	2.70-01	0.00400	1.10-02		4.25.02	0.00-01	3.00-02	2.25 04	2.2000	1 05-02	0.25.01	205-01	0 2E 02	0 /E-00
9	20-Sep-89	0.002	0.1	0.64	80	0.01		0.001	2.05	2.3E-03	1.1E-01	7.36-01	9.1E+U1	1.1E-02		1.3E-03	2.30+00	3.96-02	2.7E-U1	2.82700	1.85702	9.26-01	2.00.04	0.00 02	4 4E 100
10	27-Sep-89	0.004	0.005	0.49	58	0.01		4E-04	1.54	4.4E-03	5.5E-03	5.4E-01	6.4E+U1	1.1E-02		4.4E-04	1./E+00	4.36-02	2.0E-01	3.3E+00	2.02+02	9.3E-01	3.2E+U1	9.00-03	1.10701
11	4-Oct-89	0.005	0.225	0.61	117	0.061		0.002	1.96	5.6E-03	2.5E-01	0.8E-01	1.3E+02	6.8E-02		1.9E-03	2.2E+00	4.9E-02	5.3E-01	4.1E+00	3.9E+02	1.0E+00	3.5E+01	1.2E-02	1.3E+01
12	11-Oct-89	0.005	0.249	0.57	142	0.04		0.002	1.77	5.5E-03	2.7E-01	6.3E-01	1.6E+02	4.4E-02		2.1E-03	2.0E+00	5.4E-02	8.0E-01	4.8E+00	5.4E+02	1.0E+00	3.8E+01)	1.4E-02	1.5E+01
13	18-Oct-89	0.006	0 313	0.58	161	0.031		0.002	1.82	6.6E-03	3.5E-01	6.4E-01	1.8E+02	3.4E-02		2.2E-03	2.0E+00	6.1E-02	1.1E+00	5.4E+00	7.2E+02	1.1E+00	4.1E+01	1.6E-02	1.7E+01
14	25-Oct-80	0.007	0.41	0.61	180	0.025		0.003	1.87	7.7E-03	4.5E-01	6.7E-01	2.0E+02	2.8E-02		3.2E-03	2.1E+00	6.8E-02	1.6E+00	6.1E+00	9.2E+02	1.1E+00	4.4E+01	1.9E-02	1.9E+01
16	1.Nov.80	0.01	0.378	0.69	174	0.02		0.003	1 60	1 1E-02	4 2E-01	6 6F-01	19E+02	2 7E-02		2 8E-03	1.9E+00	8.0E-02	2.0E+00	6.7E+00	1.1E+03	1.1E+00	4.6E+01	2.2E-02	2.1E+01
- 10	1-1404-03	0.014	0.010	0.05	143	0.040		0.000	4.74	1 75 00	5 0E 04	7.05.0	275.02	2 OF 02		1.85.02	205-00	9 2E M2	26F-00	7 4F+00	1 3E+02	1.1E+00	4 9E+01	2.6E-02	2.3E+01
16	0-1101-89	0.011	0.525	0.02	19/	0.018		0.003	1.4	7 75 00	3.5C-U1	1.02-01	4 65-04	2 25 02		4 AE 04	145400	5 DE 04	7 8E-00	7 0F-00	165402	175400	5 2E+01	2 6F-02	255+01
17	12-NOV-89	0.007	0.211	U.44	134	0.021		40-04	1.29	1.12-03	2.30-01	4.82-01	1.00102	2.30-02		1.40-04	4.75	1.00-01	2.00-100	B SE . AA	1 7E-00	1 25.00	6 66-04	3 05 02	2 65-01
18	22-Nov-89	0.01	0.297	0.55	166	0.02		0.003	1.49	1.1E-02	3.3E-01	0.16-01	1.90+02	4.2E-02		3.85-03	1.75+00	1.1E-U1	3.20+00	0.00+00	1.12403	1.20100	S OF 101	3 6E AR	4.0CTU
19	29-Nov-89	0.005	0.44	0.65	166	0.013		0.005	1.6	5.6E-03	4.9E-01	7.3E-01	1.9E+02	1.5E-02		0.2E-03	1.8E+00	1.2E-01	3./E+00	9.3E+00	1.92+03	1.2EHUU	3.8E+U1	3.3E-02	2.00 +01
20	6-Dec-89	0.005	0.42	0.67	174	0.015		0.004	2	5.5E-03	4.7E-01	7.4E-01	1.9E+02	1.7E-02		4.4E-03	2.2E+00	1.2E-01	4.1E+00	1.0E+01	2.0E+03	1.2E+00	6.1E+01	3.9E-02	3.0E+01
21	13-Dec-89	0.004	0.06	0.68	167	0.014		0.002	1.7	4.5E-03	6.7E-02	7.6E-01	1.9E+02	1.6E-02		2.2E-03	1.9E+00	1.3E-01	4.2E+00	1.1E+01	2.2E+03	1.2E+00	6.4E+01	4.2E-02	3.2E+01
22	20. Dec. 89	0.005	0.28	0.59	156	0.013		0.003	13	5.6E-03	3 1E-01	6.6E-01	1.7E+02	1.5E-02		3.4E-03	1.5E+00	1.3E-01	4.5E+00	1.1E+01	2.4E+03	1.3E+00	6.7E+01	4.5E-02	3.4E+01
22	27 Dec 80	0.005	038	0.65	172	0.012		0.004	16	5 6E-03	4 2F-01	7 3E-01	1 9E+02	13E-02		4 2F-03	1 8E+00	1.4E-01	4.9E+00	1.2E+01	2.6E+03	1.3E+00	7.0E+01	4.9E-02	3.5E+01
	21-Dec-05	0.000	0.30	0.05	462	0.012		0.004	-12	675 02	2 4E 01	7.25.01	1 85402	145.02		3 05-03	17E+00	1.4E-01	536+00	13E+01	2.8E+03	13F+00	7 3E+01	5.3E-02	37E+01
24	3-Jan-90	0.000	0.31	0.05	103	0.013		0.004	1.5	0.7E-03	3.4E-01	7.20-01	1.00.102	145.02		3 905 03	1.55400	1 65 01	5.65-100	1 46401	3 05+03	1 3E+00	7.5E+01	5.7E-02	3 0F+01
25	10-Jan-90	0.006	0.27	0.65	158	0.013		0.004	1.4	0.00-03	3.0E-01	(.40-01	1.75+02	1.46-02		3.95-03	1.0ETOU	1.00-01	1.00,700	1.46101	3.00 103	1.00	7.00 .04	6 45 00	1.0E+01
26	17-Jan-90	0.006	0.27	0.65	150	0.012		0.004	1.4	6.7E-03	3.0E-01	7.3E-01	1.7E+02	1.3E-02		3.9E-03	1.62 +00	1.6E-01	5.9E+00	1.4E+U1	3.12403	1.30400	7.80101	0.1E-U2	4 OC LOA
27	24-Jan-90	0.006	0.28	0.64	159	0.012		0.004	1.6	6.7E-03	3.1E-01	7.1E-01	1.8E+02	1.3E-02		4.7E-03	1.8E+00	1.6E-01	6.2E+00	1.5E+01	3.3E+03	1.3E+00	8.1E+01	0.0E-U2	4.2E+01
28	31-Jan-90	0.011	0.28	0.7	168	0.012		0.004	1.6	1.2E-02	3.1E-01	7.7E-01	1.9E+02	1.3E-02		4.4E-03	1.8E+00	1.8E-01	6.5E+00	1.6E+01	3.5E+03	1.3E+00	8.4E+01	7.0E-02	4.4E+01
29	7-Feb-90	0.009	011	0.55	123	0016		0.002	1.1	1.0E-02	1.2E-01	6.2E-01	1.4E+02	1.8E-02		2.3E-03	1.2E+00	1.9E-01	6.6E+00	1.6E+01	3.6E+03	1.4E+00	8.7E+01	7.2E-02	4.5E+01
30	14. Eab. 00	0.008	0.09	0.52	111	0.014		0.002	1	8 8F-03	9.9F-02	57F-01	1 2E+02	15E-02		2 2E-03	1.1E+00	2.0E-01	6.7E+00	1.7E+01	3.7E+03	1.4E+00	9.0E+01	7.5E-02	4.6E+01
	24 5-20	0.000	0.00	0.02	446	0.019		0.002	4.2	105 02	1.55.01	6 2E 01	1 16.02	205.02		2 6F-03	1.4E+00	2 1E-01	6 9F+00	1.8E+01	3 9F+03	14E+00	93F+01	7.7E-02	4 7E+01
- 31	21-Feb-90	0.009	0.13	0.00	110	0.010		0.002	1.4	1.05-02	4.3E-01	5 25 04	1.45-02	1 7E 02		2.00-00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.25 01	7.05-00	185-01	4 0E403	145+00	9.6F+01	8 0E-02	4 9F+01
32	28-1-eb-90	0.009	0.12	0.57	125	0.015		0.003	1.2	1.0E-02	1.3E-01	0.30-01	1.40+02	1.70-02		3.3E-03	1.3000	2.20-01	7.05.00	1.00101	4.00.000	1.45.00	3.0LT01	0.00-02	F OF LOI
33	7-Mar-90	0.01	0.2	0.67	141	0.013		0.004	1.5	1.1E-02	2.2E-01	1.46-01	1.6E+02	1.4E-02		4.4E-U3	1.70+00	2.3E-01	7.20100	1.96401	4.22403	1.46100	9.9CTU1	0.0E-02	S.DETOT
34	14-Mar-90	0.01	0.14	0.64	127	0.012		0.003	1.4	1.1E-02	1.5E-01	7.1E-01	1.4E+02	1.3E-02		3.3E-03	1.9E+00	2.4E-01	7.4E+00	2.0E+01	4.3E+03	1.42+00	1.00+02	0.00-02	3.20 401
35	21-Mar-90	0.01	0.15	0.64	130	0.013		0.003	1,43	1.1E-02	1.7E-01	7.1E-01	1.4E+02	1.4E-02		3.3E-03	1.6E+00	2.5E-01	7.6E+00	2.0E+01	4.5E+03	1.4E+00	1.0E+02	9.2E-02	5.4E+01
36	28-Mar-90	0.009	0.14	0.65	118	0.013		0.004	1.32	9.9E-03	1.5E-01	7.2E-01	1.3E+02	1.4E-02		4.4E-03	1.5E+00	2.6E-01	7.76+00	2.1E+01	4.6E+03	1.5E+00	1.1E+02	9.6E-02	5.5E+01
37	4-Aor-90	0.008	0.09	0.56	101	0.014		0.003	1.11	9.1E-03	1.0E-01	6.3E-01	1.1E+02	1.6E-02		3.4E-03	1.3E+00	2.7E-01	7.8E+00	2.2E+01	4.7E+03	1.5E+00	1.1E+02	9.9E-02	5.6E+01
38	11-Apr-90	0.009	012	0.61	116	0.018		0.003	1.29	9.9E-03	1.3E-01	6.7E-01	1.3E+02	2.0E-02		3.3E-03	1.4E+00	2.8E-01	7.9E+00	2.2E+01	4.8E+03	1.5E+00	1.1E+02	1.0E-01	5.8E+01
	18 Apr - 00	0.009	0.00	0.57	00	0.016		0.003	1 22	9 9F-03	9 9F-02	6 3E-01	1 1E+02	1 8F-02		3 3F-03	1.3E+00	29E-01	8.0E+00	2.3E+01	4.9E+03	1.5E+00	1.2E+02	1.1E-01	5.9E+01
	26 4 - 00	0.009	0.05	0.57	33	0.014		0.002	1.52	8 DE 03	1 25.01	7 OF 01	1 25-02	165.02		3 35-03	17E+00	3 OF-01	8 2F+00	2 4E+01	51F+03	1.5E+00	12F+02	1 16-01	6 1E+01
- 40	20-A01-90	0.000	0.12	0.03	113	0.014		0.003	1,00	0.32-03	1.3E-01	6 05 04	1.00102	1.00-04		2 25 02	1.75.00	3 4E 04	9 35.00	2 45-01	6 25-02	1 65-00	1 25-02	110.01	101353
	2-May-90	0.009	0.08	0.00	101	0.013		0.003	1.19	9.90-03	0.00-02	0.2C-01	0.05.04	1.45-02		3.35-03	1.46.00	3.05.04	0.02100	2 65-01	6 25403	1 65-00	1 22-102	1 25.01	101353
42	9-May-90	0.009	0.05	0.48	83	0.014		0.003	1.02	9.9E-03	5.5E-U2	5.3E-U1	9.20+01	1.0E-02		3.32-03	I. IETUU	3.2E-01	0.30100	2.001	S.OC.OS	1.00 100	1.25102	1.26-01	8.4E.04
43	16-May-90	0.003	0.04	0.44	69	0.016		0.003	0.89	3.1E-03	4.2E-02	4.6E-01	7.2E+01	1.7E-02		3.1E-03	9.3E-01	3.2E-01	8.42+00	2.5E+U1	5.3E+U3	T.DE+UU	1.3E+02	1.20-01	DACTUIL
44	23-May-90	0.002	0.08	0.51	89	0.015		0.003	1.08	2.2E-03	8.7E-02	5.5E-01	9.7E+01	1.6E-02		3.3E-03	1.2E+00	3.2E-01	8.4E+00	2.6E+01	5,4E+03	1.6E+00	1.3E+02	1.2E-01	6.5E+U1
45	30-May-90	0.002	0.04	0.4	60	0.017		0.002	0.8	2.2E-03	4.5E-02	4.5E-01	6.7E+01	1.9E-02		2.2E-03	8.9E-01	3.2E-01	8.5E+00	2.6E+01	0.5E+03	1.6E+00	1.3E+02	1.2E-01	6.6E+01
46	6-Jun-90	0.002	0.04	0.34	55	0.016		0.003	0.78	2.2E-03	4.4E-02	3.8E-01	6.1E+01	1.8E-02		3.3E-03	8.7E-01	3.3E-01	8.5E+00	2.7E+01	5.6E+03	1.6E+00	1.4E+02	1.3E-01	6.7E+01
47	13-Jun-90	0.002	0.028	0.37	57	0.015	2.6	0.003	0.88	2.2E-03	3.1E-02	4.1E-01	6.4E+01	1.7E-02	2.9E+00	3.3E-03	9.8E-01	3.3E-01	8.6E+00	2.7E+01	5.6E+03	1.6E+00	1.4E+02	1.3E-01	6.8E+01
48	20. km.90	0.002	0.035	0.37	63	0.015	3	0.003	12	2 2F-03	3 9F-02	4 1E-01	705+01	1.7E-02	3 3E+00	3.3E-03	1.3E+00	3.3E-01	8.6E+00	2.8E+01	5.7E+03	1.7E+00	1.4E+02	1.3E-01	6.9E+01
40	27. km 90	0.002	0.000	0.4	67	0.010		0.003	1 99	7 2F-03	24F-02	445.01	5.8E+01		3 3E+00	33E-03	1 1E+00	3 3E-01	8.6F+00	2 8E+01	5.8E+03	1.7E+00	15E+02	1.4E-01	7.0E+01
	21-34-30	0.004	0.022	0.00	- 32			0.000	0.00	2.22-00	2.46.00	4.45.04	S AT ION		3.05.00	0.02.00	4 45 400	2 45 01	9.55.00	2 95401	6 8E+03	175+00	155400	1 45-01	7.96.01
50	4-34-90	0.002	0.019	0.39	40		2.9	0.002	0.90	2.2E-03	2.16-02	9.9E-01	5.15701		3.20100	2.22-03	0.75.04	3.46-01	0.02100	2.02.001	5.0C 100	1.75.000	1.56.00	145 04	736.01
51	11-Jul-90		0.018	0.36	42		2.7	0.003	0.87		2.05-02	4.0E-01	4.76+01		3.06+00	3.3E-U3	9.7E-01	3.4E-U1	0.10400	2.9ETUI	0.9E+03	1.700	1.02102	1.45-01	7.36401
52	18-Jul-90		0.14	0.87	114		5.8	0.005	2.12		9.4E-02	5.8E-01	7.6E+01		3.9E+00	3.3E-03	1.4E+00	3.4E-01	6.6c+00	2.96+01	0.9E+03	1.1E+00	1.00-402	1.96-01	(.46+01
53	25-Jul-90		0.029	0.5	58		4.12	0.004	1.28		3.2E-02	5.5E-01	6.4E+01	_	4.5E+00	4.4E-03	1.4E+00	3.4E-01	8.8E+00	3.0E+01	6.0E+03	1.7E+00	1.6E+02	1.5E-01	1.5E+01
54	1-Aug-90		0.02	0.46	50		3.79	0.003	1.14		2.2E-02	5.0E-01	5.4E+01		4.1E+00	3.2E-03	1.2E+00	3.4E-01	8.8E+00	3.0E+01	6.0E+03	1.8E+00	1.6E+02	1.5E-01	7.7E+01
55	8-Aux-90		0.008	0.31	32		2.81	0.003	0.81		8.9E-03	3.5E-01	3.6E+01		3.1E+00	3.3E-03	9.0E-01	3.5E-01	8.8E+00	3.1E+01	6.1E+03	1.8E+00	1.7E+02	1.6E-01	7.7E+01
	15.4		0.000	0.34	24		2.84	0.003	0.87		67F-03	3 8F-01	295-01		3 2E+00	3 3F-03	9 7E-01	3 5E-01	8.8E+00	3.1E+01	6.1E+03	1.8E+00	1.7E+02	1.6E-01	7.8E+01
	22 4		0.000	0.24	20	i		0.002	0.02		7 85 02	3.85 04	7 85-144		305-00	3 3E 02	0 3E-04	2 5E AL	8 86.00	3 26-01	6 15-02	1.8F+00	175-02	1 6F-01	795-01
- 0/	44-AUG-90		0.007	0.34			-2.13	0.003	0.03		1.00-03	0.00-01	2.0CTU		3.0CTUU	0.00-00	0.00-01	0.00001	0.0L TOU	4.4m701	C 05.00	1.02100	1 45.00	175 04	0.05404
58	29-Aug-90		0.006	0.31	23		2.27	0.002	0.73		6.6E-03	3.4E-01	2.5E+01		Z.5E+00	2.2c-03	8.1E-01	3.0E-01	8.6C+U0	3.20+01	0.22403	1.0E+UU	1.00.1021	1.15-01	0.02701
59	5-Sep-90		0.005	0.25	21		1.9	0.002	0.59		5.6E-03	2.8E-01	2.4E+01	_	2.1E+00	2.2E-03	6.6E-01	3.6E-01	8.9E+00	3.2E+01	0.22+03	1.00 +00	1.66+02	1./6-01	0,1E+01
60	12-Sep-90		0.004	0.21	17		1.7	0.002	0.51		4.5E-03	2.3E-01	1.9E+01		1.9E+00	2.2E-03	5.7E-01	3.6E-01	8.9E+00	3.2E+01	6.2E+03	1.9E+00	1.8E+02	1.7E-01	8.1E+01
61	19-Sep-90		0.005	0.27	22		2.1	0.003	0.68		5.5E-03	3.0E-01	2.4E+01		2.3E+00	3.3E-03	7.5E-01	3.6E-01	8.9E+00	3.3E+01	6.2E+03	1.9E+00	1.8E+02	1.7E-01	8.2E+01
62	26-Sep-90		0.003	0.18	18		1.8	0.002	0.52		3.3E-03	2.0E-01	2.0E+01	_	2.0E+00	2.2E-03	5.8E-01	3.6E-01	8.9E+00	3.3E+01	6.3E+03	1.9E+00	1.8E+02	1.8E-01	8.3E+01
63	3-001-90		0.002	0 19	13		1.6	0.002	0.48	_	2.2E-03	2.1E-01	1.4E+01		1.8E+00	2.2E-03	5.3E-01	3.6E-01	8.9E+001	3.3E+01	6.3E+03	1.9E+00	1.9E+021	1.8E-01	8.3E+01
64	10.0-1.00		0.003	0.21	17		18	0.002	0 43		3 3E-01	2.3E-01	1.9E+01		2.0E+00	2.2E-03	4.8E-01	3.7E-01	8.9E+00	3.3E+01	6.3E+03	1.9E+00	1.9E+02	1.8E-01	8.4E+01
	17 04 00		0.000	- 63-		· · · ·		0.002	0.44		2.2E-02	2 2E-01	1 65+01		1.65+00	2 2E-03	4 9F-01	37F-01	8.9F+00	345+01	63E+03	19E+00	19F+02	8F-01	8 4F+01

Samatosum Mine Humidity Cell Data -Column 5 (Bleed Control Alkalinity Removed)

		Analytical	Results:				·····				Sulphate	Production:				Molar	NP Consumpt	ion:					
		1												By Surface	Area:	Ratio:		Empirical		Remaining	Theoretical		Remaining
		[Acidity	Alkalinity	SO4	Cumulative	Remaining	SO4	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekty			Acidity	Alkalinity	Sulphate	Production	Production	Production	504	S	Production	\$04	Alk	Consumption	NP Consumption	Consumption	Ореп-	NP Consumption	Consumption	Closed-
Week No.	Date	Recovered	pH	Conductivity	Eh	(CeCO3	(CeCO3	(304	Rate	Rate	Rate	Production	(% of	Rate	Production	/504	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Clesed-System	System
		(mL)	(pH units)	(umhos/cm)	(mV)	imp/L)*	mg/L)*	mg/)'	(mgAgAuk)**	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg)	original)	(mg/m2/wk)**	(mg/m2)		(mg/kg/wk)	(ing/kg/wik)	(mg/kg/wk)	(%)	(mg/kg/wk)	(mg/kg/wk)	(%)
Maximum		19900	3.40	2950	680	789	0.0	2100	880.2	0.00	2391.6	61438	97.80	1445	37115	NA	2491.3	2286.3	34035	96.28	4777.6	97953	92.23
Minimum		7000	2.00	240	490	7	0.0	68	6.6	0.00	76.3	2392	43.43	46	1445	NA	79.4	0.0	2286	44.66	139.8	4778	-59.27
Mean		18877	2.82	1018	597	206	0.0	415	227.6	0.00	465.4	45001	58.56	281	27185	NA	484.8	257.8	24190	60.67	742.1	71002	-15.45
Median		19200	2.80	825	600	30	0.0	234	31.5	0.00	253.8	52110	52.02	153	31480	NA	264.4	155.5	25600	58.37	476.8	79801	-29.76
Mean Last	5 Weeks	18920	3.24	287	556	17	0.0	75	18.2	0.00	82.1	61270	43.58	50	37014	NA	85.5	67.3	33895	44.89	152.9	97638	-58.76
75% Rema	ining (Wiks)												23							18			3
50% Reme	ning (Wits)												76							97			13
25% Rema	ining (Wks)												374							311			24
0% Remain	ing (Wks)												705							539			40
		** If measu	red suipha	ite, alkalinity a	and/or ac	cidity value	s were un	vailable, d	lata was inte	rpolated fro	m existing d	ata and used	in subseque	ent equation:	S								
									<u> </u>														
											-												

e go ang gama a sa ma

1 A.

•

Samatosum Mine Humidity Cell Data - Column S (Blend Control Alkalinity Removed)

4×

			_												· · · · · · · · · · · · · · · · · · ·	7			,		_	_			
				L					L		L			l	L	1	L				í	í	۱ <u> </u>	í	1
		Dissolv	ed Meta	ls*:						Metal Le	ach Rate	s:						Cumula	tive Meta	Leach R	ates:				
			[]												<u> </u>					· · · · ·	1		1		1
		Antimony	Arsenic	Copper	iren	Lead	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	iron	Land	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	tron	Leed	Manganese	Silver	Zinc
Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ad	D-Zn
		(mgA)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mgl.)	(ingil.)	(mgl)	(mghaphak)	(mghghai)	(mg/mank)	(1101014)	(mghghai)	(10040044)	(mgnghul)	(mg/rg/ml)	(mgAcg)	(mg/kg)	(mg/kg)	(mg/ng)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			· · · · · ·																						
Maximum	_	0.011	0.525	0.87	197	0.3	5.8	0.005	2.12	1.2E-02	5.9E-01	7.7E-01	2.2E+02	3.4E-01	4.5E+00	5.2E-03	2.3E+00	5.2E-01	9.0E+00	4.1E+01	6.6E+03	3.0E+00	2.5E+02	3.2E-01	1.1E+02
Minimum		0.002	0.001	0.06	0.36	0.01	0.35	2E-04	0.17	2.2E-03	1.1E-03	4.9E-02	4.0E-01	1.1E-02	3.9E-01	2.2E-04	1.9E-01	6.8E-03	1.6E-02	3.6E-01	3.5E+01	3.4E-01	2.9E+00	1.5E-03	1.1E+00
Mean		0.006	0.103	0.29	46.31	0.025	1.30	0.0024	0.75	6.6E-03	1.1E-01	3.2E-01	5.1E+01	2.8E-02	1.4E+00	2.6E-03	8 2E-01	3.3F-01	7.3E+00	2.8E+01	5.1E+03	1.9E+00	16E+02	17F-01	72F+01
Median		0.006	0.032	0.19	13.00	0.015	0.94	0.0020	0.49	6.6E-03	3.5E-02	2.1E-01	1.4E+01	1.6E-02	1.0E+00	2.3E-03	5.3E-01	3.7E-01	8.9E+00	3.4E+01	6.3E+03	2.0E+00	1.9E+02	1.8E-01	84E+01
Mean Last	5 Weeks			0.08	0.52		0.49		0.22			8.5E-02	5.7E-01		5.3E-01		2.4E-01	5.1E-01	9.0E+00	4.1E+01	6.6E+03	3.0E+00	2.5E+02	3.1E-01	1.1E+02
75% Rema	ining (Wks)																								
50% Rema	ining (VVks)																								·
25% Rema	ining (Wks)																								
0% Remain	ing (Wks)													-											

Samatosum Mine Humidity Cell Data -Column 5 (Blond Control Alkalinity Removed)

Nome Nome <th< th=""><th></th><th></th><th>Dissel</th><th>d Mada</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Motal La</th><th>ch Rate</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Cumula</th><th>tive Metal</th><th>Leach R</th><th>ates:</th><th></th><th></th><th></th><th></th></th<>			Dissel	d Mada							Motal La	ch Rate							Cumula	tive Metal	Leach R	ates:				
Here Gam Factor actor Factor			UISSOIV	G MOLL	1 8 °;						Meral Fe															81-4
New Mo. Des			Antimony	Arsenic	Copper	Iron	Load	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	Iron D. F.a.	Lood	Manganese	Silver	Zinc D. Zn	Antimorry D.Sh	Arsenic D.As	Copper	DER	D-Ph	D-Mn	D-Ad	D-Zn
Image: Process of the second	Week No.	Date	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn (mol.)	D-Ag (mal.)	D-Zn (mo/L)	D-SD (mg/kg/wk)	D-AS (mg/sg/wk)	(mg/ng/wk)	(mg/rg/wi)	(mg/tq/wit)	(mg/tg/mi)	(mg/mg/mit)	(mg/1g/mit)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mgAcg)	(mg/kg)	(mgAcg)	(mg/kg)
mb p. 20050 box			((1111)	(" 7 ")				<u> </u>										0 10 A	0.05.000	0.45.04	C 25.02	305.00	105-02	1 05.01	8 55-01
b 2	66	24-Oct-90		0.002	0.19	14		1.2	0.002	0.4		2.2E-03	2.1E-01	1.6E+01		1.3E+00	2.2E-03	4.5E-01 4.7E-01	3.7E-01 3.7E-01	8.9E+00 8.9E+00	3.4E+01 3.4E+01	6.3E+03	2.0E+00	1.9E+02	1.9E-01	8.5E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	67	31-Oct-90 7-Nov-90		0.002	0.19	10		1.4	0.001	0.42		3.4E-03	2.1E-01	1.6E+01		1.3E+00	2.2E-03	4.7E-01	3.8E-01	8.9E+00	3.4E+01	6.3E+03	2.0E+00	1.9E+02	1.9E-01	8.6E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	69	14-Nov-90		0.002	0.17	13		1.5	0.002	0.41		2.2E-03	1.9E-01	1.5E+01		1.7E+00	2.2E-03	4.6E-01	3.8E-01	8.9E+00	3.4E+01	6.4E+03	2.0E+00	2.0E+02	1.9E-01	8.6E+01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	70	21-Nov-90		0.002	0.19	13		1.5	0.001	0.45		2.3E-03	2.1E-01	1.5E+01		1.7E+00	1.1E-03 2.3E-03	4.4E-01	3.8E-01	8.9E+00	3.5E+01	6.4E+03	2.0E+00	2.0E+02	1.9E-01	8.7E+01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	71	28-Nov-90		0.002	0.17	13		1.1	0.002	0.39		2.2E-03	2.4E-01	1.5E+01		1.5E+00	2.2E-03	5.5E-01	3.8E-01	8.9E+00	3.5E+01	6.4E+03	2.1E+00	2.0E+02	2.0E-01	8.8E+01
Tr Isobe 20 Dott Life 00 Life 00 <thlife 00<="" th=""> <thlife 00<="" th=""> <thlife 00<<="" td=""><td>73</td><td>12-Dec-90</td><td></td><td>0.001</td><td>0.13</td><td>7.7</td><td></td><td>0.94</td><td>0.001</td><td>0.33</td><td></td><td>1.1E-03</td><td>1.5E-01</td><td>8.7E+00</td><td></td><td>1.1E+00</td><td>1.1E-03</td><td>3.7E-01</td><td>3.9E-01</td><td>8.9E+00</td><td>3.5E+01</td><td>6.4E+03</td><td>2.1E+00</td><td>2.0E+02</td><td>2.0E-01</td><td>8.8E+01</td></thlife></thlife></thlife>	73	12-Dec-90		0.001	0.13	7.7		0.94	0.001	0.33		1.1E-03	1.5E-01	8.7E+00		1.1E+00	1.1E-03	3.7E-01	3.9E-01	8.9E+00	3.5E+01	6.4E+03	2.1E+00	2.0E+02	2.0E-01	8.8E+01
B P3 P3 </td <td>74</td> <td>19-Dec-90</td> <td></td> <td>0.001</td> <td>0.14</td> <td>10</td> <td></td> <td>1.3</td> <td>0.001</td> <td>0.36</td> <td></td> <td>1.1E-03</td> <td>1.6E-01</td> <td>1.1E+01</td> <td></td> <td>1.5E+00</td> <td>1.1E-03</td> <td>4.0E-01</td> <td>3.9E-01</td> <td>8.9E+00</td> <td>3.6E+01</td> <td>6.4E+03</td> <td>2.1E+00</td> <td>2.0E+02</td> <td>2.0E-01</td> <td>8.9E+01</td>	74	19-Dec-90		0.001	0.14	10		1.3	0.001	0.36		1.1E-03	1.6E-01	1.1E+01		1.5E+00	1.1E-03	4.0E-01	3.9E-01	8.9E+00	3.6E+01	6.4E+03	2.1E+00	2.0E+02	2.0E-01	8.9E+01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	75	26-Dec-90 2-Jan-91		0.001	0.10	9.6		0.79	0.001	0.28		1.1E-03	1.5E-01	1.1E+01		9.0E-01	1.1E-03	3.2E-01	3.9E-01	8.9E+00	3.6E+01	6.4E+03	2.1E+00	2.1E+02	2.0E-01	8.9E+01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	n	9-Jan-91		0.001		8.3			0.002	0.25		1.2E-03		9.5E+00			2.3E-03	2.9E-01	4.0E-01	8.9E+00	3.6E+01	6.5E+03	2.1E+00	2.1E+02	2.0E-01	9.0E+01
78 22.40-31 0.000 0.01 11 0.02 0.000 123 11.000 124.001 <	78	16-Jan-91		0.001		14.4			0.002	0.39		1.1E-03	1.55.01	1.5E+01		1.05+00	2.1E-03	4.2E-01 3.7E-01	4.0E-01	8.9E+00	3.6E+01	6.5E+03	2.2E+00	2.1E+02	2.1E-01	9.0E+01
br: br: <td>79</td> <td>23-Jan-91</td> <td></td> <td>0,001</td> <td>0.13</td> <td>82</td> <td></td> <td>0.9</td> <td>0.002</td> <td>0.33</td> <td></td> <td>1.1E-05</td> <td>1.2E-01</td> <td>9.2E+00</td> <td></td> <td>9.5E-01</td> <td></td> <td>3.3E-01</td> <td>4.0E-01</td> <td>8.9E+00</td> <td>3.6E+01</td> <td>6.5E+03</td> <td>2.2E+00</td> <td>2.1E+02</td> <td>2.1E-01</td> <td>9.1E+01</td>	79	23-Jan-91		0,001	0.13	82		0.9	0.002	0.33		1.1E-05	1.2E-01	9.2E+00		9.5E-01		3.3E-01	4.0E-01	8.9E+00	3.6E+01	6.5E+03	2.2E+00	2.1E+02	2.1E-01	9.1E+01
e_2 $13+66$ $13+66$ $13+66$ $33+66$ $13+66$ $33+66$ $13+66$ <th< td=""><td>81</td><td>6-Feb-91</td><td></td><td></td><td>0.12</td><td>6</td><td></td><td>1</td><td></td><td>0.35</td><td></td><td></td><td>1.3E-01</td><td>6.6E+00</td><td></td><td>1.1E+00</td><td></td><td>3.8E-01</td><td>4.0E-01</td><td>8.9E+00</td><td>3.6E+01</td><td>6.5E+03</td><td>2.2E+00</td><td>2.1E+02</td><td>2.1E-01</td><td>9.1E+01</td></th<>	81	6-Feb-91			0.12	6		1		0.35			1.3E-01	6.6E+00		1.1E+00		3.8E-01	4.0E-01	8.9E+00	3.6E+01	6.5E+03	2.2E+00	2.1E+02	2.1E-01	9.1E+01
83 20+Feb 1 0.11 1.5 1.1 0.57 84 77+Feb 1 0.03 1 0.57 1.660 112-00 322-00 12-001 22-001	82	13-Feb-91			0.12	8.8		1		0.36			1.3E-01	9.4E+00		1.1E+00		3.8E-01	4 1E-01	8.9E+00	3.6E+01	6.5E+03	2.2E+00	2.1E+02	2.2E-01	9.2E+01
66 67 70<	83	20-Feb-91			0.11	7.5		1,1		0.36			1.2E-01	4.1E+00		1.1E+00		3.6E-01	4.1E-01	8.9E+00	3.7E+01	6.5E+03	2.3E+00	2.1E+02	2.2E-01	9.2E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	85	6-Mar-91			0.03	<u>, , , , , , , , , , , , , , , , , , , </u>				0.02									4.1E-01	8.9E+00	3.7E+01	6.5E+03	2.3E+00	2.1E+02	2.2E-01	9.3E+01
67 20.Mer/91 0.1 4.5 1 0.30 112:00 12:20	86	13-Mar-91			0.1	4.3		1		0.35			1.1E-01	4.7E+00		1.1E+00	 	3.8E-01	4.2E-01	8.9E+00	3.7E+01	6.5E+03	2.3E+00	2.2E+02	2.2E-01	9.3E+01
B8 C/2mm of L 0.67 3.35 106-01 86-01 3.46-01 2.52-01 2.64-01 2.24-02 </td <td>87</td> <td>20-Mar-91</td> <td></td> <td></td> <td>0.1</td> <td>4.5</td> <td> </td> <td>1</td> <td></td> <td>0.35</td> <td></td> <td></td> <td>1.1E-01</td> <td>4.8E+00</td> <td></td> <td>1.1E+00</td> <td></td> <td>3.8E-01</td> <td>4.2E-01</td> <td>8.9E+00</td> <td>3.7E+01</td> <td>6.5E+03</td> <td>2.3E+00</td> <td>2.2E+02</td> <td>2.3E-01</td> <td>9.4E+01</td>	87	20-Mar-91			0.1	4.5	 	1		0.35			1.1E-01	4.8E+00		1.1E+00		3.8E-01	4.2E-01	8.9E+00	3.7E+01	6.5E+03	2.3E+00	2.2E+02	2.3E-01	9.4E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	88	27-Mar-91 3-Apr-91			0.1	3.5		0.87		0.33			1.0E-01	3.6E+00		8.8E-01		3.4E-01	4.2E-01	8.9E+00	3.7E+01	6.5E+03	2.3E+00	2.2E+02	2.3E-01	9.4E+01
91 17.4g-91 0.13 3.4 0.97 0.20 17.6g-01 18.6g-00	90	10-Apr-91			0.09	3.3		0.87		0.3			9.9E-02	3.6E+00	ļ	9.6E-01		3.3E-01	4.2E-01	8.9E+00	3.7E+01	6.6E+03	2.4E+00	2.2E+02	2.3E-01	9.5E+01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	91	17-Apr-91			0.13	3.4		0.97		0.35			1.6E-01	4.9E+00		1.3E+00		4.9E-01	4.3E-01	8.9E+00	3.8E+01	6.6E+03	2.4E+00	2.2E+02	2.4E-01	9.5E+01
5 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	92	1-May-91			0.15	2.4		0.84		0.29			1.2E-01	2.7E+00		9.4E-01		3.2E-01	4.3E-01	8.9E+00	3.8E+01	6.6E+03	2.4E+00	2.2E+02	2.4E-01	9.5E+01
15 15 15 16 <th< td=""><td>94</td><td>8-May-91</td><td></td><td></td><td>0.12</td><td>3.3</td><td></td><td>0.99</td><td></td><td>0.36</td><td></td><td></td><td>1.3E-01</td><td>3.6E+00</td><td> </td><td>1.1E+00</td><td></td><td>4.0E-01</td><td>4.3E-01</td><td>8.9E+00</td><td>3.8E+01</td><td>6.6E+03</td><td>2.4E+00</td><td>2.2E+02</td><td>2.4E-01</td><td>9.6E+01</td></th<>	94	8-May-91			0.12	3.3		0.99		0.36			1.3E-01	3.6E+00		1.1E+00		4.0E-01	4.3E-01	8.9E+00	3.8E+01	6.6E+03	2.4E+00	2.2E+02	2.4E-01	9.6E+01
97 25/07/201 50 103 103 11/200 10/200	95	15-May-91			0.12	3.1		0.92		0.33			1.2E-01	2.7E+00		8.6E-01		3.1E-01	4.4E-01	8.9E+00	3.8E+01	6.6E+03	2.5E+00	2.2E+02	2.4E-01	9.6E+01
B8 6-Lun-91 0.1 3 0.9 0.33 112c01 334c01 442c01 342c01 542c01 542c01 <t< td=""><td>97</td><td>29-May-91</td><td></td><td></td><td>0.1</td><td>3</td><td></td><td>0.91</td><td></td><td>0.35</td><td></td><td></td><td>1.1E-01</td><td>3.4E+00</td><td></td><td>1.0E+00</td><td></td><td>4.0E-01</td><td>4.4E-01</td><td>8.9E+00</td><td>3.8E+01</td><td>6.6E+03</td><td>2.5E+00</td><td>2.3E+02</td><td>2.5E-01</td><td>9.7E+01</td></t<>	97	29-May-91			0.1	3		0.91		0.35			1.1E-01	3.4E+00		1.0E+00		4.0E-01	4.4E-01	8.9E+00	3.8E+01	6.6E+03	2.5E+00	2.3E+02	2.5E-01	9.7E+01
99 12.Jun-91 0.1 3.3 0.64 0.58 0.75 0.76 <th0.76< th=""> 0.76 0.76 <th< td=""><td>98</td><td>5-Jun-91</td><td></td><td></td><td>0.1</td><td>3</td><td></td><td>0.9</td><td></td><td>0.33</td><td> </td><td></td><td>1.2E-01</td><td>3.5E+00</td><td></td><td>1.0E+00</td><td></td><td>3.8E-01</td><td>4.4E-01</td><td>8.9E+00</td><td>3.8E+01</td><td>6.6E+03</td><td>2.5E+00</td><td>2.3E+02</td><td>2.5E-01</td><td>9.8E+01</td></th<></th0.76<>	98	5-Jun-91			0.1	3		0.9		0.33			1.2E-01	3.5E+00		1.0E+00		3.8E-01	4.4E-01	8.9E+00	3.8E+01	6.6E+03	2.5E+00	2.3E+02	2.5E-01	9.8E+01
101 26 Jun 31 0.00 27 0.91 0.32 1.06-01 3.06-01 4.56-01 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-01 4.56-01 3.96-00 3.96-01 4.56-01 3.96-01 4.56-01 3.96-01 4.56-01 3.96-01 4.56-01 3.96-01 4.56-01 3.96-01	<u>99</u> 100	12-Jun-91			0.09	2.6		0.93		0.3			9.8E-02	2.8E+00		9.2E-01		3.3E-01	4.5E-01	8.9E+00	3.8E+01	6.6E+03	2.5E+00	2.3E+02	2.5E-01	9.8E+01
102 3.J.491 0.08 2.3 0.8 0.28 0.9 0	101	26-Jun-91			0.09	2.7		0.91		0.32			1.0E-01	3.0E+00		1.0E+00	ļ	3.6E-01	4.5E-01	8.9E+00	3.9E+01	6.6E+03	2.5E+00	2.3E+02	2.5E-01	9.8E+01
103 10-JL-91 0.06 2.4 0.07 2.0 0.06 0.06 0.01 0.06 0.01 0.00 2.26+00 0.06+00 3.66+01 3.66+01 3.66+01 6.66+03 2.66+00 2.2	102	3-Jul-91			0.08	2.3		0.8		0.28			8.9E-02	2.6E+00		1.0E+00		5.5E-01	4.5E-01	8.9E+00	3.9E+01	6.6E+03	2.6E+00	2.3E+02	2.6E-01	9.9E+01
105 24-34-91 0.06 2.1 0.91 0.33 9.05-02 2.4-600 3.7E-01 4.6E-01 8.9E+001 6.6E+03 2.8E+001	103	10-Jul-91			0.08	2		0.87		0.31			7.9E-02	2.2E+00		9.8E-01		3.5E-01	4.6E-01	8.9E+00	3.9E+01	6.6E+03	2.6E+00	2.3E+02	2.6E-01	1.0E+02
106 31-Ju-51 0.08 2 0.9 0.33 87E-02 (22+00) 9 8E-01 36E-01 (46E-0) (82E-00) (38E-00) (38E-01 (3EE-00) (3EE-00) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-01 (3EE-00) (3EE-01) (3EE-00) (3EE-	105	24-Jul-91			0.08	2.1		0.91		0.33	<u> </u>		9.0E-02	2.4E+00		1.0E+00		3.7E-01	4.6E-01	8.9E+00	3.9E+01	6.6E+03	2.6E+00	2.3E+02	2.6E-01	1.0E+02
107 7.Aug.91 0.07 1.7 0.91 0.33 1.85 to 2	106	31-Jul-91			0.08	2		0.9		0.33			8.7E-02	1.2E+00		9.8E-01	├ ───	3.6E-01	4.6E-01	8.9E+00	3.9E+01	6.6E+03	2.6E+00	2.4E+02	2.7E-01	1.0E+02
100 21 Aug 91 0.06 1.3 0.86 0.3 8 4E-02 1 4E+00 9 3E-01 3 2E-01 4 7E-01 8 9E+00 3 9E+01 6 6E+03 27E+00 2 4E+02 27E+01 1 110 28 Aug 91 0.07 1.2 0.82 0.28 7.1E-02 1 2E+00 8.3E-01 2.8E-01 1 47E-01 8 9E+00 3 9E+01 6 6E+03 27E+00 2 4E+02 27E+01 1 111 4.5ep-91 0.16 2.3 1.2 0.49 1.8E+00 1.3E+00 6.5E+01 47E+01 8 9E+00 40E+01 66E+03 27E+00 2 4E+02 28E+01 1 111 115.sep-91 0.16 2.3 1.2 0.49 1.8E+00 1.3E+00 6.5E+01 47E+01 8.9E+00 4.0E+01 66E+03 27E+00 24E+02 28E+01 1 113 18-sep-91 0.11 1.7 0.83 0.31 1.1E+01 1.7E+00 8.4E+01 3.1E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 28E+00 24E+02 28E+01 1 114 25-Sep-91 0.06 1.1 0.63 0.22 6.7E+02 1.1E+00 8.1E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 28E+00 24E+02 28E+01 1 116 9-Oct+91 0.12 0.66 0.63 0.22 1.8E+01 7.0E+01 7.0E+01 25E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 28E+00 24E+02 28E+01 1 116 9-Oct+91	107	7-Aug-91			0.07			0.91		0.33			8.9E-02	1.6E+00		9.3E-01		3.1E-01	4.6E-01	8.9E+00	3.9E+01	6.6E+03	3 2.7E+00	2.4E+02	2.7E-01	1.0E+02
110 28.4ug 91 0.07 1.2 0.82 0.28 7.15-02 1.28-01 4.7E-01 8.9E-01 6.7E-01 8.4E-01 6.7E-01 8.9E-01 6.7E-01 8.9E-01 6.7E-01 8.9E-01 6.7E-01 8.9E-01 7.7E-01 4.9E-02 2.7E-01 4.9E-01 2.7E-01 8.9E-01 6.6E+03 2.7E+00 2.4E-02 2.8E-01 1.7E-01 8.9E-01 6.7E-01 4.9E-01 2.7E+00 2.4E-02 2.8E-01 1.7E+01 8.9E-01 1.7E+01 8.9E-01 1.7E+01 8.9E-01 1.7E+01 8.9E+00 4.0E+01 6.6E+03 2.7E+00 2.4E+02 2.8E+01 1.7E+00 8.4E-01 3.1E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 2.7E+00 2.4E+02 2.8E+01 1.7E+00 8.8E+01 3.8E+00 4.8E+01 8.9E+00 4.0E+01 6.6E+03 2.8E+00 2.4E+02 2.8E+01	109	21-Aug-91			0.08	1.3		0.88		0.3			8.4E-02	1.4E+00		9.3E-01		3.2E-01	4.7E-01	8.9E+00	3.9E+01	6.6E+03	3 2.7E+00	2.4E+02	2.7E-01	1.0E+02
111 4-Sep-91 0.12 1.9 1.1 0.08 4.9E-02 1.7E-01 5.2E-01 4.7E-01 6.9E+00 4.0E-01 6.6E+03 2.7E+00 2.4E+02 2.8E+01 1 112 11-Sep-91 0.16 2.3 0.31 1.1E-01 1.7E+00 8.4E+01 3.1E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 2.7E+00 2.4E+02 2.8E+01 1 113 18-Sep-91 0.06 0.95 0.72 0.43 6.8E+02 1.1E+00 8.1E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 2.8E+00 2.4E+02 2.8E+01 1 116 9-Oct-91 0.06 0.95 0.72 0.43 6.8E+02 1.1E+00 8.1E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 2.8E+00 2.4E+02 2.8E+01 1 116 9-Oct-91 0.06 0.6E+03 2.8E+00 2.4E+02 2.8E+01 1 117 16-Oct-91 0.06 0.6E+03 2.8E+00 2.4E+02 2.8E+01 1 118 23-0c1 1 3.6E+01 2.4E+01 8.8E+03 8.8E	110	28-Aug-91			0.07	1.2		0.82		0.28		I	7.1E-02	1.2E+00	 	8.3E-01		2.8E-01	4.7E-0	8.9E+00	3.9E+01	6 6E+03	2.7E+00	2.4E+02	2.8E-01	1.0E+02
112 113 113 113 114 115 116-01 117 116-01 116-	111	4-Sep-91			0.12	1.9		1.1		0.98			1.8E-01	2.6E+00		1.3E+00		5.5E-01	4.7E-0	8.9E+00	4.0E+01	6.6E+03	3 2.7E+00	2.4E+02	2.8E-01	1.0E+02
114 25-Sep-91 0.06 0.95 0.72 0.43 6.8E-02 1.1E+00 8.1E-01 4.8E-01 8.9E-00 4.0E-01 6.9E-03 2.8E+00 2.4E+02 2.8E+00 2.4E+02 2.8E+00 2.4E+02 2.8E+00 2.4E+02 2.8E+00 2.4E+02 2.8E+01 1 1 1 1 0.06 1.1 0.03 0.22 6.7E+02 1.2E+00 7.1E+01 2.8E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 2.8E+00 2.4E+02 2.8E+01 1 1 1 1 1 0.06 0.75 0.65 0.22 8.8E+02 8.3E+01 2.4E+01 4.8E+01 8.9E+00 4.0E+01 6.6E+03 2.8E+00 2.4E+02 2.8E+00 2.8E+00	112	11-Sep-91 18-Sep-91			0.11	1.7		0.83		0.31			1.1E-01	1.7E+00		8.4E-01		3.1E-01	4.8E-0	8.9E+00	4.0E+01	6.6E+03	3 2.7E+00	2.4E+02	2.8E-01	1.0E+02
115 2-Oct-91 0.06 1.1 0.03 0.22 0.12-01 1.22-01 2.62-01 4.82-01 8.92+00 4.02+01 6.62+03 2.82+00 2.42+02 2.92-01 1 116 9-Oct-91 0.12 0.68 0.65 0.22 1.32-01 7.62-01 2.42-01 4.82-01 8.92+00 4.02+01 6.62+03 2.82+00 2.42+02 2.92-01 1 117 16-Oct-91 0.08 0.73 0.59 0.2 9.02-02 8.22-01 6.62-01 2.22-01 4.92-01 8.92+00 4.02+01 6.62+03 2.82+00 2.62+01 1 1 1 9.02-02 8.22-01 6.62-01 2.22-01 4.92-01 8.92+00 4.02+01 6.62+03 2.82+00 2.62+02 2.92-01 1 1 1 9.02-02 1.12+00 6.52-01 2.22-01 4.92-01 8.92+00 4.02+01 6.62+03 2.82+00 2.62+02 2.92+01 2.52+02 2.62+02 2.92+00 2.52+02 3.02-01 1 <td>114</td> <td>25-Sep-91</td> <td></td> <td></td> <td>0.06</td> <td>0.95</td> <td></td> <td>0.72</td> <td></td> <td>0.43</td> <td></td> <td></td> <td>6.8E-02</td> <td>1.1E+00</td> <td> </td> <td>8.1E-01</td> <td></td> <td>4.8E-01</td> <td>4.8E-01</td> <td>8.9E+00</td> <td>4.0E+01</td> <td>6.6E+03</td> <td>3 2.8E+00</td> <td>2.4E+02</td> <td>2.8E-01</td> <td>1.0E+02</td>	114	25-Sep-91			0.06	0.95		0.72		0.43			6.8E-02	1.1E+00	 	8.1E-01		4.8E-01	4.8E-01	8.9E+00	4.0E+01	6.6E+03	3 2.8E+00	2.4E+02	2.8E-01	1.0E+02
116 9-0(1-9) 0.12 0.35 0.22 8.8E-02 8.3E-01 7.2E-01 2.4E-01 4.8E-01 8.9E+00 4.0E+01 6.6E+03 2.8E+00 2.4E+02 2.8E+00 2.4E+02 2.8E+00 4.0E+01 6.6E+03 2.8E+00 2.4E+02 2.8E+01 4.8E-01 8.9E+00 4.0E+01 6.6E+03 2.8E+00 2.4E+02 2.8E+00 2.2E+01 1 1.90E+02 8.9E+00 4.9E+01 8.9E+00 4.0E+01 6.6E+03 2.8E+00 2.2E+01 1 119 30-0cl-91 0.08 0.55 0.21 9.0E-02 1.1E+00 6.5E+01 2.4E+01 4.9E+01 6.5E+01 4.9E+01 8.9E+00 4.0E+01 6.5E+02 2.9E+00 2.5E+02 3.0E+01 1 1 1 1 1 1 0.0E+01 4.9E+01 4.9E+01 8.9E+00 4.0E+01 6.5E+02 3.9E+00 2.5E+02 3.0E+01 1 1 1 1 1 1 1 1 1 1 0.07 0.53	115	2-001-91			0.06	1.1		0.63		0.22			1.3E-01	7.6E-01		7.0E-01	<u> </u>	2.6E-01	4.8E-01	8.9E+00	4.0E+01	6.6E+0	3 2.8E+00	2.4E+02	2.9E-01	1.0E+02
118 23-Oct-91 0.08 0.73 0.59 0.2 9.0E-O2 3.2E-O1 6.6E-O1 2.2E-O1 4.9E-O1 8.9E-O0 16.8E-O1 2.2E-O1 4.9E-O1 8.9E-O0 16.8E-O2 2.8E-O1 2.2E-O1 1 119 30-Oct-91 0.08 0.58 0.21 9.0E-O2 1.1E+O0 6.5E-O1 2.4E-O1 1.9E-O1 8.9E+O0 4.9E-O1 8.9E+O0 4.0E+O1 6.6E+O3 2.9E+O0 2.5E+O2 2.5E+O2 2.5E+O2 2.5E+O2 2.5E+O2 2.5E+O2 3.0E-O1 1.1E+O1 4.9E-O1 4.9E-O1 8.9E+O0 4.0E+O1 6.6E+O3 2.9E+O0 2.5E+O2 3.0E-O1 1.1E+O1 4.9E-O1 4.9E-O1 4.9E+O1 6.6E+O3 2.9E+O0 2.5E+O2 3.0E-O1 1.1E+O1 4.9E-O1 4.9E+O1 6.6E+O3 2.9E+O0 2.5E+O2 3.0E-O1 1.1E+O1 4.9E-O1 4.9E+O1 6.9E+O3 4.1E+O1 6.6E+O3 2.9E+O0 2.5E+O2 3.0E-O1 1.2E+O1 5.9E+O1 5.9E+O1 5.9E+O1 5.9E+O1 5.9E+O1 </td <td>117</td> <td>16-Oct-91</td> <td></td> <td></td> <td>0.08</td> <td>0.75</td> <td>-</td> <td>0.65</td> <td></td> <td>0.22</td> <td></td> <td></td> <td>8.8E-02</td> <td>8.3E-01</td> <td></td> <td>7.2E-01</td> <td></td> <td>2.4E-01</td> <td>4.8E-01</td> <td>8.9E+00</td> <td>4.0E+01</td> <td>6.6E+0</td> <td>3 2.8E+00</td> <td>2.4E+02</td> <td>2.9E-01</td> <td>1.0E+02</td>	117	16-Oct-91			0.08	0.75	-	0.65		0.22			8.8E-02	8.3E-01		7.2E-01		2.4E-01	4.8E-01	8.9E+00	4.0E+01	6.6E+0	3 2.8E+00	2.4E+02	2.9E-01	1.0E+02
119 30-Oct-91 0.08 0.98 0.21 90-Oct-91 0.09 2.5E-01 4.9E-01 8.9E+00 4.0E+01 6.6E+03 2.9E+00 2.5E+02 3.0E+01 8.9E+00 4.9E+01 8.9E+00 4.0E+01 8.9E+00 2.5E+02 3.0E+01 8.9E+00 4.9E+01 8.9E+00 4.0E+01 8.9E+00 2.5E+02 3.0E+01 8.9E+00 2.5E+02 3.0E+01 8.9E+00 4.0E+01 6.6E+03 2.9E+00 2.6E+02 3.0E+01 2.9E+00 2.6E+02 3.0E+00 2.6E+02 <td>118</td> <td>23-Oct-91</td> <td></td> <td></td> <td>0.08</td> <td>0.73</td> <td></td> <td>0.59</td> <td></td> <td>0.2</td> <td>· · · · ·</td> <td> </td> <td>9.0E-02</td> <td>8.2E-01</td> <td> </td> <td>6.6E-01</td> <td></td> <td>2.2E-01</td> <td>4.9E-0</td> <td>8.9E+00</td> <td>4.0E+01</td> <td>6.6E+0</td> <td>3 2.8E+00</td> <td>2.5E+02</td> <td>2.9E-01</td> <td>1.0E+02</td>	118	23-Oct-91			0.08	0.73		0.59		0.2	· · · · ·		9.0E-02	8.2E-01		6.6E-01		2.2E-01	4.9E-0	8.9E+00	4.0E+01	6.6E+0	3 2.8E+00	2.5E+02	2.9E-01	1.0E+02
Low of the state Difference D	119	30-Oct-91			0.08	0.96		0.58		0.21	I		1.0E-01	8.9E-01	<u> </u>	7.4E-01		2.5E-0	4.9E-0	8.9E+00	4.0E+01	6.6E+0	3 2.9E+00	2.5E+02	3.0E-01	1.0E+02
122 20-Nov-91 0.08 0.67 0.57 0.19 9.1E-02 7.6E-01 2.2E-01 5.0E-01 5.2E-01 1.2E-01 5.2E-01	121	13-Nov-91			0.09	0.7		0.61		0.21			1.0E-01	8.1E-01		7.1E-01		2.4E-01	4.9E-0	8.9E+00	4.0E+01	1 6.6E+0	3 2.9E+00	2.5E+02	2 3.0E-01	1.0E+02
123 27-100-91 0.07 0.38 0.70 0.77 1.72 2.72 0.02 5.0E-01 8.9E+00 4.1E+01 6.6E+03 2.9E+00 2.5E+02 3.0E+01 1 124 4.Dec-91 0.07 0.36 0.55 0.2 7.8E-02 6.2E-01 5.0E-01 8.9E+00 4.1E+01 6.6E+03 2.9E+00 2.5E+02 3.1E-01 1 125 11-Dec-91 0.09 0.4 0.37 0.17 1.0E-01 4.2E-01 1.9E-01 5.0E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 126 18-Dec-91 0.09 0.4 0.37 0.17 1.0E-01 4.2E-01 1.9E-01 5.0E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 127 25-Dec-91 0.08 0.41 0.48 0.2 9.1E+02 4.6E-01 2.3E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-	122	20-Nov-91			0.08	0.67		0.57	<u> </u>	0.19	Į		9.1E-02	1.6E-01		5.2E-01		1.9E-01	5.0E-0	8.9E+00	4.1E+01	6.6E+0	3 2.9E+00	2.5E+02	3.0E-01	1.1E+02
125 11-Dec-91 50E-01 9.0E-02 16.6E+03 2.9E-00 2.5E+02 3.1E-01 126 18-Dec-91 0.09 0.4 0.37 0.17 1.0E-01 4.2E-01 1.9E-01 5.0E-10 9.0E+00 4.1E+01 6.6E+03 2.9E+00 2.5E+02 3.1E-01 1 126 18-Dec-91 0.09 0.4 0.37 0.17 1.0E-01 4.2E-01 1.9E-01 5.0E-10 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 127 25-Dec-91 0.08 0.36 0.35 0.21 9.0E-02 4.0E-01 2.4E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 128 1-Jan-92 0.08 0.41 0.48 0.2 9.1E-02 4.6E-01 5.4E-01 5.	123	27-Nov-91 4-Dec-91			0.07	0.56		0.55		0.2	<u> </u>		7.8E-02	6.2E-01		6.1E-01		2.2E-01	5.0E-0	8.9E+00	4.1E+01	6.6E+0	3 2.9E+00	2.5E+02	2 3.0E-01	1.1E+02
126 18.Dec-91 0.09 0.4 0.37 0.17 1.0E-01 4.2E-01 1.9E-01 3.0E-01 3.0E-01 2.6E-03 3.0E-00 2.6E+03 3.0E+00 2.6E+02 3.1E-01 1 127 25-0ec-91 0.06 0.35 0.21 9.0E 24 0.6E-01 2.4E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 128 1.Jan-92 0.08 0.41 0.48 0.2 9.1E-02 4.6E-01 5.4E-01 2.3E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 129 8.Jan-92 0.07 0.6 0.49 0.26 7.8E-02 6.7E-01 5.5E-01 2.9E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 2.9E-01	125	11-Dec-91											4.07.23	10000		105.00		105.00	15.0E-0	19.0E+00	4.1E+0	1 6.6E+0	3 2.9E+00	1 2.5E+02	3.1E-01	1.1E+02
127 25-Dec-91 0.06 0.30 0.21 9.1E-02 4.6E-01 5.4E-01 2.3E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 128 1-Jan-92 0.08 0.41 0.48 0.2 9.1E-02 4.6E-01 5.4E-01 2.3E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 129 8-Jan-92 0.07 0.6 0.49 0.26 7.8E+02 6.7E-01 5.5E-01 2.9E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 129 8-Jan-92 0.07 0.6 0.49 0.26 7.6E+02 6.7E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.2E+02	126	18-Dec-91			0.09	0.4	ļ	0.37		0.17		<u> </u>	1.0E-01	4.6E-01	<u> </u>	3.9E-01	<u> </u>	2.4E-01	5.0E-0	9.0E+00	4 1E+01	6.6E+0	3 3.0E+00	2.5E+02	3.1E-01	1.1E+02
129 8-Jan-92 0.07 0.6 0.49 0.26 7.8E-02 6.7E-01 5.5E-01 2.9E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 129 8-Jan-92 0.07 0.6 0.49 0.26 7.8E-02 6.7E-01 5.5E-01 2.9E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.1E-01 1 0.07 0.6 0.49 0.26 7.8E-02 6.7E-01 5.5E-01 2.9E-01 5.1E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.2E+01 1	127	20-U8C-91			0.08	0.30		0.48		0.2	<u> </u>		9.1E-02	4.6E-01		5.4E-01		2.3E-01	5.1E-0	9.0E+00	4.1E+0	6.6E+0	3 3.0E+00	2.5E+02	2 3.1E-01	1.1E+02
	129	8-Jan-92			0.07	0.6		0.49		0.26			7.8E-02	6.7E-01		5.5E-01		2.9E-01	5.1E-0	19.0E+00	4.1E+01	1 6.6E+0	3 3.0E+00	2.5E+02	3.1E-01	1.1E+02
130 15-Jan 92 0.65 0.55 0.19 8.1E-02 7.0E-01 2.2E-01 9.0E+00 4.1E+01 6.6E+03 3.0E+00 2.5E+02 3.2E-01 1	130	15-Jan-92			0.09	0.64		0.63		0.25			8.1E-02	7.0E-01	<u> </u>	5.8E-01	<u>† </u>	2.2E-01	5.2E-0	9.0E+00	4.1E+0	6.6E+0	3 3.0E+00	2.5E+02	3.2E-01	1.1E+02

* If values were reported as < detection limit, 1/2 the detection limit is shown in Itlaics and was used in subsequent calculations.

A15 P -

-1

x

Samatosum Mine Humidity Cell - Column 5 (Blend Control Alkalinity Removed)

B6. Column 6

Minesite Drainage Assessment Group

ann an a' a' a'

Samatosum Mine Humidity Cell - Column 5 (Blend Control Alkalinity Removed)

Samatosum Mine Column 6 (Mafic Over Oxidized Footwal PAG) tial Sample Weight (dry) (g) BA Results: Taske pH & S (Sulphide)	Pre-Test ABA & ICP Metals Da	ta		Post-Test ABA 8 ICP Metals Data	
Column 6 (Mafic Over Oxidized Footwall PAG) Itial Sample Weight (dry) (g) Pase put:	Samatosum Mine			Siamatosum Mine	
Nial Sample Weight (dry) (g) inal Sample Weight (dry) (g) BA Results: Paste pH % 5 (Total) b % 5 (Sulphate) b % 5 (Sulphate) D sta % 5 (Sulphate) Not % 5 (Sulphate) Not % 6 (Sulphate) Not % 7 (Conce CaCO3/ktonne) Not AP (tonne CaCO3/ktonne) Available Carbon (%) CaCO3/ktonne) AP (tonne CaCO3/ktonne) Available NNP (tonne CaCO3/ktonne) Not NNP (tonne CaCO3/ktonne) Surface Area: Surface Area:	Column 6 (Mafic Over Oxidized	Foot	wall PAG)	Column 6 (Mafic Over Oxidized For	hvall PAG)
wiai Sample Weight (dry) (g) inal Sample Weight (dry) (g) BA Results: raste ph & S (Sulphate) & S (Sulphat	I. +				-
Bar Results: Paste pH % 5 (Total) % 5 (Sulphate) % 5 (Sulphate) bate % 6 (GaCO3/ktonne) bate 2arbe (r0: CaCO3/ktonne) Available 2arbe (r0: CaCO3/ktonne) Available 2arbe (r0: CaCO3/ktonne) Available 2arbe (r0: CaCO3/ktonne) Available SNPR (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Not NPR (conne CaCO3/ktonne) Not NPR (conne CaCO3/ktonne) Not Antimony Sb Assenic Assenic Bariun Ba Bariun Ba Bariun Ba Bariun Ba Bariun </th <th>vitial Sample Weight (drv) (g)</th> <th></th> <th></th> <th>inal Sample Weight (drv) (g)</th> <th></th>	vitial Sample Weight (drv) (g)			inal Sample Weight (drv) (g)	
BAResults: UBA Results: Faste pH 6.5 (Cola) Paste pH 6.5 (Sulphate) 6.5 (Sulphate) % 5 (Sulphate) 6.5 (Sulphate) 0.5 (Sulphate) % 5 (Sulphate) 6.5 (Sulphate) 0.5 (Sulphate) % 5 (Sulphate) 6.5 (Sulphate) 0.5 (Sulphate) % 5 (Sulphate) 7AP (conce CaCO3/ktonne) Available Not AP (conc CaCO3/ktonne) Available Not AP (conc CaCO3/ktonne) Available Not YNP (conce CaCO3/ktonne) Available Carbon (%) Carbon (%) Surface Area: Surface Area: Surface Area: Surface Area:	(dry) (g)			inal campic weight (ary) (g)	
ass pri b S (Sulphate) b S (Sulphat	BA Results:			\BA Results:	
b & S (Subjinate) b & S (Subjinate) k & S (Subjinate) b & S (Subjinate) k & S (Subjinate) b & S (Subjinate) k & S (Backor) Available AP (conne CacC03/ktonne) Available Carbon (%) Available Carbon (%) CacNP (t CaCC03/ktonne) SNPP (conne CacC03/ktonne) Available SNP (conne CacC03/ktonne) Available SNP (conne CacC03/ktonne) Nor NNP (conne CacC03/ktonne) Nor NNP (conne CacC03/ktonne) Nor NNP (conne CacC03/ktonne) SNNP (conne CacC03/ktonne) SNNP (conne CacC03/ktonne) SNNP (conne CacC03/ktonne) NNP (conne CacC03/ktonne) Nor NNP (conne CacC03/ktonne) SNNP (conne CacC03/ktonne) SNNP (conne CacC03/ktonne) Nor NPR Surface Area (m2/kg) iurface Area: Surface Area (m2/kg) iurface Area: Surface Area (m2/kg) Vertain Ba Barium Ba Bismuth Bi Carbition Ca Carbition Ca Cobalt Co Copper cu Italiable Not Cobalt Not Copper cu <th>K S (Total)</th> <th></th> <th></th> <th>Masic pH</th> <th></th>	K S (Total)			Masic pH	
k S (Suphide) Data k S (BaS04) Data AP (conne CaCO3/ktonne) Not AP (conne CaCO3/ktonne) Available arbon (%) Available arbon (%) Available SNPR (conne CaCO3/ktonne) Not NNP (conne CaCO3/ktonne) Available SNPR (conne CaCO3/ktonne) Not Ammony Suface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Surface Area: Barium Ba Beryllum Ba Beryllum Ba Beryllum Ba Beryllum Ba Beryllum Ba Lithium La Laad Pb Lithium La <tr< th=""><th>K S (Sulphate)</th><th></th><th></th><th>% S (Sulphate)</th><th></th></tr<>	K S (Sulphate)			% S (Sulphate)	
k S (BaS04) Data XAP (corne CaCO3/ktonne) Not AP (corne CaCO3/ktonne) Available Sarbo (%) CaCO3/ktonne) Pathe (torne CaCO3/ktonne) Available Sarbo (%) CaCO3/ktonne) SNP (corne CaCO3/ktonne) Available SNP (corne CaCO3/ktonne) Available SNP (corne CaCO3/ktonne) Not NPR (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) SNNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) NNP (corne CaCO3/ktonne) Not NNP (corne CaCO3/ktonne) Not NNP (corne CaCO3/ktonne) Not NPR NPR NPR NPR NPR NPR NPR Not Auminum Al Auminum Al Auminum Al Auminum Al Auminum Ba Beryllium Be Bismuth Bi Beryllium Li Kasa	% S (Sulphide)			% S (Sulphide)	
Image: Application in the second state of the sec	% S (BaS04)			% S (BaS04)	
SAP (tonne CaCO3/ktonne) VP (tonne CaCO3/ktonne) Carbon (%) Nor SAP (tonne CaCO3/ktonne) NP (tonne CaCO3/ktonne) Available Carbon (%) CaNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) Nor Nor Available SNPR (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) NNP SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) NNP SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) NNP SNNP (tonne CaCO3/ktonne) NNP SNNP SNPR NNP SNNP SNNP Surface Area: Surface Area: Surface Area: Surface Area Muminum Al Antimony Sb As Barium Ba Beryllium Be Bismuth Bi Bismuth Bi Catonium Ca Calcium Ca Catinum Ca Calcium Ca Cobalt CO Not Cobalt Co Copper cu Available Nor Available Iton Fe Lanthium La Laed Lead Pb Lathium La Laed Lead Pb Maganese Mr Maganese Mr Maganese </th <th>TAP (tonne CaCO3/ktonne)</th> <th></th> <th>Data</th> <th>TAP (tonne CaCO3/ktonne)</th> <th>Data</th>	TAP (tonne CaCO3/ktonne)		Data	TAP (tonne CaCO3/ktonne)	Data
IVP (tonne CaCO3/ktonne) Available NP (tonne CaCO3/ktonne) Available Carbon (%) CaCO3/ktonne) NP (tonne CaCO3/ktonne) Available SNNP (tonne CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) SNPR SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNPR Surface Area: Surface Area: Surface Area: Surface Area (m2/kg) 0.00 Vetals: (ppm) Autimony Auminum Al Antimony Sb Arsenic As Barium Ba Beryllium Ba Beryllium Ba Beryllium Ba Beryllium Ba Calcium Ca Cadium Ca Carbait C0 Not Cobalt Cob Cobalt C0 Not Cobalt Cob Cobalt Cobal Po Lathium La Lead Pb Lithium Magnesium	SAP (tonne CaCO3/ktonne)		Not	SAP (tonne CaCO3/ktonne)	Not
2arbon (%) Carbon (%) 2ANP (CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) TNNP (tonne CaCO3/ktonne) SNPR (tonne CaCO3/ktonne) NNP (tonne CaCO3/ktonne) SNPR (tonne CaCO3/ktonne) 0.00 Iurface Area: Surface Area: Surface Area (m2/kg) 0.00 fetals: (ppm) Atminum Auminum Al Antimony Sb Arenic As Barlum Ba Brinum Ba Bisnuth Bi Cator Cator Cotalt C0 Copper cu Available Copper Iron Fe Lithium La Lead Pb Lithium La Magnesum Mg Magnaese Mr Magnaese Mr Magnaese Mr Magnaese Mr Molybdenum K Selenium Se <td>NP (tonne CaCO3/ktonne)</td> <td></td> <td>Available</td> <td>NP (tonne CaCO3/ktonne)</td> <td>A vailable</td>	NP (tonne CaCO3/ktonne)		Available	NP (tonne CaCO3/ktonne)	A vailable
2aNP (CaCO3/ktonne) TNNP (conne CaCO3/ktonne) TNNP (conne CaCO3/ktonne) TNNP (conne CaCO3/ktonne) TNPR SNPR SNPR SNPR SNPR SNPR Surface Area: Surface Area: Surface Area (m2/kg) 0.00 fetals: (ppm) Auminum Antimony Ab Antimony Sb Arsenic As Barruin Ba Berryllium Be Bismuth Bi Calcium Ca Caticium Ca Catorium Ca Catorium Ca Catorium Ca Catorium Ca Catorium Ca Catarium Ca Cabit Co Cobalt Copper Copper cu Vavailable Magnesium Magnesium Mc Magnesium Mc Magnesium K Stontium Se Silver Ag Sidium	Carbon (%)			Carbon (%)	
INNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) RNNP (tonne CaCO3/ktonne) INNP (tonne CaCO3/ktonne) INNP (tonne CaCO3/ktonne) INNP (tonne CaCO3/ktonne) SNPR SNPR RNPR Surface Area: Surface Area (m2/kg) 0.00 fetals: (ppm) Aluminum Antimony Sb Arsenic Barium Ba Beryllium Be Barium Ca Cadmium Ca Catinium Ca Catinium Ca Cobalt Co Iton Fe Lathium La Ladd Pb Lithium La Lead Pb Lithium La Lead Pb Lithium La Lathium La Lathium La Lathium La Lathium La Lathium La	CaNP (t CaCO3/ktonne)			CaNP (t CaCO3/ktonne)	
SNNP (tonne CaCO3/ktonne) SNNP (tonne CaCO3/ktonne) TNPR TNPR SNPR SNPR RNPR SNPR Surface Area: Surface Area: Surface Area (m2/kg) 0.00 fetals: (ppm) Al Antimory Sb Antimory Sb Antimory Sb Barium Ba Beryllium Be Bismuth Bi Cadrium Ca Catorium Ca Cobalt Co Ithium Li Ithium K Selenium Se Silver Ag Solum Se Silver Ag Solum Ne Potassium K Selenium Se Silver Ag S	FNNP (tonne CaCO3/ktonne)			INNP (tonne CaCO3/ktonne)	
Kinke (unine CaCOS/kloine) Kinke (unine CaCOS/kloine) INPR SNPR SNPR SNPR RNPR 0.00 Jurface Area: Surface Area: (m2/kg) Jurface Area: Surface Area: (m2/kg) Auminum Al Atimony Sb Arsenic As Barium Ba Beryllium Be Bismuth Bi Cadonium Ca Chromium Cr Cadedium Ca Chromium Cr Data Cobalt Cobalt Co Cobalt Co Copper cu Iton Fe Lanthium La Lead Pb Lithium K Selenium Se Silver Ag Sodium Na Silver Ag Sodium Na Silver Ag Silver Ag Silver Ag Sodium	SNNP (tonne CaCO3/ktonne)			SNNP (tonne CaCO3/ktonne)	
INPR INPR SNPR Surface Area: Surface Area: Surface Area: Calcium Calcium Calcium Calcium Calcium Calcium Calcium				TNDD	
NPR Out of the second seco					
Image: Surface Area Surface Area Surface Area Surface Area (m2/kg) 0.00 fetals: (ppm) Aluminum Al Antimony Sb As Barium Al Berryllium Ba Berlium Ba Berlium Ba Berryllium Ba Berlium Ba Berlium Ba Bernium Cad Cadmium Cd Cadmium Cd Cadmium Cad Cadmium Cad Cadmium Cd Cadmium Cad Cobalt Co Not Cobalt Co Not Copper cu Available Copper cu Available Lead Pb Lithium Li Lithium Lithium Lithium La Lead Pb Lithium Li Ke Selenium Mc Nickel Ni Magnesium Mc Nickel Ni Phosphorus P Potassium K Selenium Se Silver Ag Sodium	RNPR			RNPR	
Jurface Area: Surface Area (m2/kg)0.00Jurface Area: Surface Area: Surface Area (m2/kg)fetals: AuminumAl Al AntimonyAl AluminumAl AluminumAl AluminumAntimony Sb ArsenicAs BariumBa Be BismuthBa Be BismuthBa Be BismuthBeryllium BismuthBa Be CadmiumCad CadmiumCad CadmiumCad CadmiumCad CadmiumCadnium CobaltCa CobaltCobaltCo CopperCu AvailableIron IronFe Lanthium La LeadPb LithiumLithium Mc Magnesium Mc MolybdenumMc Molybdenum Mc MolybdenumMc Magnesium Mc MolybdenumMc Magnesium Mc MolybdenumNi Phosphorus P PotassiumNi Phosphorus P PotassiumNi Phosphorus P PotassiumNi Phosphorus P PotassiumSe Silver Ag SodiumSilver Ag SodiumAg Sodium So SilverStorntium Tin TinTi Ti TitaniumTi Ti TitaniumTi Ti TitaniumTi Ti TitaniumTi Ti TitaniumTi Ti TitaniumTi Ti TitaniumTi Ti TitaniumTi Ti Ti TitaniumTi Ti Ti TitaniumTi 					
Surface Area (m2/kg) 0.00 Surface Area (m2/kg) Attais: (ppm) Auminum Al Antimony Al Antimony Al Antimony Al Auminum Al Auminum Al Antimony Sb Area (m2/kg) 0.00 Vetals: (ppm) Aluminum Al Antimony Sb Barium Ba Beryllium Be Bismuth Bi Ba Beryllium Be Bismuth Bi Cadmium Cd Catcium Ca Cad mium Cd Catoium Ca Chromium Cr Data Cobalt Co Not Copper cu Available Copper cu Available Pb Lithium La Lithium Li Magnesium Mg Magnesium Mg Magnesium Mg Magnese Mr Magnese Mr Molybdenum MC Nickel Ni Potassium K Selenium Se Silver Ag Sodium Na Strontium Sr Thalium Ti Tin Silver Ag Sodium Sn Sitanium Sn	u rface Area:			Surface Area	
Instruction of participation Otocol Vetails: (ppm) Aluminum Al Aluminum Al Antimony Sb Antimony Sb Arsenic As Antimony Sb Barium Ba Beryllium Be Bismuth Bi Bismuth Bi Cadmium Ca Cadmium Ca Chromium Cr Data Chromium Ca Cobalt CO Not Cobalt co Not Copper cu Available Copper cu Available Iron Fe Lathium La Lead Pb Lithium Li Lathium Li Alignesium Mc Magnesium Mg Magnesium Mc Malignesium Mc Nickel Ni Phosphorus P Phosphorus P Potassium K Se einium Se Silver Ag Sodium Na Strontium Sr Thallium T Tin <	Surface Area (m2/kg)		0.00	Surface Area (m2/kg)	
Atuminum Al Auminum Al Auminum Al Aluminum Al Antimony Sb Antimony Sb Arsenic As Arsenic As Barium Ba Barium Ba Beryllium Be Beryllium Be Bismuth Bi Cadmium Cd Catcium Ca Cadmium Cd Chromium Cr Data Chromium Cr cobalt CO Not Cobalt co Nor Copper cu Available Copper cu Available Iron Fe Iron Fe Iron Fe Lanthium La Lead Pb Lead Pb Lithium Li Magnesium Mc Magnesium Mc Mercury Hg Mercury Hg Mercury Hg Molybdenum MC Nickel Ni Nickel Ni Phosphorus P Poposphorus P P <th>······································</th> <th></th> <th>0.00</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th>	······································		0.00	· · · · · · · · · · · · · · · · · · ·	
AutiminumAiAiAutiminumAiAntimonySbAntimonySbArsenicAsArsenicAsBariumBaBariumBaBerylliumBeBerylliumBeBismuthBiCadmiumCdCadmiumCdCadmiumCdCadmiumCaCadmiumCdCobaltCONotCobaltCoCoppercuAvailableCoppercuIronFeIronFeLithiumLiLithiumLiMagnesiumMgMagnesiumMgMolydenumMCMolydenumMcNickelNiPhosphorusPPotassiumKPotassiumKSeleniumSeSilverAgSilverAgSilverAgSodiumNaSodiumNaTinTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTinSnTitaniumTiTitaniumTiTungstenWVZinceZn <td><i>letals:</i> (ppm)</td> <td>A 1</td> <td></td> <td>Vetais: (ppm)</td> <td></td>	<i>letals:</i> (ppm)	A 1		Vetais: (ppm)	
AttendingSDAttendingSDArsenicAsBariumBaBariumBaBerylliumBeBismuthBiCadmiumCdCadrinumCdCalciumCaCalciumCaCadriumCaChromiumCrDataChromiumCobaltCoNotCobaltCoppercuAvailableCopperIronFeLathiumLaLathiumLaLathiumLaLathiumLaLathiumLaLathiumLiKangesiumMcMagnesiumMcMolybdenumMCMolybdenumKPotassiumKPotassiumKPotassiumKSeleniumSeSilverAgSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumNaSodiumSilverAgSodiumVVanadiumVVanadiumVVanadiumVVanadiumVVanadiumV <tr< td=""><td>Antimony</td><td>AI Sh</td><td></td><td>Aluminum Al</td><td></td></tr<>	Antimony	AI Sh		Aluminum Al	
LickingAsAsBariumBaBariumBaBariumBaBerylliumBeBismuthBiCadmiumCdCadmiumCdCalciumCaCadmiumCadmiumCalciumCaCadmiumCadmiumCobaltCONotCobaltCoCoppercuAvailableCoppercuIronFeIronFeLathiumLaLathiumLaLeadPbLeadPbLithiumLiLithiumLiMagnesiumMcMagnesiumMcMagnesiumMCMolybdenumMcNickelNiPhosphorusPPotassiumKSeleniumSeSilverAgSilverAgSodiumSrStrontiumSrTinSilverAgSodiumNaSodiumNaStrontiumSrTinSnTitaniumTiTitaniumTiTungstenWYungstenWVanadiumVZincZn	Amanic	Δc		Antimony 50 Arsenic As	
BerylliumBe BismuthBe BiBerylliumBe BerylliumBe BerylliumBismuthBi CadmiumCdCadmiumCdCalciumCaCadmiumCdChromiumCrDataChromiumCrcobaltCONotCobaltcoNotCoppercuAvailableCoppercuAvailableIronFeIronFeIronFeLanthiumLaLanthiumLaLathhiumLaLeadPbLeadPbLeadPbLithiumLiMagnesiumMgMagnesiumMgManganeseMrManganeseMrMagnesiumMcNickelNiNiNickelNiNiPotassiumKSeSeleniumSeSeleniumSilverAgSodiumNaSodiumNaStrontiumSrTinTinSrTinThalliumTiTinSilumYanadiumVVanadiumVVanadiumVVanadiumV	Barium	Ba		Barium Ba	
BismuthBi CadmiumBi CadmiumBi CadmiumBi CadmiumCalciumCa CalciumCa CalciumCa CalciumCa CalciumCa CalciumChromiumCr CopperDataChromiumCr CobaltDataCobaltCO NotNotCobaltco NotNotCoppercu AvailableAvailableCoppercu LanthiumLa LeadLeadPbLathiumLa LeadLathiumLa LeadLithiumLi ManganeseMr McMagnesiumMg MolybdenumMickelNiNi PPhosphorusP PhosphorusPotassiumK SeleniumSe SilverSilverAg SodiumStrontiumTi TinTinSn TitaniumTi TinTinSilverAg SodiumSilverAg SodiumStrontiumTi TinTinSn TitaniumTitaniumTi TinTinTi TinTungstenW VanadiumV ZincZincZn	Beryllium	Be		Beryllium Be	
CadmiumCdCadmiumCdCalciumCaCalciumCaChromiumCrDataChromiumCrCobaltCONotCobaltcoNotCoppercuAvailableCoppercuAvailableIronFeIronFeLanthiumLaLeadPbLeadPbLeadPbLithiumLiMagnesiumMgMagneseMrManganeseMrMercuryHgMolybdenumMcNickelNiNickelNiNickelNiPhosphorusPPhosphorusPPhosphorusPSodiumSeSilverAgSilverAgStrontiumSrTininSrThalliumTiTinStrontiumTiTinSnTitaniumTitaniumTiTinSnTitaniumTiTungstenWVVanadiumVZincZn	Bismuth	Bi		Bismuth Bi	
CalciumCaCalciumCaChromiumCrDataChromiumCrDatacobaltCONotCoppercuAvailableCoppercuAvailableCoppercuAvailableIronFeIronFeLanthiumLaLeadPbLeadPbLithiumLiMagnesiumMgMagnesiemMgManganeseMrManganeseMrMolybdenumMCNickelNiNickelNiPhosphorusPPotassiumSeSeleniumSeSilverAgSodiumNaStrontiumSrTinnSrThalliumTiTinnSrTitaniumTiTinnSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Cadmium	Cd		Cadmium Cd	
ChromiumCrDataChromiumCrDatacobaltC0NotCobaltcoNotCoppercuAvailableCoppercuAvailableIronFeIronFeIronFeLanthiumLaLaLeadPbLithiumLiMagnesiumMgMagnesiumMgMagnesiumMgManganeseMrMagnesiumMcMolybdenumMcNickelNiNickelNiPPhosphorusPhosphorusPPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumSrTinnSrStrontiumSrThalliumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTinnSnTinnSnTitaniumTiTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZn	Calcium	Ca		Calcium Ca	D (
CopperCuAvailableCopperCuAvailableIronFeIronFeLanthiumLaLeadPbLeadPbLithiumLiLithiumLiMagnesiumMcMagnesiumMcManganeseMrManganeseMrMercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumSeSilverAgSilverAgSilverAgSodiumNaSodiumNaStrontiumTiTinSrThalliumTiTinSnTitaniumTiTianiumTiTitaniumTiTianiumTiTungstenWVanadiumVZincZnZincZn		Cr CO	Data	Cabolt an	Data
CopperSodFreeCopperSodFreeIronFeIronFeLanthiumLaLanthiumLaLeadPbLeadPbLithiumLiLithiumLiMagnesiumMgMagnesiumMgMercuryHgMercuryHgMolybdenumMCNickelNiPhosphorusPPhosphorusPPotassiumKSeSeleniumSilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTiTinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Copper		Δvailable	Copper CU	Available
InstitutLaLanthiumLaLeadPbLithiumLiMagnesiumMgMagnesiumMgMagneseMrMercuryHgMolybdenumMCNickelNiPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumSrThalliumTiTinSi?TitaniumTiTitaniumTiTitaniumTiTitaniumVVanadiumVVanadiumVZincZn		Fe	/ Wallable	Iron Fe	/ Wallable
LeadPbLithiumLiMagnesiumMgMagnesiumMgManganeseMrMercuryHgMolybdenumMCNickelNiPhosphorusPPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumSrThalliumTiTinSilverAgSodiumStrontiumTiTinSilverAgSodiumStrontiumSrTitaniumTiTitaniumTiTungstenWVanadiumVZincZn	Lanthium	La		Lanthium La	
LithiumLiLithiumLiMagnesiumMcMagnesiumMcManganeseMrMagneseMrMercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKSeleniumSeSilverAgSilverAgSodiumNaSodiumNaStrontiumSrTinThalliumTinSi?TinSnTitaniumTiTugstenWVanadiumVZincZn	Lead	Pb		Lead Pb	
MagnesiumMçMagnesiumMçManganeseMrMagnesiumMçMercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSodiumNaStrontiumSrStrontiumSrThalliumTiTinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Lithium	Li		Lithium Li	
ManganeseMrManganeseMrMercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSodiumNaStrontiumSrStrontiumSrThalliumTiTinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Magnesium	Μç		Magnesium Mg	
MercuryHgMercuryHgMolybdenumMCMolybdenumMcNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTiThalliumTiTinSi?TinnSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Manganese	Mr		Manganese Mr	
MorybdenumMCMOrybdenumMCNickelNiNickelNiPhosphorusPPhosphorusPPotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSodiumNaStrontiumSrStrontiumSrThalliumTIThalliumTITinSil?TinSnTitaniumTiTugstenWVanadiumVVanadiumVZincZnZincZn	Melyhdenum	Hg		Melubdenum Hg	
NickeiNiPhosphorusPPotassiumKSeleniumSeSilverAgSodiumNaStrontiumSrStrontiumSrThalliumTiTinSilverAgStrontiumStrontiumTiTinSilverSilverSodiumStrontiumSrTinTiTinSilverSilverSodiumStrontiumSrTinTiTinSilverSilverSilverStrontiumTiTinSilverSilverSilverStrontiumSilver	Nickol			Nickel Ni	
PotassiumKPotassiumKSeleniumSeSeleniumSeSilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTiThalliumTiTinSt?TinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Phosphorus	P		Phosphorus	
SeleniumSeSeleniumSeSilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTiThalliumTiTinSilverSnTitaniumTiTianiumTiungstenWVanadiumVZincZnZincZn	Potassium	K		Potassium K	
SilverAgSilverAgSodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTIThalliumTITinSt?TinSnTitaniumTiTitaniumTiTungstenWVanadiumVZincZnZincZn	Selenium	Se		Selenium Se	
SodiumNaSodiumNaStrontiumSrStrontiumSrThalliumTIThalliumTITinSt?TinSnTitaniumTiTitaniumTiTungstenWVungstenWVanadiumVZincZn	Silver	Ag		Silver Ag	
StrontiumSrStrontiumSrThalliumTIThalliumTITinSI?TinSnTitaniumTiTitaniumTiTungstenWTungstenWVanadiumVZincZn	Sodium	Na		Sodium Na	
InalliumIIIhalliumIITinSt?TinSnTitaniumTiTitaniumTiTungstenWTungstenWVanadiumVVanadiumVZincZnZincZn	Strontium	Sr		Strontium Sr	
ImSIImSinTitaniumTiTitaniumTiTungstenWTungstenWVanadiumVVanadiumVZincZinZincZin		TI		I hallium Ti	
TungstenWTungstenWVanadiumVVanadiumVZincZ nZincZ n	Tin Titanium	δ!/ Ті		Titanium Ti	
VanadiumVVanadiumVZincZ nZincZ n	Tunastan	W		Tunasten W	
	Vanadium	V		Vanadium V	
	Zinc	Žn		Zinc Zn	

NOTE: When metals were **reported** as *<* detection limit. half the value of the detection limit is shown in **italics**, and was used in subsequent calculations.

Samatosum Mine Humidity Cell Data -Column 6 (Mafic Over Oxidized Footwall PAG)

InterpInter				[· · · · · · · · · · · · · · · · · · ·		T																	
Net Net <th></th> <th></th> <th>Analytical</th> <th>Results:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>·····</th> <th></th> <th>Sulphate</th> <th>Production:</th> <th></th> <th>1</th> <th></th> <th>Molar</th> <th>NP Consumpt</th> <th>ion:</th> <th></th> <th></th> <th></th> <th></th> <th></th>			Analytical	Results:						·····		Sulphate	Production:		1		Molar	NP Consumpt	ion:					
Image: protect in the protec															By Surface	Area:	Ratio:		Empirical		Remaining	Theoretical		Remaining
Here York York <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Acidity</td><td>Alkalinity</td><td>SO4</td><td>Cumulative</td><td>Remaining</td><td>\$04</td><td>Cumulative</td><td></td><td>Theoretical NP</td><td>Open-System</td><td>Cum NP</td><td>NP</td><td>Closed-System</td><td>Cum NP</td><td>NP</td></th<>										Acidity	Alkalinity	SO4	Cumulative	Remaining	\$04	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
Name Diff Convert Diff iff Diff <th< td=""><td></td><td></td><td>Leachate</td><td>Weekly</td><td></td><td></td><td>Acidity</td><td>Alkatinity</td><td>Sulphate</td><td>Production</td><td>Production</td><td>Production</td><td>SO4</td><td>S</td><td>Production</td><td>S04</td><td>Ak</td><td>Consumption</td><td>NP Consumption</td><td>Consumption</td><td>Open-</td><td>NP Consumption</td><td>Consumption</td><td>Closed-</td></th<>			Leachate	Weekly			Acidity	Alkatinity	Sulphate	Production	Production	Production	SO4	S	Production	S04	Ak	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
m. m.<	Week No.	Date	Recovered	DH	Conductivity	Eh	(CaCO3	(CaCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	/SO4	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
9 9			(mL)	(pH units)	(umhos/cm)	(₩∀)	mg/L)*	mg/L)"	mg/L)*	(mgAtgAvik)**	(mg/kg/wk)**	(mg/kg/wk)**	(mg/kg)	original)	(mg/m2Awk)**	(mg/m2)		(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(%)	(mgAgAvik)	(mg/kg/wk)	(%)
• · ·< ·< ·< ·< ·< ·< ·< ·< ·<																								
$ \begin{array}{ $	0	19-Feb-92								1.27	22.4	825.77	826	98.54	565	565		860.2	881.3	881	98.97	1/19.1	1/19	98.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	26-Feb-92	9100	7.4	3480	310	5	88	3250	1.27	22.4	825.77	1652	97.07	565	1130	0.027	860.2	861.3	1/03	97.90	1719.1	4774	
1 1 1 1 1 1 1 2	2	04-Mar-92	19100	8.0	1710					1.23	28.9	642.02	2294	95.93	439	1569		668.8	690.4	2409	97.14	052.6	6729	62.24
1 5 5 5 5 6 10 6.10 10.2 20.7 50.7 80.7 <	3	11-Mar-92	19400	8.0	680					1.19	35.4	458.26	2752	95.12	314	1883		4//.4	2067	23/1	90.04	570.8	6200	92.67
5 5 5 5 5 6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	4	18-Mar-92	19300	8.0	475				105	1.14	41.9	2/4.51	3026	94.03	160	20/1	0.622	200.9	320.7	3430	96.00	188.0	6487	92.45
9 0.2.2.2.2 1000 6.1 6.00 100 6.0 20.0	5	25-Mar-92	19700	8.1	415	340	2	88	165	1.10	48.4	90.76	311/	94.47	61	2133	0.555	94.5	130.4	3435	95.84	185.6	6672	92.24
b 100 200	6	01-Apr-92	19200	8.1	450					1.37	41.3	09.74	3207	04.16	61	2134		92.4	136.9	3715	95.68	183.2	6856	92.02
9 9 20 <td></td> <td>U8-Apr-92</td> <td>19600</td> <td>0.0</td> <td>300</td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td>45.0</td> <td>87.60</td> <td>3383</td> <td>94.00</td> <td>60</td> <td>2315</td> <td></td> <td>913</td> <td>134.5</td> <td>3850</td> <td>95.52</td> <td>180.8</td> <td>7036</td> <td>91.81</td>		U8-Apr-92	19600	0.0	300					1.00	45.0	87.60	3383	94.00	60	2315		913	134.5	3850	95.52	180.8	7036	91.81
9. 9. 7. <th7.< th=""> 7. 7. 7.<!--</td--><td></td><td>10-Apt-92</td><td>19400</td><td>8.0</td><td>404</td><td>380</td><td></td><td>81</td><td>160</td><td>2 17</td><td>43.9</td><td>86.67</td><td>3470</td><td>93.85</td><td>59</td><td>2374</td><td>0.506</td><td>90.3</td><td>132.0</td><td>3982</td><td>95.37</td><td>178.4</td><td>7215</td><td>91.61</td></th7.<>		10-Apt-92	19400	8.0	404	380		81	160	2 17	43.9	86.67	3470	93.85	59	2374	0.506	90.3	132.0	3982	95.37	178.4	7215	91.61
11 15 15 15 15 16 13 14 <		20.407.02	10300	8.0	334		····	79		176	427	78 20	3548	93.71	54	2428		81.5	122.4	4104	95.22	161.2	7376	91.42
12 15.84.52 120 100 <		06 May 92	19100	81	330			78		135	41.3	69 73	3618	93.59	48	2475		72.6	112.6	4217	95.09	143.9	7520	91.25
13 2011-22 1700 131 130 130 1 14 96 637 637 633 53 52 526 641 641 641 640 657 641 641 641 640 657 657 641 641 641 660 657		13.May-92	19200	80	330			76		0.94	40.6	61.26	3679	93.48	42	2517		63.8	103.5	4320	94.97	126.7	7646	91.10
11 12 12 12 12 12 12 14 17 6 33 29 294 466 463 463 464 463 917 924 465 853 29 294 137 427 513 464 453 514 757 453 464 453 514 757 453 464 854 855 <	13	20-May-92	19100	81	330	330	1	74	99	0.53	39.5	52.80	3732	93.38	36	2554	0.747	55.0	93.9	4414	94.86	109.5	7756	90.98
16 00.3442 180 00.3 180 00.3 180 00.3 <	14	27-May-92	19300	80	295		<u> </u>			0.67	40.7	46.61	3779	93.30	32	2585		48.6	88.6	4503	94.76	96.4	7852	90.86
16 10 Jung 1970 60 390 - - 0.86 433 144 384 817 23 2877 180 4460 4477 704 500 805 805 17 71.3427 1000 50 700 60 700 60 700 60 700 60 700 60 700 60 700 60 700 700 60 700 700 60 700 700 60 700 700 60 700 700 60 700 700 600 700 700 600 700 700 600 700 700 600 700	15	03-Jun-92	19300	8.0	300	l	t			0.82	42.0	40.42	3819	93.23	28	2613		42.1	83.3	4586	94.66	83.4	7936	90.77
17 17 17.2 <th< td=""><td>16</td><td>10-Jun-92</td><td>19100</td><td>8.0</td><td>350</td><td></td><td>t</td><td></td><td></td><td>0.96</td><td>43.3</td><td>34.24</td><td>3853</td><td>93.17</td><td>23</td><td>2637</td><td></td><td>35.7</td><td>78.0</td><td>4664</td><td>94.57</td><td>70.4</td><td>8006</td><td>90.69</td></th<>	16	10-Jun-92	19100	8.0	350		t			0.96	43.3	34.24	3853	93.17	23	2637		35.7	78.0	4664	94.57	70.4	8006	90.69
16 24.16.27 1700 44.5 20.11 211 2017 21 2016 31.4 74.5 44.13 94.40 61.6 85.5 85.5 10 01.442 1600 100 74.5 21.0 74.6	17	17-Jun-92	19700	8.0	280	400	2	81	51	1.10	44.6	28.05	3881	93.12	19	2656	1.588	29.2	72.7	4737	94.49	57.3	8063	90.62
18 05-Lag2 1900 6.0 237 3444 9201 22 288 333 788 4483 4431 653 111 801 20 06-Lag2 1900 60 200 800 200 800 201 230 237 230 237 230 230 237 1224 637 771 648 433 230 667 226 237 1214 618 6138 633 634 633 633 633 634 633 633 634 633 633 634 633 633 634 633 634 633 634 633 <td>18</td> <td>24-Jun-92</td> <td>19000</td> <td>8.0</td> <td>260</td> <td></td> <td></td> <td></td> <td></td> <td>1.10</td> <td>44.5</td> <td>30.11</td> <td>3911</td> <td>93.07</td> <td>21</td> <td>2676</td> <td></td> <td>31.4</td> <td>74.8</td> <td>4812</td> <td>94.40</td> <td>61.6</td> <td>8125</td> <td>90.55</td>	18	24-Jun-92	19000	8.0	260					1.10	44.5	30.11	3911	93.07	21	2676		31.4	74.8	4812	94.40	61.6	8125	90.55
20 0.5.4.52 1900 8.6 260 100 8.60 9.72 12.74 130 1900 4803 9.42 172 12.74 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84 12.75 12.84	19	01-Jul-92	19000	8.0	293	-	1			1.09	44.5	32.17	3944	93.01	22	2698		33.5	76.9	4888	94.31	65.9	8191	90.47
1 15.4.67 1960 16 20 360 2 20 360 2 20 360 2 20 360 20 360 20 360 20 360 800 750 800 800 750 800 800 750 800	20	08-Jul-92	19200	8.0	260		1			1.09	44.5	34.23	3978	92.95	23	2722		35.7	79.0	4968	94.22	70.2	8261	90.39
12 123.445 1450 640 447 443 444 440 457 621 833 842 <	21	15-Jul-92	19400	8.0	230	380	2	82 ·	67	1.08	44.4	36.29	4014	92.88	25	2747	1.224	37.8	81.1	5049	94.13	74.5	8336	90.30
23 34.462 1000 400 400 402 800 210 212 636 221 835 211 2030<	22	22-Jui-92	18800	8.0	264					1.21	43.8	43.40	4057	92.81	30	2776		45.2	87.8	5136	94.02	89.2	8423	90.20
24 05.40.22 1800 7.8 - 1.46 42.5 07.6 200 107.7 28.6 26.7 103.2 07.71 85.67 75 75.4.92 1900 7.5 25.6 100 7.5 25.7 103.2 07.71 85.67 103.2 07.71 85.67 103.2 07.71 85.67 103.2 07.71 85.67 103.2 07.71 85.67 103.2 07.71 85.67 103.2 07.71 85.67 103.2 07.71 85.67 103.2 07.71 85.67 103.2 07.71 85.67 103.1 103.3 103.2 07.71 107.7 107.7 103.2 07.71 103.2 07.71 103.2 103.2 07.71 103.1 103.3 07.75 103.1 103.3 07.75 103.1 103.3 07.75 103.1 103.3 07.74 103.1 103.3 07.74 103.1 103.3 103.3 107.3 103.3 107.3 103.3 103.3 107.3 103.3 103.3 107.3 103.3 103.3 103.3 107.	23	29-Jul-92	19200	8.0	260					1.34	43.2	50.51	4108	92.72	35	2811		52.6	94.4	5231	93.91	103.9	8029	90.06
25 12Aug.62 1900 791 252 300 3 79 121 156 413 647 4203 1203 1005 637 2035 1213 1005 637 2035 1213 1005 637 2035 637 2035 637 2035 637 2035 637 2035 637 2035 637 2035 637 2035 637 430 1005 6355 1005 6355 1005 6355 1005 6355 436 1005 647 6235 6315 6355 <td< td=""><td>24</td><td>05-Aug-92</td><td>19000</td><td>7.8</td><td>278</td><td></td><td>L</td><td></td><td></td><td>1.46</td><td>42.5</td><td>57.61</td><td>4166</td><td>92.61</td><td>39</td><td>2850</td><td></td><td>60.0</td><td>101.1</td><td>5332</td><td>93.00</td><td>122.0</td><td>0047</td><td>80.78</td></td<>	24	05-Aug-92	19000	7.8	278		L			1.46	42.5	57.61	4166	92.61	39	2850		60.0	101.1	5332	93.00	122.0	0047	80.78
26 18.44.92 19:00 7.75 285 10:0 7.75 285 10:0 7.75 285 10:0 7.75 285 10:0 7.75 285 10:0 7.75 285 10:0 7.75 285 10:0 7.75 285 10:0 7.75 27.7 27.3 10:0	25	12-Aug-92	19000	7.91	252	360	3	79	122	1.59	41.9	64.72	4230	92.50	44	2895	0.045	0/.4	107.7	5541	93.07	133.2	8004	89.64
12 28-49 29 12 83 12 12 83 52 52 33 503 523	26	19-Aug-92	19200	7.75	266	ļ	L	ļ		1.62	40.2	59.82	4290	92.39	41	2930		67.3	100.9	5835	93.44	112.0	9016	89.51
28 02.999-27 1900 1/4 293 621 633 293 623	27	26-Aug-92	19100	7.9	253	ļ				1.64	38.4	50.02	4340	92.30	30	29/3		521	87.1	5722	93.34	102.5	9119	89 39
25 09-56-27 2020 1/48 4/10 3 6/2 000 107 353 4/17 4/18 8/16 0/1 6/16 6	28	02-Sep-92	19300	7.74	255					1.67	30.7	50.02	4395	92.21	24	2028	0.775	47.0	80.3	5802	93.25	92.3	9211	89.28
30 15	29	09-Sep-92	20200	7.84	214	440	3	62	80	1.09	35.0	40.12	4440	92.13	29	3067	0.115	44.5	78.1	5880	93.16	87.4	9299	89.18
32 55 56 76 661 915 26 9121 936 737 6030 928 774 9469 89.01 33 07.05 263 9100 775 240 460 3 67 661 35.57 4693 9185 24 316 1010 37.0 71.5 6030 92.88 774 9469 88.91 34 140.0492 19100 775 235 6 162 35.5 30.68 4630 9178 23 3168 31.9 66.8 6717 92.82 673 9598 88.87 35 17.00 7.84 105 35.6 77.6 104.0 1010 37.0 63.0 62.0 52.0 77.7 80.0 63.7	30	16-Sep-92	13500	7.95	2/8	I				1.07	35.5	42.13	4403	92.00	29	3095		42.0	75.9	5956	93.07	82.4	9381	89.09
33 07764.22 19300 77 220 440 3 67 66 162 357 4557 4557 4557 4557 4557 4557 4557 4557 4557 4557 4557 4557 4557 4557 4557 4557 4557 3557 4557 3557<	31	23-Sep-92	10000	7.91	241					1.05	35.8	37.95	4561	91.90	26	3121		39.5	73.7	6030	92.98	77.4	9459	89.00
34 11-CC+32 1900 7.75 233 11-CC+32 1900 7.75 233 11-CC+32 1900 63.8 6170 92.22 67.3 9568 88.83 36 12-CC+32 19500 7.87 234 - 163 35.7 30.86 4660 91.74 21 3189 63.2 62.8 92.47 63.9 97179 88.69 37 04-Nov-92 19500 8.03 25.6 47.16 15.5 25.00 468.8 91.6 18.3 25.7 60.4 65.00 92.67 56.3 97179 88.63 38 11-Nov-92 19800 8.03 25.6 474.0 11.60 18.3 22.67 60.4 65.00 92.53 52.0 987.3 88.51 40 12-Nov-92 150.0 7.83 27.3 - 2.00 86.7 2.8.3 47.92 91.50 18.3 32.01 62.1 63.1 69.99 88.3.3	32	07-0-1-92	19300	7.9	241	440	3	67	66	1.62	36.1	35.57	4597	91.85	24	3145	1.015	37.0	71.5	6101	92.90	72.5	9531	88.91
35 21-05-82 19500 7.87 234 183 35.7 23.06 4660 91.74 21 3189 31.9 66.0 62.28 92.74 62.1 9660 83.76 36 26.05.69 19500 7.86 19500 7.85 23.3 65.2 62.39 92.67 55.3 92.00 13.83 28.7 65.4 45.39 92.01 83.857 38 11-140-92 1800 7.85 22.55 47.40 91.60 18 32.43 28.9 61.0 64.21 92.25 52.5 52.0 99.27 85.8 22.84 99.73 88.85 40 25.10-99.27 1900 7.85 22.3 - 20.00 36.7 22.50 47.92 91.50 18 32.41 88.45 140 27.4 62.1 65.44 92.39 52.8 88.45 42 20-05-92 19000 77.4 21.6 33.44 141 18 33.16	34	14-Oct-92	19100	7 75	235	440				1 62	35.9	33.07	4630	91.79	23	3168		34.5	68.8	6170	92.82	67.3	9598	88.83
36 22-CC-42 19200 786 99.77 66.9 97.77 84.69 37 De-Nove2 19500 5.81 99.67 66.9 97.77 84.69 38 11-Nove2 19500 5.03 216 35.4 25.52 4714 91.64 18 3226 1.33 26.7 66.9 97.7 84.63 39 15-Nove2 18000 5.81 23.65 4766 91.50 18 3261 27.1 61.5 64.22 82.46 52.4 99.67 68.63 40 25-Nove2 18200 7.85 22.3 200 36.7 26.1 46.14 18 3271 40.7 7.6 62.6 66.07 92.31 53.1 94.8 83.63 42 09-De-S2 19100 77.4 126.5 44.66 14.1 18 3315 25.7 61.1 66.17 92.41 51.5 100.31 83.37 14.00 16.5 16.5 <td>35</td> <td>21-00-92</td> <td>19500</td> <td>7 87</td> <td>234</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>1.63</td> <td>35.7</td> <td>30.58</td> <td>4660</td> <td>91.74</td> <td>21</td> <td>3189</td> <td></td> <td>31.9</td> <td>66.0</td> <td>6236</td> <td>92.74</td> <td>62.1</td> <td>9660</td> <td>88.76</td>	35	21-00-92	19500	7 87	234			<u> </u>		1.63	35.7	30.58	4660	91.74	21	3189		31.9	66.0	6236	92.74	62.1	9660	88.76
37 Di-Kur-22 19500 7.88 1956 4.30 3 6.65 4.77 16.3 35.4 25.59 4.74 91.64 18 32.87 60.4 6330 52.50 51.7 97.69 88.63 39 11.16.0x-52 19100 7.81 27.4 1.16 35.8 25.62 4740 91.16 18 32.43 22.9 61.0 6421 52.53 52.0 9821 48.637 40 25.40x-927 1800 7.85 22.33 52.4 9926 88.645 41 02.05x-927 19000 77.4 22.64 30 4 70 50 2.12 37.1 26.53 45.14 18.63 25.61 45.14 18.3315 25.7 61.1 66644 92.14 15.1 10001 88.33 42 05.05x-927 19000 77.4 18.66 24.70 4689 91.37 17 3332 25.7 61.1 67.67 92.10 48.2 10021 48.2 10021 48.2 100129 48.2 100129	36	28-Oct-92	19200	7.85	237		†			1.63	35.6	28.08	4688	91.69	19	3208		29.3	63.2	6299	92.67	56.9	9717	88.69
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	37	04-Nov-92	19500	7.88	195	430	3	65	47	1.63	35.4	25.59	4714	91.64	18	3226	1.383	26.7	60.4	6360	92.60	51.7	9769	88.63
39 16-Nor-92 19100 7.81 214 1.88 36.3 27.66 47.66 91.55 16 3.261 27.1 61.5 64.62 62.4 52.4 592.6 88.45 40 25.50x+922 19000 77.2 202 430 4 70 50 212 37.1 26.53 4419 91.46 18 3297 1.40 27.4 62.6 6607 92.31 53.1 9978 88.35 42 05.0x+92 1900 77.8 128 1.66 36.6 25.7 61.1 6606 92.24 1.6 33.4 10031 88.33 43 16.5x+92 19200 7.78 188 1.90 34.8 22.87 4915 91.32 16 33.64 24.8 56.6 6647 92.14 66.6 10129 88.32 44 25.0x+92 1900 7.8 148 1.36 35.2 24.73 4940 91.24 17.3 336.4 1524 23.8 56.6 6607 92.04 66.6 10129	38	11-Nov-92	18900	8.03	216	1				1.76	35.8	25.82	4740	91.60	18	3243		26.9	61.0	6421	92.53	52.0	9821	88.57
410 25-Nov-92 18200 7.85 223 - - 2.00 38.7 26.29 4792 91.60 18 3279 27.4 62.1 6544 92.8 99.20 88.43 41 02-Dee-32 1900 7.74 226 30 4 70 50 21.2 37.1 26.53 4619 91.00 77.4 66.66 92.24 51.5 10031 88.33 42 05-Dee-32 19000 77.4 126 - 136 36.6 25.61 44.44 91.41 18 3315 25.7 60.1 6728 92.17 49.8 10031 88.37 43 16-Dee-32 19000 77.4 120 - 135 35.4 23.76 4493 91.32 16 3344 1524 23.8 67.6 6904 91.91 18.39 92.10 44.52 10123 88.27 4940 91.24 17 3380 27.7 61.7 696.6 91.91 91.92 196 57.8 60.96 91.91 91.92 196.7 </td <td>39</td> <td>18-Nov-92</td> <td>19100</td> <td>7.81</td> <td>214</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1.88</td> <td>36.3</td> <td>26.06</td> <td>4766</td> <td>91.55</td> <td>18</td> <td>3261</td> <td></td> <td>27.1</td> <td>61.5</td> <td>6482</td> <td>92.46</td> <td>52.4</td> <td>9873</td> <td>88.51</td>	39	18-Nov-92	19100	7.81	214	1	1			1.88	36.3	26.06	4766	91.55	18	3261		27.1	61.5	6482	92.46	52.4	9873	88.51
141 02-Dec-92 1900 7.72 202 430 4 70 50 2.12 37.1 265.3 4619 91.46 16 3277 1400 27.6 52.5 5600 92.31 53.1 99/9 68.39 42 16-Dec-92 1900 77.8 188 36.0 27.61 4893 91.37 17 3332 25.7 60.1 6728 92.17 48.6 10081 88.37 42 30-Dec-92 19500 77.6 190 45.0 24.70 4893 91.32 16 3348 24.8 56.8 56.8 59.0 92.10 45.2 1012 84.27 45 30-Dec-92 19500 7.8 140 136 35.2 24.73 4914 91.28 16 3344 15.24 23.8 57.6 569.04 91.97 50.2 1002.78 84.04 46 66-Jam-93 19600 7.76 10 1.36 35.6 28.67 91.99 23.8 57.6 56.97 7005 91.47 63.07	40	25-Nov-92	18200	7.85	223					2.00	36.7	26.29	4792	91.50	18	3279		27.4	62.1	6544	92.39	52.8	9920	60.40
42 09-Dec-32 1900 7.74 226 186 366 2561 4844 91.41 18 3315 28.7 61.4 60063 22.24 31.3 10031 68.37 43 16.Dec-32 1580 7.74 210 135 35.4 23.78 4889 91.32 16 3346 24.8 56.8 6787 92.10 48.2 10129 88.27 45 35.Dec-92 19500 7.86 190 450 2 64 42 199 34.8 22.47 91.0 46.6 611.75 86.10 46 06-Jan-33 19600 7.86 190 450 2 24.73 4940 91.24 17 3380 27.7 61.7 6904 91.97 50.2 10022 88.04 47 13-lan-33 19300 7.7 170 16.3 36.6 26.0 4967 91.19 18 3399 27.7 61.7 7035 91.82 16.3 103.2 103.2 103.2 103.2 103.2 103.2 103.	41	02-Dec-92	19000	7.72	202	430	4	70	50	2.12	37.1	26.53	4819	91.46	18	3297	1.400	27.6	62.6	6607	92.31	53.1	99/9	88.39
43 16-Dec-32 1800 7.78 188 16 36.0 24.70 4893 91.37 17 3332 27.7 50.1 67.67 92.10 48.2 10081 88.27 44 23-Dec-32 19500 7.86 190 450 2 64 42.10 93.82 16 33.44 23.8 57.6 6845 92.04 46.6 10175 88.16 45 30-Dec-32 19500 7.86 190 45.0 2 64.42 109 34.8 22.87 4916 91.24 17 33.80 25.8 59.6 6804 91.97 50.2 1027.6 88.10 46 20-Jan-33 19200 7.65 198 - 1.90 35.9 28.47 4996 91.14 19 3418 23.7 63.7 7030 91.82 57.4 10337 87.97 49 27.1mp3 19400 7.65 198 - 1.93 39.6 91.99 13.43 91.196 31.6 65.7 7030 91.87 58.9 100	42	09-Dec-92	19100	7.74	226	L				1.86	36.6	25.61	4844	91.41	18	3315		26./	61.4	0000	92.24	01.0	10031	88.07
144 23-Dec-92 19200 7.74 210 123 35.4 23.78 4893 91.32 15 3346 24.8 30.0 07.67 92.10 48.2 101/25 89.2 45 30.0e-92 19500 7.86 148 2 1.09 314 22.8 16 3346 1.52 23.8 50.6 6845 92.04 46.6 101/25 86.16 46 06-Jan-93 19200 7.7 170 163 356 26.0 4967 91.19 18 3399 27.8 63.7 7036 91.82 57.4 10337 69.97 48 20-Jan-93 19200 7.65 198 - 1.90 35.9 28.47 4996 91.14 19 3418 29.7 63.7 7036 91.82 57.4 10337 69.97 49 27-Jan-93 19400 7.6 198 2.29 35.7 29.38 60526 91.09 21 3439 1.196 31.6 65.7 7096 91.67 58.9 10457 5	43	16-Dec-92	18800	7.78	188	I	L	ļ		1.61	36.0	24.70	4869	91.37	17	3332	I	23./	0U.1	6707	92.17		10120	88.22
45 30-Dec-32 19500 7.86 190 450 2 64 42 109 34.8 22.87 491.6 53.84 1.24 23.8 57.9 D992 24.04 40.0 D172 68.10 46 065.0n=93 19300 7.7 170 163 35.6 26.60 4967 91.19 18 3399 27.7 61.7 6996 91.90 53.8 100279 88.04 48 20-Jan-93 19200 7.65 198 - 1.90 36.9 28.47 4996 91.14 19 341.8 29.7 61.7 6996 91.91 48.9 20.77 10.7 6996 91.91 41.9 341.8 29.7 61.7 7030 91.82 57.4 103.8 10.47 78.9 10.47 78.9 10.4 10.9 34.8 20.44 19.9 341.8 29.7 65.7 7095 91.74 61.0 10.388 67.90 10.6 75.8 10.47 78.8 10.47 78.8 10.47 10.8 10.47 10.8	44	23-Dec-92	19200	7.74	210					1.35	35.4	23.78	4893	91.32	16	3348	1.000	24.8	57.0	0/0/	92.10	40.4	10178	88 16
Het De-Lan-93 19600 7.88 148 1.36 33.2 24.13 4940 91.24 17 3380 23.6 DXM 21.37 DU2 DU2 <thdu2< th=""> <thdu2< th=""> DU2</thdu2<></thdu2<>	45	30-Dec-92	19500	7.86	190	450	2	64	42	1.09	34.8	22.87	4916	91.28	16	3364	1.524	23.8	50 2	6004	01 07	60.0	10226	88 10
47 13-Jan 33 19300 7.7 170 10.5 35.0 20.00 490.7 91.19 16 3399 27.7 01.7 0000 91.62 37.8 102.19 00.79 01.10	46	06-Jan-93	19600	7.88	148	ļ	Į			1.36	35.2	24.73	4940	91.24		3360		20.0	617	6066	0100	53.8	10270	88.04
46 Co-Jan+93 19200 7.65 19400 7.76 200 44 67 56 2.17 383 30.33 50.26 91.09 21 3439 1.196 31.6 65.7 7095 91.74 61.0 10038 87.80 49 22.7 Jan+93 19500 7.55 172 22.29 36.7 23.83 50056 91.04 20 3439 1.196 31.6 65.7 7095 91.74 61.0 10038 87.83 50 0.3-Feb-93 19200 7.64 1950 2.41 35.1 22.83 5065 91.04 20 3459 23.6 62.3 7722 91.60 56.8 100578 87.87 51 10-Feb-93 19400 7.6 1900 400 5 64 50 2.653 5138 90.99 19 3478 23.8 62.3 7721 91.63 54.7 100568 87.70 52 17-Feb-93 19000 7.65 175 2.95 31.6 28.08 5138 90.89 18	47	13-Jan-93	19300	7.7	170	Į		ļ		1.63	35.6	20.60	490/	91.19	10	3/19		207	637	7030	91.50	57.4	10337	87.97
4*9 27-Jan-93 19400 7.70 200 4*1 30.35 30.35 30.35 30.35 30.35 30.35 10.35 17.35 19.00 7.65 19.00 56.6 10.56 10.35 51.35 90.99 19 347.8 29.66 62.3 7.72 91.35 54.7 10.56 87.70 33.35 20.26 31.6 28.08 51.66 90.99 18 35.51 10.20 27.6 35.85 10.35 56.6 10.56 17.77 13.35 56.6 10.56 17.77 18.35 13.35	48	20-Jan-93	19200	1.65	198	- 440	<u> </u>		66	2.17	30.9	20.4/	6026	01.00	21	3410	1 106	316	65 7	7095	91.74	61.0	10398	87.90
50 102-rep-3 1500 1.20 112 2.43 30.1 22.43 50.2 51.25 10.25 112 11.2	49	2/-Jan-93	19400	1.10	170	440	↓ •	<u> º/</u>	. JO	2 20	36.3	20.33	5055	91.05	20	3450	1.150	30.6	64.0	7159	91.67	58.9	10457	87.83
briteries 124 123 124 123 124 1	51	10. Eeb 02	19200	7.64	105	<u> </u>	ł	<u></u>		241	35.1	28.43	5084	90.99	19	3478		29.6	62.3	7222	91.60	56.8	10514	87.77
bit 17.10.000 1.000 <	52	17-Feb 02	19200	76	200	 	t			2 53	34.5	27 48	5111	90.94	19	3497		28.6	60.6	7282	91.53	54.7	10568	87.70
54 100	52	24.Feh.02	19000	7 76	190	400	5	64	50	2.65	34.0	26.53	5138	90.89	18	3515	1.280	27.6	58.9	7341	91.46	52.6	10621	87.64
55 10-Mar-33 19200 7.77 189 3.25 29.3 29.64 5195 90.79 20 3555 30.9 56.9 7456 91.32 58.5 10735 87.51 56 17-Mar-93 19000 7.65 170 3.55 27.0 31.20 5227 90.73 21 3576 32.5 55.9 7512 91.26 61.4 10736 87.44 57 24-Mar-93 13800 7.74 245 370 10 64 85 3.85 24.7 32.75 5529 90.67 22 3592 0.753 34.1 54.9 7567 91.20 64.4 10861 87.29 58 31-Mar-93 19400 7.57 150 24.6 28.9 29.24 5320 90.57 20 3640 30.5 56.9 7680 91.03 61.4 10922 87.29 59 07-Agr-93 19500 7.53 184 1.77 31.1	54	03-Mar-93	19100	7.65	175		† <u> </u>			2.95	31.6	28.08	5166	90.84	19	3535		29.3	57.9	7399	91.39	55.6	10676	87.58
56 17-Mar-93 19000 7.65 170 3.55 27.0 31.20 5227 90.73 21 3576 32.5 55.9 7512 91.26 61.4 10796 87.44 57 24-Mar-93 13800 7.74 245 370 10 64 85 3.85 24.7 32.75 5259 90.67 22 3599 0.753 34.1 54.9 7667 91.20 64.4 10926 87.26 58 31-Mar-93 19400 7.57 150 31.66 28.8 31.00 5230 90.67 22 3659 0.753 34.1 54.9 7623 91.03 64.4 10926 87.29 59 07-Apr-93 19500 7.63 184 1.77 31.1 27.49 5347 90.52 19 3659 28.6 56.9 7680 91.06 55.5 11038 87.16 60 14-Apr-93 19500 7.63 184	55	10-Mar-93	19200	7.77	189		t	[3.25	29.3	29.64	5195	90.79	20	3555		30.9	56.9	7456	91.32	58.5	10735	87.51
57 24-Mar-93 13800 7.74 245 370 10 64 85 3.85 24.7 32.75 5259 90.67 22 3599 0.753 34.1 54.9 7567 91.20 64.4 10861 67.38 58 31-Mar-93 19400 7.57 150 3.16 26.8 31.00 5290 90.62 21 3620 32.3 55.9 7623 91.13 61.4 10922 87.29 59 07.Apr-93 20000 7.7 165 246 28.9 29.24 5320 90.57 20 3640 30.5 55.9 7623 91.13 61.4 10922 87.29 60 14-Apr-93 19500 7.63 184 1.77 31.1 27.49 5347 90.52 19 3659 28.6 58.0 7738 91.00 55.5 11036 87.16 61 21-Apr-93 19200 7.94 190 410 2 62 48 1.07 33.2 25.13 5337 90.47 18 36594 <td>56</td> <td>17-Mar-93</td> <td>19000</td> <td>7.65</td> <td>170</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>3.55</td> <td>27.0</td> <td>31.20</td> <td>5227</td> <td>90.73</td> <td>21</td> <td>3576</td> <td></td> <td>32.5</td> <td>55.9</td> <td>7512</td> <td>91.26</td> <td>61.4</td> <td>10796</td> <td>87.44</td>	56	17-Mar-93	19000	7.65	170	1	1			3.55	27.0	31.20	5227	90.73	21	3576		32.5	55.9	7512	91.26	61.4	10796	87.44
56 31-Mar-93 19400 7.57 150 3.16 26.8 31.00 5290 90.62 21 3620 32.3 55.9 7623 91.13 61.4 10922 87.29 59 07-Apr-93 20000 7.7 165 2.46 28.9 29.24 5320 90.57 20 3640 30.5 56.9 7680 91.00 55.5 10981 87.22 60 14-Apr-93 19500 7.63 184 1.77 31.1 27.49 5347 90.57 20 3640 30.5 56.9 7680 91.00 55.5 11036 87.16 61 21-Apr-93 19200 7.94 190 410 2 62 48 1.07 33.2 25.73 5373 90.47 18 3676 1.292 26.8 59.0 7797 90.93 52.2 11041 87.10 62 28-Apr-93 19100 7.76 208 2.42 36.3	57	24-Mar-93	13800	7.74	245	370	10	64	85	3.85	24.7	32.75	5259	90.67	22	3599	0.753	34.1	54.9	7567	91.20	64.4	10861	87.36
59 07-Apr-93 20000 7.7 165 246 28.9 29.24 5320 90.57 20 3640 30.5 56.9 7680 91.06 58.5 10981 87.22 60 14-Apr-93 19500 7.63 184 1.77 31.1 27.49 5347 90.52 19 3659 28.6 58.0 7738 91.00 55.5 11036 87.16 61 21-Apr-93 19200 7.94 190 410 2 62 48 1.07 33.2 25.73 5373 90.47 18 3659 28.6 58.0 7737 90.93 52.5 11038 87.10 62 28.Apr-93 19100 7.76 208 27.0 60.0 7857 90.86 52.2 11141 87.04 63 05-May-93 19500 7.56 188 24.42 36.3 26.07 5425 90.38 18 3712 27.2 61.0 7918	58	31-Mar-93	19400	7.57	150		[3.16	26.8	31.00	5290	90.62	21	3620		32.3	55.9	7623	91.13	61.4	10922	87.29
60 14-Apr-93 19500 7.63 184 1.77 31.1 27.49 5347 90.52 19 3659 28.6 58.0 7738 91.00 55.5 11038 87.16 61 21-Apr-93 19200 7.94 190 410 2 62 48 1.07 33.2 25.73 5373 90.47 18 3676 1.292 26.8 59.0 7797 90.93 52.5 11038 87.16 62 28-Apr-93 19100 7.76 20.8 5399 90.47 18 3676 1.292 26.8 59.0 7797 90.93 52.5 11089 87.10 62 28-Apr-93 19100 7.76 20.8 25.90 5399 90.43 18 3676 1.292 26.8 590.0 7787 90.86 52.2 11141 87.04 63 05-May-93 19500 7.56 188 26.07 5425 90.38 18 3712	59	07-Apr-93	20000	7.7	165					2.46	28.9	29.24	5320	90.57	20	3640		30.5	56.9	7680	91.06	58.5	10981	67.22
61 21-Apr-93 19200 7.94 190 410 2 62 48 1.07 33.2 25.73 5373 90.47 18 3676 1.292 26.8 09.0 7/91 90.33 52.2 11089 87.10 62 28-Apr-93 19100 7.76 208 1.75 34.8 25.90 5399 90.43 18 3694 27.0 60.0 7187 90.36 52.2 11141 87.04 63 05 May-93 19500 7.56 188 24.2 36.3 26.07 5425 90.38 18 3712 27.2 61.0 7918 90.79 51.9 11193 86.98 64 12-May-93 19300 7.57 193 31.0 37.8 26.24 5451 90.34 18 3730 27.3 62.0 7980 90.72 51.6 11244 86.86 64 12-May-93 19300 7.57 193 27.3 62.0	60	14-Apr-93	19500	7.63	184		L			1.77	31.1	27.49	5347	90.52	19	3659		28.6	0.80	1/38	91.00	30.0	11030	87 10
62 28-Apr-93 19100 7.76 208 1.75 34.8 25.90 5399 90.43 18 3694 27.0 00.0 7657 90.80 32.2 11141 87.04 63 05-May-93 19500 7.56 188 2.42 36.3 26.07 5425 90.38 18 3712 27.2 61.0 7918 90.79 51.9 11193 86.98 64 12-May-93 19300 7.57 193 31.0 37.8 26.24 5451 90.34 18 3730 27.3 62.0 7980 90.72 51.6 11244 86.98 64 12-May-93 19300 7.57 193 31.0 37.8 26.24 5451 90.34 18 3730 27.3 62.0 7980 90.72 51.6 11244 86.92 65 64 12-May-93 19300 7.57 50.1 80.43 90.64 51.2 11296 86.86 <td>61</td> <td>21-Apr-93</td> <td>19200</td> <td>7.94</td> <td>190</td> <td>410</td> <td>2</td> <td>62</td> <td>48</td> <td>1.07</td> <td>33.2</td> <td>25.73</td> <td>5373</td> <td>90.47</td> <td>18</td> <td>3676</td> <td>1.292</td> <td>20.8</td> <td>59.0</td> <td>1191</td> <td>30.93</td> <td>52.0</td> <td>11141</td> <td>87.10</td>	61	21-Apr-93	19200	7.94	190	410	2	62	48	1.07	33.2	25.73	5373	90.47	18	3676	1.292	20.8	59.0	1191	30.93	52.0	11141	87.10
63 05-May-93 19500 7.56 188 2.42 30.3 20.17 34.59 90.35 16 3/12 21.2 01.0 7510 30.72 51.6 11244 86.92 64 12-May-93 19300 7.57 193 3.10 37.8 26.24 5451 90.34 18 3730 27.3 62.0 7980 90.72 51.6 11244 86.92 64 12-May-93 19300 7.57 193 3.10 37.8 26.24 5451 90.34 18 3730 72.5 63.1 8043 90.64 51.2 11296 86.86	62	28-Apr-93	19100	7.76	208	 		ļ		1.75	34.8	25.90	5399	90.43	18	3694		27.0	61.0	701	90.00	519	11193	86.98
04 12-may-v3 13300 (.) 193	63	05-May-93	19500	7.56	188	ļ				2.42	30.3	20.0/	5420	90.30	10	3720		- 27 2	620	7980	90 72	516	11244	86.92
	64	12-May-93	19300	1.57	193	200	 ,	73	40	3.10	303	26.44	5477	90.29	18	3748	1490	27.5	63.1	8043	90.64	51.2	11296	86.86

re-1 est ABA & ICP Metals Data amatosum Mine olumn 6 (Mafic Over Oxidized Fo	otwall PAG)	amatosum Mine olumn 6 (Mafic Over Oxidized Footy	vali I
iitial Sample Weight (dry) (g)	35815	nal Sample Weight (dry) (g)	
BA Results:		BA Results:	
Paste pH	8.45	'aste pH	
Kos (Ťotal)	1.88	b S (Total)	
lb S (Sulphate)		b S (Sulphate)	
6 S (Sulphide)		6 S (Sulphide)	
6 S (BaS04)		6 S (BaS04)	-
AP (tonne CaCO3/ktonne)	59	AP (tonne CacO3/ktonne)	L
	05.05	IR (toppo, CoCO3/ktonne)	٨.,,
	85.95	Vertice Cacos/kionne)	Ava
Salidon (%)		$\frac{1}{2} \frac{1}{2}	
TNNP (toppe CaCO3/ktoppe)	27	INNP (tonne CaCO3/ktonne)	
SNNP (tonne CaCO3/ktonne)	21	SNNP (tonne CaCO3/ktonne)	
RNNP (tonne CaCO3/ktonne)		NNP (tonne CaCO3/ktonne)	
TNPR	1.46	INPR	
SNPR	-	SNPR	
RNPR		R	
iurface Area: Surface Area (m2/kg)	1.48	i urface Area: Surface Area (m2/kg)	
Aetals: (ppm)		fetais: (ppm)	
Aluminum Al		Aluminum Al	
Antimony SI	0	Antimony Sb	
Arsenic As	6	Arsenic As	
Barium Ba	1	Barium Ba	
Beryllium Bi	5	Deryillum De Dismuth Bi	
Cadmium Co		Cadmium Cd	
Calcium Ca		Calcium Ca	
Chromium C	Data	Chromium Cr	
cobalt C	Not	Cobalt co	
Copper C	Available	Copper c u	Av
Iron Fe	9	lron Fe	
Lanthium La	1	Lanthium La	
Lead Pt)	Lead Pb	
Liiium Li		Liiium Li	
Magnesium M	٤	Magnesium Mg	
Manganese M		Manganese Mn	
Melubdenum		Melybdonum HG	
Nickel			
Dhosphorus D		NI Phosphorus D	
Potassium K		Potassium K	
Selenium S	6	Selenium Se	
Silver A		Silver Aa	
Sodium N		Sodium Na	
Strontium S	r	Strontium Sr	
Thallium TI		Thallium TI	
Tin S	r	Tin Sn	
Titanium Ti		Titanium Ti	
Tungsten W	'	Tungsten W	
Vanadium V		Vanadium V	
Zinc Zi	•	Zinc zn	

NOTE: When metals were reported as < detection limit, half the value of the detection **limit** is shown in **italics**, and **was** used in subsequent calculations.

Samatosum Mine Humidity Cell Data -Column 6 (Mafic Over Oxidized Footwall PAQ)

		Apphalas	Disultar								Sulabata					Malaz							
		MINIMUCAL	Nesuits:		• • • •						<u>Solibliata</u>	-roquetion:	1	By Surface	LArea:	Ratio:	HP Contomp	Empirical		Remaining	Theoretical		Remaining
									Acidity	Alkalinity	S04	Cumulative	Remaining	\$04	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Cum NP	NP
		Leachate	Weekty			Acidity	Alkalinity	Sulphate	Production	Production	Production	S04	S	Production	SO4	Alk	Consumption	NP Consumption	Consumption	Open-	NP Consumption	Consumption	Closed-
Week No.	Date	Recovered	pН	Conductivity	Eh	(CaCO3	(CeCO3	(\$04	Rate	Rate	Rate	Production	(% of	Rate	Production	/SO4	At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
		(mL)	(pH units)	(umhos/cm)	(m2)	mgl)'	mg/L)'	mg/L)'	(mg/kg/wk)"	(mg/kg/wk)"	(mg/kg/wk)"	(mg/kg)	originei)	(mg/m2/wk)**	(mg/m2)		(mg/kg/wk)	(mg/kg/wk)	(mg/kg/wk)	(3)	(mg/kg/wk)	(mg/kg/wk)	(%)
lloon T		10000	7.05	040	257		0.0	150	1.62	22.1	52 70	5255	00.59	26	2505	N A	55.0	95.4	7686	01.06	106.2	10840	67.20
Median		19100	7.05	188	370	3	0.0	49	1.62	34.8	26.05	5451	90.38	30	3736	NA	27.1	59.8	7960	91.00 90.72	52.0	11244	86.92
Mean last S	Woelds	18800	8.01	160	250	2	0.0	35	0.80	21.6	17.01	6747	88.04	10	4617	NA	18.7	39.6	10885	87.34	364	13852	83.68
	VICCAS	10000	0.01	107	230	2	0.0	- 55	0.07	21.0	17.51	0/4/	00.04	12	4017		10.7	57.0	10000	W1.W 7	40.4	10002	
75% Remai	ning (Wks)												534							392			334
50% Remai	ning (Wks)				1		1						1321							935			924
25% Remain	ning (Wks)	1					1	Ĩ					2107		1					1470			1514
0% Remaini	ng (Wks)												2893							2020			2104
				ta alkalista	nd/or o	al dia track a		a se se lla bita	data			4.4. Tem		 									
		""II Measur	ea supra	ie, axainity i		cially Valu	<u>es were ui</u>	navaliadie,	<u>data was in</u>	terpolated t	rom existing	cata and US	eu in subse	quent equat	ions		I						\vdash
		l			1	r															I		
l		I			I	1		1	1										I				

Samatosum Mine Humidity Call Data -Column 6 (Mafic Over Oxidized Footwall PAG)

													L			Moler	NR Consumption	lon:					
		Anapytical	Results	il							Sulphate	reduction	1	By Surface	i Area:	Ratio:		Empirical		Remaining	Theoretical		Remaining
				t					Acidity	Alkalinity	S04	Cumulative	Remaining	SO4	Cumulative		Theoretical NP	Open-System	Cum NP	NP	Closed-System	Consumption	NP
		Leachate	Weekly			Acidity	Alkalinity	Suphate	Production	Production	Production	SO4	S	Production	SO4 Production	AK	Consumption At pH 6	At Measured pH	Open-System	System	Above pH 6.5	Closed-System	System
Week No.	Date	Recovered (mL)	Hq (sHunits)	(umbos/cm)	En (erV)	(CaCO3 mg/L)*	(Cacos	(SU4 mg/L)*	rcate (mg/kg/wk)**	(mg/kg/wk)**	(mgAgAvk)**	(mg/kg)	eriginel)	(mg/m2/wk)**	(mg/m2)		(mg/kg/wk)	(mg/kg/wk)	(mgAgAvit)	(%)	(mg/kg/wk)	(mg/kg/wk)	(%)
		(6500	- 00.04	- 40	2765	 	267	61.4	8104	90.57	50.1	11346	86.80
66	26-May-93	19000	7.73	208		ļ			3.23	36.0	25.60	5528	90.24	10	3782	 	25.8	59.8	8164	90.50	48.9	11395	86.74
67	02-Jun-93 09-Jun-93	19200	7.7	200					2.16	35.3	23.98	5552	90.16	16	3799		25.0	58.1	8222	90.43	47.8	11442	86.69
69	16-Jun-93	19300	7.79	180	400	3	63	43	1.62	33.9	23.17	5575	90.12	16	3815	1.465	24.1	58.6	8279	90.37	48.8	11538	86.58
70	23-Jun-93	19000	7.89	204					1.62	35.0	24.10	5624	90.03	17	3848		26.2	60.7	8398	90.23	50.9	11589	86.52
72	07-Jul-93	19600	7.87	180					1.63	37.1	26.21	5651	89.98	18	3866		27.3	62.7	8461	90.16	53.0	11642	86.46
73	14-Jul-93	19500	7.87	188	390	3	70	50	1.63	38.1	27.22	5678	89.93	19	3885	1.400	28.4	66.3	8592	90.00	57.8	11755	86.32
74	21-Jul-93	20000	7.8	180					1.63	38.2	28.54	5736	89.83	20	3925		31.1	67.8	8660	89.92	60.6	11815	86.25
76	20-Jul-93 04-Aug-93	19100	7.85	170		╂─────			1.63	38.4	31.18	5767	89.77	21	3946		32.5	69.2	8729	89.84	63.3	11878	86.18
17	11-Aug-93	19400	7.88	190	390	3	71	60	1.63	38.5	32.50	5800	89.72	22	3969	1.183	33.9	<u> </u>	8865	89.69	61.3	12006	86.03
78	18-Aug-93	19400	7.88	190					1.63	35.6	27.90	5858	89.61	19	4008		29.1	60.2	8925	89.62	56.5	12062	85.97
80	01-Sep-93	19400	7.63	160					1.63	29.9	25.59	5884	89.57	18	4026	4 4 6 2	26.7	55.0	8980	89.55	51.7	12114	85.91
81	08-Sep-93	19400	7.74	150	370	3	50	43	1.63	27.1	23.29	5907	89.53	16	4042	1.163	24.3	49.7	9080	89.44	47.3	12208	85.80
82	15-Sep-93 22-Sen-93	20000	7.74	158	├──		<u> </u>		1.61	26.6	23.65	5954	89.44	16	4074		24.6	49.6	9129	89.38	47.6	12256	85.74
84	29-Sep-93	19200	7.66	143					1.61	26.4	23.82	5978	89.40	16	4090	1.000	24.8	49.6	9179	89.32	48.0	12304	85.63
85	06-Oct-93	19100	7.8	153	320	3	49	45	1.60	26.1	24.00	6002	89.30	10	4107	1.009	24.2	48.0	9276	89.21	46.7	12399	85.57
86	20-00-93	19100	77	149	<u> </u>	<u> </u>	<u> </u>		1.60	24.8	22.40	6047	89.28	15	4138		23.3	46.5	9323	89.15	45.1	12444	85.52
88	27-Oct-93	18600	7.55	162					1.60	24.1	21.60	6069	89.24	15	4153	4 4 200	22.5	45.0	9368	89.10	43.4	12407	85.42
89	03-Nov-93	19100	7.78	151	320	3	44	39	1.60	23.5	20.80	6090	89.20	14	4167	1.120	21.7	43.0	9454	89.00	40.6	12570	85.38
90	10-Nov-93	19400	7.95	138			<u> </u>		1.92	23.7	19.89	6130	89.13	14	4194		20.7	42.5	9497	88.95	39.5	12609	85.33
92	24-Nov-93	19200	7.77	140					2.08	23.9	19.44	6149	89.10	13	4208	4.000	20.2	42.0	9539	88.90	38.4	12685	85.24
93	01-Dec-93	20000		139	285	4	43	34	2.23	24.0	18.99	6168	89.06	13	4221	1.200	19.8	41.4	9622	88.81	37.6	12723	85.20
94	08-Dec-93	19100	7.62	138					1.89	23.4	19.05	6206	89.00	13	4247		19.8	41.3	9663	88.76	37.8	12760	85.15
96	22-Dec-93	18700	7.6	143					1.72	23.0	19.08	6226	88.96	13	4260	-1 190	19.9	41.2	9705	88.71	38.0	12/90	85.06
97	29-Dec-93	18500	7.76	152	275	3	44	37	1.55	22.7	19.11	6245	88.93	13	42/3	1,109	19.9	41.3	9787	88.61	38.0	12875	85.02
98	05-Jan-94 12-Jan-94	18800	7.8	182			<u> </u>		1.04	23.3	18.57	6282	88.86	13	4299		19.3	41.6	9829	88.56	37.7	12912	84.98
100	19-Jan-94	19000	8.23	165					0.79	23.6	18.31	6300	88.83	13	4311	1 1 24	19.1	41.9	9870	88.47	37.0	12930	84.89
101	26-Jan-94	19000	8.18	162	280	1	45	- 34	0.53	23.9	17.88	6336	88.77	12	4336	1.444	18.6	41.9	9955	88.42	36.6	13023	84.85
102	02-Feb-94	18800	8.03	164		+			0.79	24.1	17.73	6354	88.73	12	4348		18.5	41.7	9996	88.37	36.1	13059	84.81
104	16-Feb-94	18700	7.95	160					0.92	24.2	17.57	6372	88.70	12	4360	1 304	18.3	41.0	10038	88.27	35.2	13130	84.72
105	23-Feb-94	18900	8	160	260	2	46	33	1.06	24.3	17.19	6406	88.64	12	4383	1.554	17.9	42.4	10122	88.22	34.8	13165	84.68
108	02-Mar-94	18700	7.98	168					1.06	26.8	16.97	6423	88.61	12	4395		17.7	43.4	10165	88.17	34.3	13199	84.64
108	16-Mar-94	18800	7.92	167					1.06	28.1	16.75	6440	88.58		4407	1 774	17.5	44.5	10209	88.07	33.4	13267	84.56
109	23-Mar-94	19100	8.1	170	285	2	1 22	31	1.46	29.5	17.39	6474	88.52	12	4430	1.1.1	18.1	44.3	10299	88.02	34.8	13301	84.52
111	06-Apr-94	17000	8.09	162					1.85	26.0	18.24	6492	88.49	12	4442	I	19.0	43.1	10342	87.97	36.2	13338	84.48
112	13-Apr-94	19300	7.84	142			42		2.24	24.3	19.09	6511	88.46	13	4455	1 132	20.8	41.9	10425	87.87	38.9	13414	84.39
113	20-Apr-94	18800	7.96	1/2	290	5	43	30	2.23	22.2	19.71	6551	88.38	13	4482		20.5	40.5	10465	87.82	38.8	13453	84.35
115	04-May-94	18800	7.71	150				1	1.83	21.8	19.48	6570	88.35	13	4496		20.3	40.3	10506	87.78	38.8	13492	84.26
116	11-May-94	18800	7.79	147	250		- 41	- 27-	1.43	21.4	19.24	6609	88.32	13	4509	1.108	19.8	39.8	10586	87.68	38.6	13569	84.21
117	18-May-94	18400	7.83	175	300			- 3/	0.90	21.1	19.01	6628	88.25	13	4535		19.8	40.0	10626	87.64	38.7	13608	84.17
119	01-Jun-94	18600	7.98	171				L	0.77	21.1	19.01	6647	88.22	13	4548	·	19.8	40.1	10666	87.59	38.8	13685	84.08
120	08-Jun-94	18800	8.07	178	050	+		27	0.64	21.1	19.01	6685	88 15	13	4574	1,108	19.8	40.4	10746	87.50	39.1	13724	84.03
121	22-Jun-94	18400	7.98	177	200	+		<u> "</u>	0.65	21.3	18.61	6703	88.11	13	4587		19.4	40.1	10786	87.45	38.1	13763	83.99
123	29-Jun-94	18900	8.05	168		1			0.78	21.6	18.21	6721	88.08	12	4599	 	19.0	39.8	10826	87.40	31.2	13836	83.90
124	06-Jul-94	19100	8.04	161	250	2	42	33	1.06	21.9	17.41	6757	88.02	12	4623	1.273	18.1	39.2	10905	87.31	35.2	13871	83.86
126	20-Jul-94	19700	7.9	156	1 200				1.06	22.2	17.41	6774	87.99	12	4635		18.1	39.2	10944	87.27	35.2	13906	83.82
127	27-Jul-94	18200	7.93	175					1.06	22.2	17.41	6792	87.96	12	4647	╂───	18.1	39.2	110983	87.18	35.2	13977	83.74
128	03-Aug-94	18800	8.15	181		1	+		1.00	44.6	11.41	0000	01.00									42677	00.00
Maximum		20200	8.23	3480	450	10	88.0	3250	3.85	48.4	825.77	6809	98.54	565	4659	NA NA	860.2	881.3	11023 881	98.97 87 18	1/19.1	1719	83.74
Minimum		9100	1 7.40	1 133	1 250	1 1	41.0	31	0.51	[27.1	10.53	020	01.33	1	1 000	1.194	<u> </u>						

Samatosum Mine Humidity Cell Data - Column 6 (Mafic Over Oxidized PAG)

		Dissolve	d Mata	s *·						Metal Le	ach Rate							Cumula	i tive Meta	Leach R	ates:				
		01000100		• •																		1	140000000	Char	71
Mark No	Data	Antimony	Arsenic D.A.c	Copper	Iron	Lead	Manganese DuMin	Silver D-An	Zinc D_7n	Antemony D.Sh	Arsenic D-As	Copper D-Cu	D-Fe	Leed D-Pb	D-Mn	D-A0	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
VVeek IVO.	Dale	(mg/L)	(mg/L)	(mg/L)	(mgA)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/rg/wk)	(mg/kg/wk)		(mg/ng/wk)	(mg/ng/wi)	(mg/ug/wi)	(mg/sg/uk)	(mg4:ghul)	(mgArg)	(mgAg)	(mg/kg)	(mgAg)	(mgAcg)	(mgAcg)	(mgArg)	(mgAg)
60	26 May 02																		1.7E-02	2.3E-02	9.0E-01	2.7E-02	1.3E+01		6.1E-01
67	26-May-93 2-Jun-93																		1.7E-02	2.3E-02	9.0E-01	2.7E-02	1.3E+01		6.1E-01
00	3-JUI-33			7E-04	0.05	0.002	0.001		0.01			3 95 04	275.02	1 15 03	5 4E-04		4 65 02		1.7E-02	2.2E 02 2.3E-02	9.3E-01	2.7E 02 2.8E-02	1.3E+01		6.1E-01
70	23-Jun-93			12-04	0.05	0.002	0.001	1	0.01			3.02-04	2.75-02	1.16-03	0.42-04		4.02-03		1.7E-02	2.3E-02	9.5E-01	2.9E-02	1.3E+01		6.2E-01
71	30-Jun-93										I						_		1.7E-02	2.3E-02	9.5E-01	2.9E-02	1.3E+01		6.2E-01
72	7-JU-93 .			I 001	0.05	0.002	0.001					5 48041	27E-02	1 1E-03	5 4F-04	ļ	1 9F-03		1.7E-02	2.4E-02	9.8E-01	3.0E-02	1.3E+01		6.2E-01
74	21-Jul-93			10.001	0.00	0.002	0.001				I	5110011	2.10.02	1.12.00	0.1201		1.02.00		1.7E-02	2.4E-02	1.0E+00	3.1E-02	1.3E+01		6.2E-01
75	28-Jul-93				 	f	[([[i						1.7E-02	7.4E-02 2.4E-02	1.0E+00	3.1E-02 3.1E-02	1.3E+01		6.2E-01
	11-Aug-93			9E-04	0.05	0.001	0.005		0	·····		4.9E-04	2.7E-02	5.4E-04	2.7E-03		1.8E-03		1.7E-02	2.5E-02	1.0E+00	3.1E-02	1.3E+01		6.2E-01
78	18-Aug-93																		1.7E-02	2.6E-02	1.1E+00	3.2E-02	1.3E+01		6.2E-01
79	25-Aug-93																		1.7E-02	2.6E-02	1.1E+00	3.2E-02	1.3E+01		6.3E-01
81	8-Sep-93			0.002	0.05	0.001	0.001		0.01			9.8E-04	2.7E-02	5.4E-04	5.4E-04		4.1E-03		1.7E-02	2.7E-02	1.1E+00	3.3E-02	1.3E+01		6 3E-01
82	15-Sep-93																i		1.7E-02	2.8E-02	1.1E+00	3.3E-02	1.3E+01		6.3E-01
83	22-Sep-93																		1.7E-02	2.7E-02	1.1E+00	3.3E-02	1.3E+01		6.3E-01
85	6-Oct-93			8E-04	0.05	0.001	0.006		0			4.3E-04	2.7E-02	5.3E-04	3.2E-03		2.0E-03		1.7E-02	2.8E-02	1.1E+00	3.4E-02	1.3E+01		6.3E-01
86	13-Oct-93																		1.7E-02	2.8E-02	1.2E+00	3.4E-02 3.4E-02	1.3E+01		6.4E-01
87	20-Oct-93 27-Oct-93																		1.7E-02	2.8E-02	1.2E+00	3.4E-02	1.3E+01		6.4E-01
89	3-Nov-93			0.001	0.05	0.001	0.001		0			6.4E-04	2.7E-02	5.3E-04	5.3E-04		2.2E-03		1.7E-02	2.9E-02	1.2E+00	3.5E-02	1.3E+01		6.4E-01
90	10-Nov-93					1				ł	ł				1	7	1		T1.7E-02	2.9E-02	1.2E+00	3.5E-02	1.3E+01		6.4E-01
92	24-Nov-93																		1.7E-02	2.9E-02	1.2E+00	3.5E-02	1.3E+01		6.4E-01
93	1-Dec-93			5E-04	0.05	0.001	0.001		0			2.8E-04	2.8E-02	5.6E-04	5.6E-04		1.5E-03		1.7E-02	3.0E-02 3.0E-02	1.3E+00 1.3E+00	3.6E-02	1.3E+01 1.3E+01		6 4E-01
94	15-Dec-93																		1.7E-02	3.0E-02	1.3E+00	3.6E-02	1.3E+01		6.4E-01
96	22-Dec-93																4.05.00		1.7E-02	3.0E-02	1.3E+00	3.6E-02	1.3E+01		6.4E-01
97	29-Dec-93			5E-04	0.05	0.001	0.001		0		 	2.6E-04	2.6E-02	5.2E-04	5.2E-04		1.92-03		1.7E-02	3.0E-02	1.3E+00	3.8E-02	1.3E+01		6.5E-01
99	12-Jan-94																		1.7E-02	3.0E-02	1.3E+00	3.8E-02	1.3E+01		6.5E-01
100	19-Jan-94			75 04		10,000	1.0.001					1 2 75 04	75 02	1 15 02	5 25 04		2 15 02		1.7E-02 1 7E-02	3.0E-02 3.1E-02	1.3E+00	3.8E-02	1.3E+01		6.5E-01
101	20-J81-94 [2-Feb-94			12-04	10.05	10.002		1			1	3.72-04	2.10-02	1. IE-03	1	í	2. IE-03		1.7E 02	3.1E-02	1.4E400	4.0E-02	1.3E+01		6 5F-01
103	9-Feb-94																		1.7E-02	3.1E-02	1.4E+00	4.0E-02	1.3E+01		6.5E-01
104	16-Feb-9			0 001	0.05	0.001	0.001		0			7 4E-04	2.65-02	5 3E-04	5 3E-04		2 16-04		1.7E-02	3.2E-02	1.4E+00	4.0E-02	1.3E+01		6.5E-01
106	2-Ma ₁₋₉₄			0.001	0.05	0.001	0.001		U			1.46.04	4.06-04	0.02-04	0.02-04		2.12.00	••	1.7E-02	3.3E-02	1.4E+00	4.1E-02	1.3E+01		6.5E-01
107	9-Mar-94																		1.7E-02	3.3E-02 3.3E-02	1.4E+00	4.1E-02 4.1E-02	1.3E+01 1.3E+01		6.6E-01
108	23-Mar-94			0.002	0.0	5 0 002	0.001		0.02			1 2F-03	2.7E-02	1.1E-03	5.3E-04		1.0E-02		1.7E-02	3.5E-02	1.5E+00	4.2E-02	1.3E+01		6.7E-01
110	30-Ma-94			0.002	0.0							1.44 00							1.7E-02	3.6E-02	1.5E+00	4.3E-02	1.3E+01		6.8E-01
111	6-Apt-94										<u> </u>								1.7E-02	3.5E-02	1.5E+00	4.3E-02	1.3E+01		6.7E-01
113	20-A g-94			0.001	0.05	0.001	0.001		0			5.2E-04	2.6E-02	5.2E-04	5.2E-04		1.8E-03		1.7E-02	3.6E-02	1.5E+00	4.3E-02	1.3E+01		6.7E-01
114	27-Apr-94			1		1									1	1			1.7E-02	3.6E-02	1.5E+00	4.4E-02	1.3E+01		0.0E-01 6.8E-01
116	4-May-94						[[f					[[1.7E-02	3.6E-02	1.5E+00	4.4E-02	1.3E+01		6.8E-01
117	18-May-94			8E-04	0.05	0.001	0.001		0			4.1E-04	2.6E-02	5.1E-04	5.1E-04		1.8E-03		1.7E-02	3.7E-02	1.6E+00	4.4E-02	1.3E+01		6.8E-01
118	25-May-94																		1.7E-02	3.7E-02 3.8E-02	1.6E+00	4.5E-02	1.3E+01		6.8E-01
120	8-Jun-94																		1.7E-02	3.8E-02	1.6E+00	4.5E-02	1.3E+01		6.8E-01
121	15-Jun-94			0.004	0.05	0.001	0.001		0			1.8E-03	2.6E-02	5.1E-04	5.1E-04		1.4E-03		1.7E-02	4.0E-02	1.6E+00	4.5E-02	1.3E+01		6.8E-01
122	22-Jun-94																		1.7E-02	4.2E-02	1.6E+00	4.6E-02	1.3E+01	t	6.8E-01
124	6-Jul-94																0.05.00		1.7E-02	4.3E-02	1.6E+00	4.6E-02	1.3E+01		6.8E-01
125	13-Jul-94			0.006	0.05	0.001	0.001		0			3.0E-03	2.6E-02	5.3E-04	5.3E-04		2.6E-03		1./E-02 1.7E-02	4.0E-02	1.7E+00	4.0E-02	1.3E+01		6.9E-01
120	27-Jul-94									L									1.7E-02	5.2E-02	1.7E+00	4.7E-02	1.3E+01		6.9E-01
128	3-Aug-94							L											1.7E-02	5.5E-02	1.7E+00	4.8E-02	1.3E+01		6.9E-01
Maximum			0.002	0.000	0.05	0.005	19.5		0.79	<u>├</u>	1.1E-03	3.0F-03	2.8F-02	2.7E-03	5.0E+00		2.0E-01		1.7E-02	5.5E-02	1.7E+00	4.8E-02	1.4E+01		6.9E-01
Minimum	· · · · · ·		0.001	5E-04	0.05	0.001	0.001		0		2.5E-04	2.6E-04	1.3E-02	2.5E-04	3.9E-04		2.1E-04		2.5E-04	3.0E-04	1.3E-02	2.5E-04	5.0E+00		2.0E-01

Samatosum Mine Humidity Cell Data -Column 6 (Mafic Over Oxidized PAG)

r			<u> </u>							r i										
		Dissolv	ed Meta	ls*:						Metal Le	ach Rate	s:						Cumula	tive Meta	Leact
				0.000		Land	Managarasa	Chart	700	Achmony	Arzanic	Copper	Iren	Leed	Manganese	Silver	Zinc	Antimony	Arsenic	Сорри
Week No	Data	D_Sh	Arsenic DLAs	D-Cu	D-Fe	D-Pb	D-Mn	D-Aq	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn	D-Sb	D-As	DO
THECK INC.	Dute	(mgAL)	(mgA.)	(mgl.)	(mg/L)	(mgA_)	(mgA)	(mg/L)	(mg/L)	(mgAgAuk)	(mg/kg/wk)	(mg/kg/wk)	(1991-0/44)	(mghghuk)	(mghghili)	(mg/rg/wk)	(mgngmk)	(mgAcg)	(mg/kg)	(mg/lu
			ļ								<u> </u>	<u> </u>		<u> </u>					2.5E-04	3.0E-
	19-Feb-92		0.001	0.001	0.05	0.001	19.5		0.79		2.5E-04	3.0E-04	1.3E-02	2.5E-04	5.0E+00		2.0E-01		5.1E-04	6.1E-
2	4-Mar-92		0.001	0.001	0.00	0.001	10.0												8.4E-04	9.5E-
3	11-Mar-92								ļ			 	 						9.1E-04	1 0E-
	18-Mar-92		0001	85.04	0.05	0.001	18	<u> </u>	0.01	l	5.5E-04	4 4E-04	2.8E-02	5.5E-04	9.9E-01		7.2E-03		1.5E-03	1.5E-
6	1-Apr-92		0.001	00-04	0.00	0.001			0.01			1.1201							2.1E-03	1.9E-
7	8-Apr-92																		2.1E-03	1.8E-
8	15-Apr-92			65.04	0.05	0.001	0.002		1-0-		5.4E-04	3 3E-04	27E-02	54E-04	1.1E-03	<u> </u>	8.1E-04		2.6E-03	2.1E-
9	22-Apr-92		0.001	00-04	0.00	0.001	0.002		 ⊸		0.46-04	0.02-04							3.2E-03	2.5E-
11	6-May-92	l	1															· · ·	3.2E-03	2.5E-
12	13-May-92					0.004	0.004			 	6 35 04	275.04	275-02	5 3E-04	53E-04	<u> </u>	25F-03		3.7E-03	2.9E-
13	20-May-92	I	0.001	78-04	0.05	0.001	0.001		- <u> </u>	<u> </u>	0.3E-04	3.72-04	2.16-02	0.02-04	0.02-04				4.2E-03	3.2E-
15	3-Jun-92																		4.2E-03	3.2E-
16	10-Jun-92										6.65.04	2.05.04	2 05 02	6 65 0A	5.5E-04	<u> </u>	1.55-03		4.2E-03	3.2E-
17	17-Jun-92	 	0.001	5E-04	0.05	0.001	0.001		0		5.512-04	2.00-04	2.05-02	0.0E-04	3.3L-04		1.02-00		5.5E-03	3.8E-
10	4 14 00			<u></u>							1	1	1	1		_			5.6E-03	3.8E-
20	8-Jul-92	1	0.002	9E-04-	0.05 -	0.001		1	0.06	Ì			+27E-02-) 5 4E-04-	1 5 4 F-04-		3 36-02	[5/1 03	4.4E
- 21	15-JU						0.001		0.00			4.02-04	A.1 2-02	0.12 01	0.12 01		0.06-02		7 9E 03	4.9E-
23	22-Jul-92																		7.9E 03	5.0E-
24	5-Aug-92		0.000	0.004	0.05	0.00		Ī	i j			1	0.75.00	6 05 04	1		3 05 03		7.96 03	5.8E-
25	12-Aug-92		0.002	0.001	0.05		0 001 I		0.01	L	1.1E-03	-/.4 <u>E-04</u> -	2.7E-02	5.3E-04	5.3E-04		3.0E-03	<u> </u>	9.9E 02	6.4E
27	26-Aug-92															ļ	ļ	ļ	9.8E-03	6.3E-
28	2-Sep-92								1		6.65.04	2.05.04	2 45 02	5.65.04	5.6F-04	<u> </u>	1 4E-03		1 0E-03	6.5E-
29	9-Sep-92	·	0.001	5E-04	0.05	0.001	0.001				0.00-04	2.00-04	2.02-02	0.02-04	0.00-04	1	1.42.00	1	1.1E-02	6.8E-
31	23-Sep-92		<u> </u>	<u>†</u>	<u> </u>	1	<u> </u>												1.1E-02	6.9E-
32	30-Sep-92								-		1.00	505.04	0.75.00	5 45 04	5 45 04		275-03		1.1E-02	7.0E-
33	7-Oct-92		0.001	0.001	0.05	0.001	0.001	<u> </u>	0.01		0.4E-04	5,9E-04	2.72-02	0.46-04	0.42-04		2.72-00		1.2E-02	8.1E-
34	21-Oct-92	<u> </u>	+		t—			+	+						[1.2E-02	8.0E-
36	28-Oct-92												0.75 00	6 45 04	5 45 04		2 25 02	·	1.2E-02	7.9E-
37	4-Nov-92		0.001	5E-04	0.05	0.001	0.001		0	Į	5.4E-04	2.7E-04	2.7E-02	5.4E-04	5.4E-U4	<u>+</u>	2.20-03	·	1.3E-02	8.5E
38	11-NOV-92 18-Nov-92				1		<u> </u>	+	╉───		1								1.3E-02	8.6E-
40	25-NO1-92	1	0.000	1	L		0.005	í		<u>ا</u>	Le or out			5 25 04	0.75 02-	1		<u> </u>	1.00-02	0.TE
41	2-Dec ⁹²	1	10.001	0.001	0.05	0.001	0.005	1	<u> v</u>	ļ	0.3E-04	0.3E-04	2.76-02	0.3E-04	2.72-03	1	1.76-03		1.3E 02	9.8E
43	16-Dec-92	. 	+			<u> </u>			-										1.4E-02	9.8E
44	23-Dec-92		1	1		-0.000	1	l	1	,		1	1			1	1	i i	1.46-02	1 9.8E
45	30 Dec-92	·	0.001	0.001	0.05	0.001	0.003	1			0.4E-04	6.5E-04	2.7E-02	0.4E-04	1.6E-03	ļ	1.3E-03	4	1.5E-02	TITE.
49	13-Jan-93-	F	ľ		ľ –				+										1.5E 02	1.1E
48-	20-Jan-93-		1	-	1		0.004			1	t	<u>t</u>	<u>t</u>				<u>t. </u>		1.5E -02	
4 ⁹	27-Jan-93		0.001	0.002	0.05	0.005	0.001		0.01		5.4E-04	1.1E-03	2.7E-02	2.7E-03	5.4E-04		6.5E-03		1.6E -02	1.3E
50	3-Feb-93	4		ļ		ļ			L	ļ	Ļ								1.0E -02	1.4E
52	17-Feb-93		1	1	1 1	1		1	1		1	i i		1		i .	I	1	1.82 02	1.45
53	24-Feb-93		0.001	0.002	0.05	I 0.001	0.002		0.01		5.3E-04	1.0E-03	2.7E-02	5.3E-04	1.1E-03		2.9E-03	1	1.7E- 02	1.55
54	3-Mar-93					1			1	1							1		1.7E02	1.5E
55	17-Mar-93	· · · · ·	1	1	1		1	1		1	1	1	1	1		ı I	1	1	-1.7E-02	1.5E
57	24-Mar-93		-	0.001	0.05	0.001	0.001		0.01			5.4E-04	1.9E-02	3.9E-04	3.9E-04	ĺ	3.1E-03		1.7E- 02	1.6E
58	31-Mar-93	r	1	į –	1	1		1				(1	1.76 02	1.7E
<u>59</u> 60	7-Apr-93	l <u>.</u>	1	1	1	1	1	1	<u>ң</u>	L	l I	I	1	I	.	l	1	1	11.75 02	1.16
61	21-Apr-93		1	0.002	0.05	0.003	0.001		0.01			1.2E-03	2.7E-02	1.6E-03	5.4E-04	•	4.0E-03	<u>ч </u>	1.7E-02	1.8E
62	28-Apr-93	-						ļ		-[·	+	1	<u> </u>	+	+	1	1.7E-02	2.0E
63	5-May-93	. 		+	+		· ·····	+	+	•		1	1						1.7E-02	2.0E
65	10 May 01	íl	+	0.004	0.05	0.003	0.001	1	0.01	1	1	1.9E-03	2.7E-02	1.6E-03	5.4E-04	H.	3.6E-03	3	1.7E-02	2.2E

. . . .

Samatosum Mine Humidity Cell Data -Column 6 (Mafic Over Oxidized PAG)

			(ī	1	1		1	· · · ·															l
	Dissolved Metals*:				<u> </u>				Metal Leach Rates:								Cumulative Metal Leach Rates:			ates:				
	0.000.00				<u> </u>					[ř							_						
	Antimory	Arsanic	Conner	Inno	Lood	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	tron	Load	Manganese	Silver	Zinc	Antimony	Arsenic	Copper	iron	Lead	Manganese	Silver	Zim
Data	Desh	DAR	0.01	D.F.	D.Ph	D.Mo	D.An	0.70	D.Sh	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Aq	D-Zn	D-Sb	D-As	D-Cu	D-Fe	D-Pb	D-Mn	D-Ag	D-Zn
Date	(mod)	(mod)	(mod)	(mod)	(mod.)	(mod.)	(mol.)	(mol)	(motatet)	(monotext)	(mg/sg/w/)	(10101014)	(mphphul)	(ingright)	(mghghui)	(monormo)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mgArg)	(mg/kg)	(mg/kg)
	(1137-)	(1.2.2.)	(Caral Caral		<u></u>		1.1.1.1.1	_ <u>``</u>	1														
		0.001	0.0014	0.06	0.001	0.667		0.032		6 0E-04	7 2F-04	2.6E-02	7 2E-04	19F-01		9.9E-03		1.3E-02	2.0E-02	8.6E-01	2.4E-02	1.3E+01		5.9E-01
		0.001	0.0014	0.05	0.001	0.007		0.004		BAE MA	6 35.04	275.02	5.4E-04	5 4E-04	·	2 2F-03		17E-02	2 0F-02	8.5E-01	2.4E-02	1.3E+01	1	6.0E-01
		0.001	0.0010	0.05	0.001	0.001		0.004		0.46-04	0.3E-04	2.16-02	5.42 04	1 1 1 1 1		2 05 03		475 02	A EE 02	175.00	4 65 02	1 35-01	1	6 9F-01
3 Weeks			0.0046	0.05	0.00	0.001		0.004			2.4E-03	2.66-02	0.2E-04	0.2E-04		2.02-03	· · · · · ·	1.70-02	9.0E-02	1.72.700	4.06-02	1.02.101	<u>}</u>	0.02.01
		I						L													<u> </u>	 		ł
ning (Wks)											l												l	
ning (Wks)		1														l							L	L
ning (Mics)															·									
inn (Mare)		1	t	1	1	†		t	1 ·····	1	1	1		l		T T								
ing (www.a)	L	<u> </u>			ł	<u>↓</u>		╂───		<u> </u>				<u>}</u> †										
	Date 3 Weeks ning (Wks) ning (Wks) ning (Wks)	Dissolv Antimory Date D-Sb (mgL) S Weeks ring (Wks) ming (Wks) ming (Wks)	Dissolved Meta Artimory Arsaric Date D-Sb D-As (mpL) (mpL) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0	Dissolved Metals*: Artimory Arsenic Copper Date D-Sb D-As D-Cu (mpt.) (mpt.) (mpt.) 0.001 0.0010 0.0010 3 Weeks 0.001 0.0016 img (Wks)	Dissolved Metale*: Artimory Arsenic Copper ron Date D-Sb D-As D-Cu D-Fe (mgL) (mgL) (mgL) (mgL) (mgL) 0.001 0.0014 0.05 0.0010 0.05 3 Weeks 0.0014 0.05 0.0046 0.05 ning (Wks)	Dissolved Metale*:	Dissolved Metals*: Antimory Arsenic Copper Iron Laed Merganses Date D-Sb D-As D-Cu D-Fe D-Pb D-Min (mgL) (mgL) (mgL) (mgL) (mgL) (mgL) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Dissolved Metals*: Antimory Arsenic Copper Iron Laed Merganese Shver Date D-Sb D-As D-Cu D-Fe D-Pb D-Min D-Ag (mgL) (mgL) (mgL) (mgL) (mgL) (mgL) (mgL) (mgL) 0.001 0.0014 0.05 0.001 0.667 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 <	Dissolved Metals*: Antimony Arsanic Copper twn Lead Marganese Silver Zinc Date D-Sb D-As D-Cu D-Fe D-Pb D-Mn D-Ag D-Zin (mpL) (mpL)	Dissolved Metale*: Antimory Arsenic Copper Item Metal Le Antimory Arsenic Copper Item Lasd Marganese Silver Zinc Antimory Dete D-Sb D-As D-Cu D-Fe D-Pb D-Min D-Ag D-Sb (mgL) (mgL)	Dissolved Metale*: Metal Leach Rate Arimony Arsenic Copper Iven Lead Marganese Steve Zinc Arimony Arankc Dete D-Sb D-As D-Cu D-Fb D-Mn D-Ag D-Zn D-Sb D-As (mpL) (mpL)	Dissolved Metals*: Metal Leach Rates: Antimony Arsanic Copper Imon Lead Marganse Stiver Znc Antimony Arsanic Copper Dete D-Sb D-As D-Cu D-Fe D-Pb D-Mn D-Ag D-Zn D-Sb D-As D-Cu (mpL) (mpL	Dissolved Metale*: Metal Loach Rates: Antimory Arsenic Copper Iron Metal Loach Rates: Antimory Arsenic Copper Iron Load Metal Loach Rates: Dissolved Metale*: Iron Load Metal Loach Rates: Iron Dete D-Sb D-As D-Cu D-Fe D-Pb D-Min D-Ag D-Sb D-As D-Cu D-Fe (mgL) (mgL)	Dissolved Metals*: Metal Leach Rates: Antimony Arsenic Copper Ivon Lead Metal Leach Rates: Ivon Lead Antimony Arsenic Copper Ivon Lead Metal Leach Rates: Ivon Lead Dete D-Sb D-As D-Cu D-Fb D-Mn D-Ag D-Zn D-Sb D-As D-Cu D-Fb D-Pb (mpL) (mpL)	Dissolved Metals*: Metal Leach Rates: Metal Leach Rates: Antimory Arsenic Copper Iron Leed Metal Leach Rates: Iron Leed Merganze Date D-Sb D-As D-Cu D-Fe D-Pb D-Mn D-Ag D-Zn D-Sb D-As D-Pb D-Mn (mgL) (mgL)	Dissolved Metal*: Marganese Sher Matal Leach Rates: Marganese Sher Antimory Arsenic Copper Iron Laed Marganese Sher Znc Artimory Arsenic Copper Iron Lead Marganese Sher Dete D-Sb D-As D-Cut D-Fe D-Pb D-Min D-Ag D-Gut Graphicit Graphicit	Dissolved Metalet: Antimory Artimory Artimory <td>Dissolved Metals Metal Leach Rates Metal Leach Rates Metal Leach Rates Metal Leach Rates Antimory Arsenic Copper Iron Leed Metal Leach Rates Iron Cumula Antimory Arsenic Copper Iron Leed Metal Leach Rates Iron Leed Metal Leach 0:001 DAS D-Cu D-Fe D-Pb D-Min D-Ag D-Zin D-Sb D-As D-Cu D-Ag D-Zin D-Sb (mpL) (mpL)</td> <td>Dissolved Metals*: Metal Leach Rates: Currulative Metal Antimory Arsenic Copper Image: Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street St</td> <td>Dissolved Metale*: Marganes Sheet Zinc Metal Leach Rates: Marganes Sheet Zinc Antimory Arsanic Copper Image: Name Computative Metal Leach Rates: Marganes Sheet Zinc Antimory Arsanic Copper Image: Name Zinc Antimory Arsanic Copper Image: Name Zinc Antimory Arsanic Copper Image: Name Zinc Antime</td> <td>Disslved Metalet: Antimory Artimory Artimory<td>Dissolved Metals*: Metal Leach Rates: Metal Leach Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rate</td><td>Dissolved Metale*: Metal Leach Rate: Metal Leach Rate Metal Leach Rate: Metal Leach Rate:</td><td>Dissolved Metale*: Antimory Arasenic Copper Image: Marganese Sheer Zinc Metal Leach Rates: Antimory Arasenic Copper Image: Marganese Sheer Zinc Antimory Arasenic Copper Image: Marganes</td></td>	Dissolved Metals Metal Leach Rates Metal Leach Rates Metal Leach Rates Metal Leach Rates Antimory Arsenic Copper Iron Leed Metal Leach Rates Iron Cumula Antimory Arsenic Copper Iron Leed Metal Leach Rates Iron Leed Metal Leach 0:001 DAS D-Cu D-Fe D-Pb D-Min D-Ag D-Zin D-Sb D-As D-Cu D-Ag D-Zin D-Sb (mpL) (mpL)	Dissolved Metals*: Metal Leach Rates: Currulative Metal Antimory Arsenic Copper Image: Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street St	Dissolved Metale*: Marganes Sheet Zinc Metal Leach Rates: Marganes Sheet Zinc Antimory Arsanic Copper Image: Name Computative Metal Leach Rates: Marganes Sheet Zinc Antimory Arsanic Copper Image: Name Zinc Antimory Arsanic Copper Image: Name Zinc Antimory Arsanic Copper Image: Name Zinc Antime	Disslved Metalet: Antimory Artimory Artimory <td>Dissolved Metals*: Metal Leach Rates: Metal Leach Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rate</td> <td>Dissolved Metale*: Metal Leach Rate: Metal Leach Rate Metal Leach Rate: Metal Leach Rate:</td> <td>Dissolved Metale*: Antimory Arasenic Copper Image: Marganese Sheer Zinc Metal Leach Rates: Antimory Arasenic Copper Image: Marganese Sheer Zinc Antimory Arasenic Copper Image: Marganes</td>	Dissolved Metals*: Metal Leach Rates: Metal Leach Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rates: Cumulative Metalsech Rate	Dissolved Metale*: Metal Leach Rate: Metal Leach Rate Metal Leach Rate: Metal Leach Rate:	Dissolved Metale*: Antimory Arasenic Copper Image: Marganese Sheer Zinc Metal Leach Rates: Antimory Arasenic Copper Image: Marganese Sheer Zinc Antimory Arasenic Copper Image: Marganes

÷

Sector (1995) (1995)
 Sector (1995) (1995) (1995)
 Sector (1995) (1995) (1995) (1995)

APPENDIX

C. Mineralogical Examination of Rock from Column 1 (PAG) and 4 (MAF)

MINERALOGY AND GEOCHEMISTRY

534 ELLIS STREET, NORTH VANCOUVER, B.C., CANADA V7H 2G6 TELEPHONE (604) 929-5667

Report for: Morwijk Enterprises, 2401 - 289 Drake St., VANCOUVER, B.C. V6B 525

Report 96-96

September 24, 1996

PETROGRAPHIC EXAMINATION OF SAMPLES FROM THE SAMATOSUM DEPOSIT

Introduction:

Two samples of crushed rock (designated COL. 1 and COL. 4), representing the end products of prolonged simulated weathering in humidity cells, were forwarded by Chemex Labs. Portions of the 1 - 10 mm size fractions from each sample were briquetted in epoxy and prepared as polished thin sections.

Summary:

Sample **COL.** 1 consists of fine-grained, quartz-rich rocks of **meta**sedimentary and **meta-exhalite** aspect. Carbonate is rare - its estimated overall abundance in the sectioned material being about 0.2%. The estimated overall sulfide content is about 1%, as sporadic fine-grained disseminations of pyrite. Rare traces of sphalerite were also seen.

The constituent rock fragments show surface staining by transported limonite and/or encrustation and incipient cementation by limoniteimpregnated, mica-rich fines. Pyrite in the rock matrices shows no recognizable effects of oxidation. It would appear that, under the conditions of the test, oxidation of sulfides was confined to liberated, micron-sized grains in **a** minor slimes-sized component of the crushed sample.

Sample COL. 4 consists of fragments of greenstone **meta-volcanics** - probably original andesitic tuffs or volcaniclastics. They consist dominantly of intergrowths of plagioclase, chlorite, actinolite and carbonate. The overall carbonate is estimated as 18%.

Sulfides are rare (estimated 0.3% overall), and restricted to a **very** few fragments. They consist of sparsely disseminated subhedra of fresh pyrite up to 0.3 mm in size.

The rock fragments making up this sample are notably clean. They show no surface staining or ferruginized coatings. This is also

PHOTOMICROGRAPHS

All photos are at a scale of 1 cm = 170 microns.

SAMPLE COL. 1

Neg. 406-18: Reflected light. Example of relatively abundant development of disseminated pyrite in a siliceous rock matrix. The pyrite is fresh. Two grey grains (left centre) are sphalerite.

Neg. 406-19: Cross-polarized transmitted light. Same field as 406-18. Matrix at left side of field is varigranular quartz (greys). That at right includes a band of fine-grained sericite (colours).

Neg. 406-20: Reflected light. Example of the greywacke lithotype commonly represented in this sample. Field includes sparse disseminated pyrite (white) and a diagonal microfracture (dark) delineated by local development of limonite. The pyrite grains show no evidence of oxidation.

Neg. 406-21: Cross-polarized transmitted light. Same field as **405-20.** rock is composed of discrete quartz grains in a silty matrix of quartz and sericite.

Neg. 406-22: Plane-polarized transmitted light. Fine-grained quartz aggregate (probable meta-chert) with vari-granular disseminated pyrite (opaque; equant black grains). Dark area at bottom is part of an encrustation of limonite-cemented slimes coating the surface of the rock fragment. Minor diffuse limonite staining (brown) is developed in the body of the rock.

Neg. 406-23: Reflected light. Same field as 406-22. Note that the pyrite grains show no evidence of oxidation (in the form of limonite rims or leached outlines), even immediately adjacent to the surface coating of limonite. The latter is indicated as being of exogenic (redistributed) origin - not derived from in-situ oxidation of the pyrite in this particular rock fragment.

SAMPLE COL. 4

Neg. 406-24: Reflected light. Example of a rare development of pyrite, as disseminated, fresh grains in a chlorite-rich matrix.

Neg. 406-25: Cross-polarized transmitted light. Same field as 406-24. Dark olive green is chlorite. **Grey/white** grains are quartz. Tan colour (lower right) are carbonate. The pyrite grains (opaque) appear black.

true of the concentrations of carbonate within the fragments. It would appear that little or no reaction has occurred under the test conditions. The large excess of carbonate present can be expected to have neutralized any incipient generation of acid.

Individual sample descriptions are attached, together with illustrative photomicrographs.

J.F. Harris Ph.D.

Estimated mode

83
12
3.5
0.2
1
trace
0.3

This sample consists of fragments of a variety of lithotypes dominantly of siliceous **composition** and probable meta-sedimentary and/or meta-volcanic exhalative affinities.

They include greywackes composed of quartz grains, 50 - 500 microns in size, in a silty matrix with minor accessory sericite; microgranular quartz and quartz/sericite rocks (possible meta-cherts); intensely sheared quartz aggregates; coarsely granular vein-type quartz; and compact aggregates of cryptocrystalline chlorite.

Carbonate is very minor. It was seen in only 2 of the 32 fragments making up the thin section. These two occurrences consist of disseminated small grains of carbonate in a compact chlorite rock; and interstitial pockets of carbonate in a fragment of coarsely granular, vein-type quartz.

Sulfides are also minor, but somewhat more widespread than the carbonate. About 7 of the 32 constituent fragments contain an average of 5% pyrite. This occurs as **localized** fine-grained disseminations of grains 5 - 100 microns in size, locally aggregating as small clumps. Rare, small grains of sphalerite were seen in a couple of fragments.

The rock fragments making up this sample typically show surface staining by limonite and/or have thin surface coatings of limonitecemented micaceous fines. These ferruginized slimes sometimes incorporate small, discrete rock chips, and act as a potential cementing agent to the larger fragments.

The incidence of ferruginous coatings appears independent of the presence or absence of sulfides in the fragments. Where pyrite does occur in the body of the rock, it shows no recognizable evidence of oxidation. This is true even of those grains immediately adjacent to the limonite-stained surfaces. Apparently the latter effect represents the redistribution of Fe from oxidation of liberated sulfides in a minor slimes-sized component of the sample.

Neg. 406-26: Cross-polarized transmitted light. Example of a banded concentration of carbonate (abundant in this sample). This takes the form of an equigranular aggregate of carbonate (tan **colours**) intergrown with plagioclase (grey). The upper half of the field (dark/orange) is a compact aggregate of fine-grained actinolite.

Neg. 406-27: Reflected light. Fragment at upper left is compact chlorite (greenish) with disseminated pyrite (one of the few occurrences of sulfides in the thin section). The other fragment is rich in carbonate (light-coloured flecks). Note freshness of the pyrite, and lack of limonite staining or coatings on the fragment surfaces.

Samatosum Sample Column 1 (unsorted), Neg. 406-19

Samatosum Sample Column 1 (unsorted), Neg. 406-18

Samatosum Sample Column 1 (unsorted), Neg. 406-20'

Samatosum Sample Column 1 (unsorted), Neg. 406-21

Samatosum Sample Column 1 (unsorted), Neg. 406-22

Samatosum Sample Column 1 (unsorted), Neg. 406-23

Samatosum Sample Column 4 (unsorted), Neg. 406-24

Samatosum Sample Column 4 (unsorted), Neg. 406-25

Samatosum Sample Column 4 (unsorted), Neg. 406-26

Samatosum Sample Column 4 (unsorted), Neg. 406-27

APPENDIX

D. Field Monitoring Data from 1989 to 1996

MOE 2 (Water Quality. Pond)

n de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de l

MOE 4 (Mine & Waste Rock Sedimentation Pond)

.

7

_

MOE 10 (Tailings Pond)

1-Jul-89

1-Jul-91

30-Ju

30-Jun-94

30-Jun-95

1-Jul-90

APPENDIX

E. Compiled Monitoring Data and Empirical Drainage-Chemistry Model

APPENDIX

F. Photographs of Column Dismantling

Glumn 6 dismantled; bottom in foreground

Column 6

Column dismantled; bottom n foreground

Column 4 dismantled; bottom in background