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EXECUTIVE SUMMARY

Acidic drainage resulting from the oxidation of sulphide minerals is the single largest
environmental problem facing the Canadian mining industry today. Sulphide oxidation, which
generally occurs at shallow depths above the water table, can result in the production of highly
acidic pore water containing elevated levels of many heavy metals and other deleterious
constituents. It is generally agreed that the production of acid is controlled by the availability
of the oxygen at the sulphide surface. In tailings the primary mode of oxygen transport is
diffusion through porous spaces. An impermeable cover can eliminate or significantly alleviate
the problems related to the acid mine wastes.

The Alberta Research Council (ARC) proposed to use its newly-developed super absorbent
polymer (SAP) for the abatement of acid mine drainage. SAP is a patented product and is made
of polyacrylamide-modified clay. When fully hydrated, one gram of SAP can adsorb more than
650 grams of fresh water and increases its volume significantly during the process. This very
property of SAP could be very useful in the area of acid tailing abatement.

Preliminary tests with the SAP/sands mixture show a significant potential for SAP application
in acid mine tailing abatement. Addition of 1 wt% of SAP into a medium sand can lower its
hydraulic conductivity by four orders of magnitude. Moisture retention capability can also be
increased significantly. The use of SAP in a bottom liner of a tailings pond is not a viable option
because the poisoning effect of multi-valent cations on the SAP. However, a SAP-bearing cover
should be an effective hydraulic barrier. Essentially, the cover would be an impermeable barrier
and would retain its water saturation. If used in 0.2 wt% concentration, the cost of SAP will be
about 1/20 of the total cost for the construction of the cover. The cost for this material may be
offset by the savings on the transportation of another barrier material and construction of the
COVver.






RESUME

Les eaux de drainage acides résultant de 1’oxydation des minéraux sulfurés est le plus grand
probleme environnemental de 1’industrie mini¢re canadienne aujourd’hui. L’oxydation par les
sulfures, qui se produit en général a faible profondeur sous la nappe phréatique, peut entrainer
la production d’eau interstitielle trés acide a forte teneur en nombreux métaux lourds et autres
constituants nuisibles. Il est généralement convenu que la production d’acide dépend de la
disponibilité de 1’oxygene a la surface des sulfures. Dans les résidus, le principal mode de
transport de I’oxygene est la diffusion dans les espaces interstitiels. Une couverture imperméable
peut éliminer ou atténuer grandement les problémes relatifs aux déchets miniers acides.

L’Alberta Research Council (ARC) a proposé d’utiliser son nouveau polymere super-absorbant
(PSA) pour lutter contre les effets des eaux de mine acides. Le PSA est un produit breveté
constitué d’argile additionnée de polyacrylamide. A saturation, un gramme de PSA peut adsorber
plus de 650 grammes d’eau douce et augmenter considérablement de volume entre-temps. Cette
propriété du PSA pourrait étre trés utile dans le domaine de 1a lutte contre les résidus acides.

Les premiers essais sur un mélange de PSA et de sable indiquent que le PSA pourrait trés bien
étre utilisé dans la lutte contre les résidus miniers acides. L’addition de 1 % en poids de PSA
dans un sable a grain moyen peut en abaisser la conductivité hydraulique de quatre ordres de
grandeur. La capacité de rétention peut aussi étre accrue de beaucoup. La pose d’une membrane
contenant du PSA au fond d’un étang a résidus n’est pas une bonne solution car les cations
multivalents contamineraient le PSA. Toutefois, une couverture contenant du PSA pourrait
constituer une barriere hydraulique efficace. La couverture agirait essentiellement comme une
barriere imperméable et retiendrait 1’eau jusqu’a saturation. Concentré 2 0,2 % en poids, le PSA
coliterait environ 1/20 du colit total de la construction de la couverture. Le coiit d’un tel
matériau serait compensé par les économies de transport d’un autre matériau et de construction
de la couverture.






TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY . . oottt e e e e e e e e e e e e e e e e e 1
RESUME . ...ttt e e e e e e e e e e, ii
TABLE OF CONTENTS . ... it ittt et e e e e e e e e e e e e iau 1ii
LIST OF TABLES . . .ottt i ittt ettt e et e et st e s s et et iv
LIST OF FIGURES . . . . i ittt e e it e e e et e e e sttt sttt e e e e iv
INTRODUCTION . . . ..ttt e e e e e et e e et et e et e s et e e e 1
CHARACTERISTICS OF SUPER ABSORBENT POLYMER (SAP) . . ........... 2
EXPERIMENTAL METHODS . . . . . o ittt e e et et et et e et e 3
Materials . . .. e e e e e e e e e e e e e e e e e e e e 3
Hydraulic Conductivity Measurement . . . ... ........ ..ot enunr... 4
Moisture Retention CUIrvVeS . . . . v v v it i i s e e e et e e e e ettt 6
EXPERIMENTAL RESULTS .............. e 6
Hydraulic Conductivity . ... .. ... ... ...ttt 6
Moisture Retention . . . . . ittt it s e e e e e e e e e e e e e e e e 9
DISCUSSION AND CONCLUSIONS . . . ottt e e it e e e e e et et e s eaeenn 11
SAP Performance in the Sands . . . . . . . i i v it ittt e e e e e e e e e e e 11
SAP Performance in the Tailings . .............. .. ..., 11
Covers V. LINeIS . . . v v it i e e it e e e e e e e e e e e e e 12
Economics of SAP Application . . . ... .... ... .. ..., 12
07T 113 ()« - 14
ACKNOWLEDGEMENT S . . . . ittt et e e e e e e e e e e e e e eans 15
REFERENCES . . .ot e e e e e e e e e e s e e e e e e e e e e e, 15

iii



LIST OF TABLES

Table 1. Porosity and hydraulic conductivity of the test samples . . . ............. 8

Table 2. Moisture retention of the test samples . . . ... ............c0v.... 10

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.

LIST OF FIGURES

Effect of solution pH on the water adsorption capacity of the SAP . ...... 17
Particle size distribution of the tailings . ....................... 18
Experimental Apparatus for hydraulic conductivity measurements . . . . . . .. 19
Permeability of Sample A (sands) to DIW at room temperature . ........ 20
Moisture retention curves of thesamples . . . . ... ................ 21
Preliminary flowchart for SAP manufacturing . . . ................. 22

v



INTRODUCTION

Acidic drainage resulting from the oxidation of sulphide minerals is the single largest
environmental problem facing the Canadian mining industry today. Sulphide oxidation, which
generally occurs at shallow depths above the water table, can result in the production of highly
acidic pore water containing elevated levels of many heavy metals and other deleterious
constituents. It is generally agreed that the production of acid is controlled by the availability
of the oxygen at the sulphide surface. In tailings the primary mode of oxygen transport is
diffusion through porous spaces. The recognition of this process has led to the suggestion of a
multi-layered barrier which can minimize the amount of air infiltration (Nicholson et al., 1989;
Nicholson et al., 1991). Experimental studies based on this concept are being conducted at
Noranda Technology Centre (Yanful, 1991; 1992; Yanful and St-Armaud, 1991). In this concept,
a layer of fine silt or clay material is underlain by a layer of coarse sands. The layers would be
placed in such a way as to enhance drainage of the coarse layer, thereby lowering the effective
hydraulic conductivity to near zero as it approaches residual saturation. At this state (residual
saturation), the coarse layer can not transmit moisture downward from the upper layer. The
upper fine layer therefore can maintain full saturation over a prolonged period of time.

Within the MEND New Ideas initiatives, the Alberta Research Council (ARC) proposed to use
its newly-developed super absorbent polymer (SAP) for the abatement of acid mine drainage.
The SAP is a patented product and is made of polyacrylamide-modified clay (Gao et al, 1993).
When fully hydrated, one gram of SAP can adsorb more than 680 grams of fresh water and
increases its volume significantly during the process. This very property of SAP could be very
useful in the area of acid tailing abatement. First, if a layer of SAP-bearing composite material
is placed on top of the acid tailings, the composite layer may constitute an impermeable barrier.
This is because the high water-absorption capacity, strong moisture retention capability and large
swelling pressure of SAP will virtually "seal off" the tailings. Secondly, if a layer of SAP-
bearing composite material is placed at the bottom of a tailing pond as a liner, the composite
material may prevent the seepage of the acid leachate into groundwater. The potentials of both
options will be evaluated here.

The purpose of Phase I of the "Impermeable Modified Clay Barrier" project is to demonstrate
 the effect of SAP on the hydraulic conductivity and moisture retention characteristics of the
cover material. In this report, we will 1) briefly introduce the properties of the SAP, 2) describe
methods and results of hydraulic conductivity and moisture retention tests, 3) discuss the
implication of the experimental results, and 4) present a preliminary economic analysis of the



SAP application. Based on all the information available, we believe that the use of SAP is
technically advantageous and economically viable.

CHARACTERISTICS OF SUPER ABSORBENT POLYMER (SAP)

The super absorbent polymer (SAP) used in this study is a polyacrylamide-montmorillonite
composite and was originally developed at the Technical Physics Institute of the Heilongjiang
Academy of Sciences (TPTHAS). Since 1991, the production technology and polymer properties
have been improved through the cooperation between ARC and TPIHAS. SAP has wide
applications in sanitary diaper, agriculture, forestry, oil field, etc.. The details of the SAP
production and characteristics are discussed by Gao (1993). Only relevant properties are
summarized here.

The commercial SAP is granular particles of about 0.5 mm in diameter and has a specific
gravity of 1.62 g/cc. When they are placed in excessive amount of water, the SAP will
experience a full hydration in less than 24 hours. In this process, its volume increases
dramatically and the SAP becomes a gel-like material. The density of the gel is very close to that
of water because of the large amount of water it adsorbs. The amount of water adsorbed by the
SAP can be quantified by the water absorption capacity (WAC) which is defined as

WAC = (W - Wy)/W, [1]

where W and W, are the weights of swollen and dry samples respectively. It has been reported
that the WAC of the SAP can be as high 1000 but our in-house bench tests indicate that the
WAC is about 680 in fresh water. Note that WAC is not a percentage but represents net
increase in its weight relative to the same material before hydration. To appreciate the magnitude
of the WAC of SAP, the WAC of a pure Wyoming bentonite is only about 10. Therefore, the
WAC of the SAP is 68 times greater than Wyoming bentonite.

Similar to swelling clays, the hydration and swelling of the SAP are affected by ionic strength
and valence of the cations in the surrounding solution. The effect of ionic strength is commonly
called "salt effect". Some models have been postulated in the literature on the salt effect (Gao,
1993) on the WAC, but these models are of little use in practice because they require a number
of parameters which are not readily available. Our in-house bench tests indicate that the WAC
will decrease 10 times as the NaCl concentration increases from 0 to 0.50 M (29,000 mg/1). The
hydration of the SAP can be greatly reduced if a significant amount of divalent cations is present



in the solution. At an equal ionic strength, the WAC in CaCl, solution is about 10 times less
than that in NaCl solution.

The pH of the solution also has a pronounced effect on the hydration of the SAP. Figure 1
shows the WAC of the SAP as the function of the solution pH. It is obvious that the hydration
of SAP is affected by both acidic and alkaline solutions and this detrimental effect is more
pronounced in the acidic range than in the alkaline range. However, to keep things in
perspective, it should be noted that in acidic solution with pH of 3.5, the WAC is still greater
than 100 which is much greater than that of Wyoming bentonite. The acidic solution is equally
detrimental to the hydration of clay minerals.

To appreciate the effect of hydration of the SAP on hydraulic conductivity of a cover material,
let’s consider an artificial case: suppose we have 1000 cc of porous media (sands) with 40% of
porosity and particle density of 2.60 g/cc, the pore volume will be 400 ml and total weight of
the solids will be about 600 cc X 2.6 g/cc = 1560 g. If one twentieth weight percent (0.05 wt%)
of the solid is SAP, the SAP will weigh 1560 g X 0.05% = 0.78 g. Upon hydration in fresh
water, the SAP will adsorb 0.78 g X 680 g/g = 530 g of water and the volume of the gel will
be about 530 ml. Therefore the SAP gel will be more than enough to fill out all the pore space
in the porous media. In reality, the WAC of the SAP will be much less, depending on the ionic
strength of the solution. Nevertheless, this calculation does illustrate the high potential for SAP
to reduce the hydraulic conductivity of a porous media. Based on this analysis, we chose to add
1 wt% SAP to the sands and tailings in our experiments.

EXPERIMENTAL METHODS
Materials

The materials used in this study include silica sands, bentonite clays, the SAP, and acid tailings.
The silica sands are commercial grade of 30-60 mesh size and were purchased from Sil Silica
Inc. of Edmonton. The sands were used as received and no treatment was applied. The
Wyoming bentonite was purchased from Ward’s. The X-ray diffraction analysis indicates that
the sample contain a significant amount quartz but no effort was made to purify the sample. The
bentonite was used as received. The granular SAP particles were ground to pass 325 mesh size
sieve before mixing with other material.



The tailings are from Waite Amulet mine and were supplied by Luc St-Arnaud of Noranda
Technology Centre. For moisture retention and hydraulic conductivity measurements, the tailings
as received were oven-dried at 103°C for overnight and aggregates of larger than 1 mm were
removed. The grain (particle) density of the tailings was measured using the standard "Density
Bottle Method" (Head, 1989) and is found to be 3.09 g/cc. The particle size distribution was
determined by conventional sieving (for greater than 20 um particles) and gravitational
sedimentation (for less than 20 um particles) methods. The tailings are composed of mainly silts
and fine sands as shown in Figure 2.

Seven samples were used for hydraulic conductivity measurements and six samples were used
for moisture retention. These samples are:

A) Silica sands (35-60 mesh);

B) 99 wt% silica sands plus 1 wt% SAP;

C) 90 wt% sands plus 10 wt% Wyoming bentonite;

D) Oven-dried acid tailings;

E) 99 wt% tailings plus 1 wt% SAP;

F) 90 wt% tailings plus 10 wt% Wyoming bentonite; and
G) 89 wt% tailings plus 10 wt% silts and 1 wt% SAP.

One weight percent SAP was chosen for the reason stated in the last section. Ten percent of
bentonite was used because a composite mixture containing 8% bentonite is being investigated
by Noranda Technology Centre (St-Arnaud, personal communication). The bentonite sample
used in this study contains some quartz. The bentonite concentration in our samples is thus
comparable to that of used in Noranda Technology Centre.

Hydraulic Conductivity Measurement

The apparatus used to determine the hydraulic conductivity of these samples consists of a tube
containing the porous medium, a fluid delivery and collection system, and pressure monitoring
devices to determine the head loss during flow (Figure 3). The porous medium was contained
in a stainless steel tube 305 mm long by 22.1 mm L.D.. The tube had sintered stainless steel frits
with a nominal 10 micron pore size to contain the particulates at both ends. Near each end of
the tube, there is a set of pressure taps at the side of the tube, connected to two differential
pressure (DP) transmitters which measure head loss during flow. The pressure taps were spaced
195 mm apart. The two sets of DP cells have working range of 20 kPa and 200 kPa



respectively. The head loss was used to calculate the permeability of the pack. Pressure
transducers at the inlet and outlet end of the tube also measured the flow pressure up to 5 MPa.
A bypass line with an isolation valve connected the inlet and outlet ends of the flow tube. This
line was used only during the saturation stage of the experiments.

A back-pressure regulator at the outlet end of the tube maintained the static fluid pressure at
approximately 1 MPa. A syringe pump was used to inject de-ionized water into the porous
medium at a constant rate over the course of the experiment. In a stable thermal environment
(constant temperature), the pump was capable of fluid delivery as low as 0.1 cc/hr at elevated
pressures.

During packing, the flow tube was held in a vertical position in a vise and grounded to earth.
Otherwise, a static charge will build up as a result of pouring the loose material into the tube.
By grounding the tube, the static is discharged and this allows for a repeatable pack consistency.
The porous medium was slowly poured into the tube through a funnel while tapping on the vise
with a mallet. After the tube was filled to the top, tapping was continued and more material
added until there was no further change in the level of material in the tube. The weight of the
porous medium was determined by difference between the weights of the empty and filled tube.
Porosity of the pack was determined from the weight and grain density of material in the tube
and the volume of the tube.

After a sample was packed, the tube was mounted in the flow system. Air was displaced from
the pack by flowing carbon dioxide through the tube. The tube was then evacuated to remove
the carbon dioxide. In this way residual carbon dioxide that was not evacuated dissolved easily
into the water as the core was saturated and was readily displaced as water flowed through the
tube. The de-ionized water was then injected into both ends of the tube at a low rate to minimize
the possibility of fines transport through the pack. The higher permeability sand and tailings
packs saturated very quickly. For the samples containing clays and the SAP, the saturation of
the pack took several hours or more. After saturation, the flow rate was fixed. The flow
pressure fluctuated at the beginning and then stabilized. The flow rate and differential pressure
data were used to calculated the hydraulic conductivity of the sample with Darcy’s law. The
procedures were repeated several times by changing the flow rate to ensure that the hydraulic
conductivity calculated was independent of flow rate.



Moisture Retention Curves

Moisture retention measurements were performed on six samples (A to F) using a standard
"Pressure-Plate Extraction" method (Sheldrick, 1984). In this method, a sample is placed in a
rubber ring which sits on a porous ceramic plate. The sample and the porous plate are then
saturated from below. The plate is covered using a plastic sheet to prevent evaporation. After
24-hours or longer saturation, the plate is placed into a pressure pot. The pressure pot is sealed
off and a gas pressure is applied to drive water out. When outflow has ceased, the sample is
transferred to a tared drying can and weighed. Then the sample is oven-dried at 105°C and
reweighed. The moisture retention is expressed as the equilibrium water content at a given
pressure:

Moisture retention = [(Weight,,, - Weight,,,)/Weight, ] X 100% [2]

Each sample was run in duplicates and at five different equilibrium pressures (0.10, 0.33, 1.00,
5.00, and 15.00 bars). In total, 30 tests were conducted in duplicates.

EXPERIMENTAL RESULTS
Hydraulic Conductivity

The results of the hydraulic conductivity tests are shown in Table 1. Samples A, B, and C are
sand based and the pure sand sample (A) provides a baseline for this group of samples. When
packed, the medium size sands had a porosity of 36.5%. The saturation of this sample was very
fast (in minutes). At a fixed flow rate, the differential pressure was fairly stable. Small
variations in permeability may be due to temperature fluctuation or other instrumental deviations
(Figure 4). The permeability is calculated using Darcy’s law:

x = (Q/A)AVAp)n [3]

where « is the permeability, Q the flow rate, A the cross-section area of the tube, Al the distance
between the pressure transducers, Ap the differential pressure, and » the viscosity. The hydraulic
conductivity (K) is related to permeability by:

K = (og/n)x [4]



where p is the density of the fluid and g the gravitational constant. For water at room
temperature, pg/y is 10° s/cm. Therefore, if K is in cm/s and « is in darcy (1 darcy (d) = 9.87
X 10®° cm?), K (cm/s) = 103 (d) or 10% (md).

When the flow rate changed from 0.5 1/hr to 2.0 I/hr and then to 4.0 1/hr, the permeability
stayed at 53 Darcy (or hydraulic conductivity at 5.3 X 10?2 cm/s) which is reasonable for this
material.

When 1 wt% of SAP is mixed with the sands and packed (Sample B), the porosity changed very
little but the saturation took much longer (a few hours). The permeability after the saturation was
about 3 md (or hydraulic conductivity of 3 X 10 cm/s) but it slowly decreased to 1.9 md (or
1.9 X 10 cm/s) in 72 hours. This may indicate that the bulk of the SAP was hydrated in a few
hours but a small fraction of the SAP was still hydrating and expanding in days. The hydraulic
conductivity dropped four orders of magnitude from the pure sands. When the sample was
removed from the tube after the hydraulic conductivity test, it showed some physical
cohesiveness. When air-dried, the sample slowly became semi-consolidated. For Sample C, the
addition of 10 wt% of Wyoming bentonite decreased the porosity to 33.1% but its hydraulic
conductivity of was still twice as much as that of Sample B. The effect of SAP on hydraulic
conductivity of the quartz sands is therefore at least 10 times greater than Wyoming bentonite.



Table 1: Porosity and Hydraulic Conductivity of Test Samples

Composition wt%

Sample San Tailin Cla SA Sil Porosit Throughp Permeabil Hydraulic

ID d g y P t y ut ity Conductivi
% pv md ty
cm/s
A 100 - - - - 36.5 92.3 53,000 5.3 x 102
B 99 - - 1 - 36.3 4.4 1.9 1.9 x 10"
C 90 - 10 - - 33.1 17.7 3.9 3.9x 10°¢
D - 100 - - - 44.0 56.8 130 1.3 x10*
E - 29 - 1 - 43.9 63.2 180 1.8 x 10*
F - 90 10 - - 44.8 21.0 28 2.8 x 10°
G 89 - - 1 10 301 2.4 < 0.1 <1.0x
107

When packed, the tailings-based samples (D, E, and F) had larger porosity values than the sand-
based samples. This is consistent with the fact that the particle size of the tailings is smaller than
that of the sands used in this study. The pure tailing sample (D) had a porosity of 40.0%. The
tailings must contain a significant amount of soluble material because the effluent was brownish
in colour and carried some fine particles. As a result, the permeability slowly increased over the
course of the test. After 42.4 hours and 56.8 pore volume (pv) throughput, the test was
terminated and the permeability at that point was 130 md (or hydraulic conductivity of 1.3 X
10* cm/s). When 1 wt% of SAP was mixed with the tailings, the porosity was virtually
unchanged. The effluent was still brownish and the hydraulic conductivity also increased with
time. After 69.42 hr and 63.2 pore volume, the test was terminated and the permeability at this
point was 180 md (or hydraulic conductivity of 1.8 X 10* cm/s). This hydraulic conductivity
value was even larger than that of the pure tailings but this increase was likely due to a greater
amount of dissolution of the tailings during the much longer testing period and the larger
throughput of fluids. In any case, it is fair to conclude that the effect of the SAP is very limited



when mixed with acid mine tailings. In contrast, when 10 wt% Wyoming bentonite was mixed
into the tailings (Sample F), the hydraulic conductivity decreased about one order of magnitude.
Nevertheless, this decrease is still small compared to that of the sand-based system where a four
orders of magnitude decrease was achieved.

The last permeability test (Sample G) was performed to demonstrate that the performance of the
SAP may be improved if a sand sample contains some silts. The sands used in Samples A, B,
and C have a narrow size distribution (35 - 60 mesh). Natural sands have a wider size
distribution. Thus, we added 10 wt% coarse silts (270 mesh) into Sample G, the amount of SAP
was still 1 wt%. When packed, this sample had a quite low porosity at 30.1%. The saturation
of this sample was very slow and the permeability was very low. At the very small flow rate
(0.6 ml/hr), the accuracy of the syringe pump depends on a stable temperature over the course
of the test. Because the temperature could not be controlled accurately during the test, only a
upper limit of the permeability could be estimated at extremely low flow rates. Conservatively
speaking, the hydraulic conductivity of this sample is less than 1 X 107 cm/s.

Moisture Retention

The moisture retention results are shown in Table 2 and Figure 5. For pure sands (Sample A),
its moisture retention capability is very small even at very low pressure (1.2% at 0.1 bar).
When 1 wt% SAP was added (Sample B), the moisture retention can be improved significantly.
At each of five equilibrium pressures, the water contents of Sample B (sand plus SAP) are 20
times greater than Sample A (sand only). Sample B and Sample C (sand plus bentonite) are
comparable, indicating that the moisture retention capability of 1% SAP is equivalent of 10%
Wyoming bentonite. It should be noted that the equilibrium pressures used here are high. At
lower equilibrium pressures, the moisture retention of the SAP could be even better because the
water adsorption capacity of the SAP at zero pressure is very large.

On the other hand, no significant improvement is shown when the SAP is used with acid mine
tailings. The moisture retention capability of Sample E (tailings plus SAP) is similar to that of
Sample D (tailings only), and both of which are a few percent less than Sample F (tailings plus
bentonite).
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Table 2: Moisture Retention

Composition wt% Equilibrium Pressure (Bars)

Sample ID Sand Tailing Clay SAP  Silt 0.1 0.33 1.0 5.0 15

A 100 - - - - 1.2 1.1 0.6 0.5 0.5

B 99 - - 1 - 30.7 26.8 25.0 10. 9.2
6

Cc 90 - 10 - - 32.8 27.7 263 18. 12.7
9

D - 100 - - - 32.5 250 195 9.7 6.1

E - 99 - 1 - 34.7 32.1 175 9.0 6.2

F - 90 10 - - 38.4 31.9 234 13 8.9
0

The moisture retention of Sample G was not measured but it would have the best moisture
retention among all the samples tested here.

A comment should be made here about the moisture retention results for the tailings-based
samples. Because the tailings contain a significant amount of soluble materials, and some of
these soluble materials are the hydrated minerals (e.g. gypsum). During the oven-drying, these
minerals will dehydrate. The weight loss from the mineral dehydration is included in the term
(Weight,,, - Weight,,) of Equation 2. For instance, gypsum (CaSO,2H,0) will dehydrate to
anhydride (CaSO,) at 60-70°C and this is accompanied by a 20% weight loss. The chemically
bonded water lost during oven-drying would be recorded as physically adsorbed water in this
conventional method for moisture retention measurement. Because of this, the reported moisture
retention of the tailings-based samples could be significantly higher than actual values.
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DISCUSSION AND CONCLUSIONS
SAP Performance in the Sands

Both the moisture retention and hydraulic conductivity data indicate that SAP would be a very
effective hydraulic barrier when used with sands. The good performance in the sands is due to
the full hydration/swelling of the SAP in the system. If the ionic strength of the solution is low,
full SAP hydration/swelling can be realized. Based on the WAC - salt concentration relationship,
we infer that SAP hydration/swelling would remain large even in moderate NaCl solution (<
0.1 M or 5800 mg/l). Moderate NaCl concentrations can also alleviate the poisoning effect of
Ca’* ions.

With the exception of Sample G, the sands used in the tests are fairly uniform and of medium
size. The addition of 10 wt% silts into the sands reduced the hydraulic conductivity of the
SAP/Sands mixture. When SAP is used with natural sands, its performance may be improved
and the minimum concentration may be even lowered because natural sands always contain a
variable amount of fine particles such as silts or clays.

SAP Performance in the Tailings

The performance of the SAP is poor when used with acid mine tailings. This is most likely due
to the poisoning of SAP by divalent cations leached out from the tailings. Divalent cations can
cross link the polymer branches and make the polymer more "tight", therefore reducing the
hydration of the polymer. In the oxidized tailings such as those used in our study, there is a
large amount of gypsum (St-Arnaud, personal communication). Gypsum dissolves very fast in
aqueous solution and will supply 15 mM Ca?* (600 mg/l) to the solution at saturation. At this
concentration, the hydration and the swelling of SAP will be greatly suppressed.

Even if the SAP is used with fresh mining tailings, its performance may be affected
significantly. This is because that the fresh tailings pore water would be alkaline (pH 10) and
would contain high calcium concentrations (St-Arnaud, personal communication). However, if
the calcium concentration can be reduced, the performance of SAP in tailings can be improved.
High pH is less detrimental than low pH.
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Covers vs. Liners

As mentioned in the INTRODUCTION, the SAP can be applied either as a cover or as a liner
for acid mining tailings. The experimental results indicate that SAP is more suitable for the use
in a cover. When a small amount of SAP (1 wt% or less) is mixed with a fine sands, the
material will be an effective hydraulic barrier. Its moisture retention capability will increase
dramatically. The SAP and sands mixtures are physically cohesive, indicating that the SAP has
some "cementation” capability.

Because of the strong poisoning effect of divalent cations on SAP, a question may arise as how
to prevent divalent cations from entering the cover. This will be especially relevant when the
cover is underlain by a layer of oxidized tailings. In reality, this may not be a serious problem.
First, in the event of precipitation, the flow will be downward and the only way the divalent
cations can get into the cover is through diffusion. Cation diffusion in the porous media require
a continuous aqueous phase in tailings which is seldom present. Second, after the SAP is
hydrated, divalent cations have to work their way through the gel. This process would be much
slower. Finally, if a multi-layer concept is used, the impermeable SAP-bearing layer would be
underlain by a layer of coarse sands. This layer of coarse sands is at residual saturation which
will eliminate the possibility of cation diffusion through it.

In summary, if a natural sand, silt, or till contains low to moderate dissolved components, the
use of a small amount of SAP would make the natural material an effective hydraulic barrier.
The performance of the SAP-bearing material would be improved if a layer of coarse sands is
placed underneath.

When used in a bottom liner, the SAP will not function well because solution percolating
through the acid mine tailings will poison the SAP performance. Without the swelling of the
SAP, the liner won’t be an effective hydraulic barrier.

Economics of SAP Application

The economics of SAP application in acid mine abatement can not be fully evaluated until an
optimum concentration is determined for a candidate cover material. It is certain however that
only a small amount of SAP (one weight percent or less) is needed in the cover. The cost for
the SAP production is estimated at $1.17/kg (Wong, 1993). This cost estimate is based on
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building a plant with an estimated 15 year life with the capacity to produce 20,000 dry metic
tons of SAP annually. The manufacturing process involves blending the basic feed materials,
Na-bentonite, acrylamide and caustic soda, while controlling the water content at 60%. The
resulting slurry is drained into plastic bags, which are then transported by a conveyor belt to an
electron beam accelerator for irradiation. After irradiation, the slurry turns into a gel. The gel
is then cut into smaller pieces, and the moisture is removed in a dryer by hot air. After drying,
the product is pulverized into a powder, to about 20 to 40 mesh (Figure 6).

In detail, this cost estimate is based on the current price for raw material (bentonite, acrylamide,
caustic soda, etc.), capital investment (electron beam accelerator, mixing vessel, drying facility,
etc.), and operating cost. If an existing facility can be found in the U.S., the manufacturing cost
for the SAP would be cheaper. The major component of the cost is the purchase of the
acrylamide at a cost of $0.78 per kg of SAP produced, and is in part due to the absence of a
Canadian producer.

In any case, the SAP would cost much more than Wyoming bentonite on a unit weight basis
(compare $1.17/kg to $0.085/kg). However, for equal performance in moisture retention and
as hydraulic barrier, the amount of SAP required in the cover is only one tenth of bentonite or
even less. Savings on transportation can be substantial. In addition, mixing SAP with sands or
silt will be very easy. Packing requirements may be not as strict since volume expansion of the
SAP is so large that it will fill out all the pore space. All these savings may outweigh the high
material cost. Ideally, the SAP can be directly mixed with a natural material such as the Heath
Steele till or varved clay (Yanful, 1992). The amount of SAP required could be even much less
(as low as 0.2 wt%) when used with these materials because these natural materials have a low
hydraulic conductivity to start with.

MEND has estimated the costs of stabilizing existing and future acid mine waste sites will be
$200,000 to $400,000 per hectare. For dry cover, $200,000/hectare means $20/m?. Assuming
that the dry cover is 1.0 meter thick, of which 30 cm is SAP- or clay-modified impermeable
layer, with 1.0 wt% SAP concentration and 1.5 tonne/m’ bulk density, the amount of SAP
required for a square meter of cover is (1.0 m?> X 0.3 m) X 1,500 kg/m* X 0.01 = 4.50 kg.
The cost of the SAP will be 4.50 kg X $1.17/kg = $5.26. If the SAP concentration can be
lowered to 0.2 wt% as suggested in the last paragraph, the SAP cost will be $1.05 per square
meter of cover. This cost of SAP will be about 1/20 of the total cost for the construction of the
cover. In addition there will be the cost of mixing the SAP into the cover material. However,
we do not see any special requirement for the mixing. Any portable mixing tank such as a
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cement mixing truck could be used. For the purpose of this calculation, it is considered that the
additional cost due to mixing would be small and probably fall within the uncertainty of the
estimated price of the SAP. From our perspective, the benefit of using SAP is that it may
provide technical advantages over other natural materials. For example, if no natural material
can achieve the required technical specifications, or if more than one type of natural material
(e.g. sands plus clays) has to be mixed in order to achieve these technical specifications, the
application of SAP may become an important alternative.

Conclusions

Preliminary tests with the SAP/sands mixture show a significant potential for SAP application
in acid mine tailing abatement. The use of SAP in bottom liner of a tailings pond is not a viable
option because of the poisoning effect of multi-valent cations on the SAP. However, a SAP-
bearing cover should be an effective hydraulic barrier. Essentially, the cover would be an
impermeable barrier and would retain its water saturation. The cost for this material may be
offset by the savings on the transportation of the barrier material and construction of the cover.
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Figure 1. Effect of solution pH on the water adsorption capacity of the SAP.
(From Gao, 1993)
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