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WET BARRIERS  ON PYRITIC  URANIUM  TAILINGS
PART  I  AND  II

LABORATORY  LYSIMETER  STUDIES  OF  OXIDATION,  LEACHING  AND
LIMESTONE  NEUTRALIZATION  CHARACTERISTICS  OF  URANIUM

TAILINGS  AND  WASTE ROCK

Nand  K.  Davé*

EXECUTIVE SUMMARY

This report describes the results of laboratory column leaching studies that were conducted as a

part of a broad research program titled “Development of Wet Barriers on Pyritic Uranium

Tailings for Controlling Acid Generation”. The research was undertaken jointly by CANMET,

Elliot Lake Laboratory and Rio Algom Limited, under the Canadian Mine Environmental

Neutral Drainage (MEND) Program.

Purpose:

Column leaching studies were conducted for evaluating the oxidation and leaching

characteristics of pyritic uranium tailings with and without limestone amendments and crushed

waste rock, under unsaturated and submerged conditions. These experiments were designed to

determine the acid generation characteristics and subsequent metal and radionuclide releases of

test samples subjected to submersion underwater and exposed conditions.

Methods:

The leaching experiments were conducted using PVC cylindrical column lysimeters filled with

total mill tailings, coarse tailings, tailings amended with 7.5% (w/w) limestone of varying screen
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sizes, and crushed waste rock samples obtained from Quirke Mine. The experiments provided

unsaturated conditions for leaching of test samples as well as a submerged condition for coarse

tailings where a shallow water cover, 0.45 m in depth, was established using distilled water. The

submerged coarse tailings were also rinsed rapidly during the initial leaching period to remove

gypsum and other soluble minerals for studying oxidation and leaching characteristics of such

tailings in the absence of gypsum controlled sulphate solubility.

All tests were conducted at laboratory room temperature (22 ºC) and light conditions, which

aided in enhancing the chemical reactivity of test materials in laboratory simulations compared to

field conditions.

Duration of the Study:

The experiments, conducted at the CANMET, Elliot Lake Laboratory, were started in April

1989 and concluded in June 1993.

Results:

Coarse Tailings:

Unsaturated Condition:

• The unsaturated coarse tailings without limestone amendment oxidized

readily and produced highly acidic drainage (pH ~ 1.0 - 2.0 and acidity

 ~ 12,000 - 30,000 mg CaCO3/l);

• The coarse tailings amended with coarse limestone (screen size -6.3 mm)

also produced highly acidic drainage (pH ~ 2.5 - 3.0 and acidity ~ 4,000 -

12,000 mg CaCO3/l), but its onset was delayed by approximately one year

in comparison to coarse tailings without limestone. The acid drainage

occurred with 90% of the available alkalinity still remaining in the sample;
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• The coarse tailings amended with pulverized wet ground limestone did not

produce any acidic drainage during the entire four year study period.

Oxidation and acid generation processes were active in these tailings as well,

but the fine grained limestone provided complete acid neutralization and

acidic drainage was prevented during the study period.

Submerged Condition:

• The submerged coarse tailings did not produce any porewater acidic

drainage for the first three years, but in the fourth year a weak acidic

drainage (pH ~ 5.5 - 7.0 and acidity ~ 10 -20 mg CaCO3/l) was observed ;

• In comparison to unsaturated coarse tailings, submersion of tailings

underwater decreased cumulative porewater acidity, sulphate and iron

loadings by factors of 295, 200 and 950 respectively;

• The submersion of coarse tailings also resulted in increased mobility and

release of Ra-226 in the porewater when tailings developed acidic

conditions at the surface after they were depleted of available alkalinity and

gypsum. There was a 10 fold increase in the cumulative loading of Ra-226 in

the porewater over that of unsaturated coarse tailings;

• The increased drainage of Ra-226 in the porewater was also accompanied

by that of iron, both occurring near the end of the fourth year, where as

gypsum was completely removed from the tailings during the first three

months of leaching;

• The surface water above submerged tailings contained low concentrations of

dissolved metals, when the water cover above the tailings was continuously

maintained in a well oxygenated condition by fresh water inflow and where

both surface and pore water flows were present in equal proportions. The

dissolved Ra-226 concentration in the surface water was also low, ranging

between 30 and 140 mBq/l.
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Total Mill Tailings:

Unsaturated Condition:

• The total mill tailings, in all test conditions, drained poorly and retained

appreciable amounts of moisture which controlled their oxidation and acid

generation rates;

• The unsaturated total mill tailings without limestone amendment also

produced acid drainage, but it was moderate and less acidic (pH ~ 2.0 - 3.0

and acidity ~ 500 - 1500 mg CaCO3/l) than for coarse tailings under similar

conditions;

• The total mill tailings amended with various screen-sized limestone did not

produce acid drainages during the entire study period. The tailings were

oxidizing slowly but the added limestone was actively consumed in providing

complete acid neutralization in all amended samples.

Waste Rock:

Unsaturated Conditions:

• The unsaturated crushed waste rock having a high acid generation potential

(NNP = -17.8 kg CaCO3/tonne) also oxidized and started to produce

highly acidic drainage ( pH ~ 2.0 - 2.5 and acidity ~ 7,000 - 20,000 mg

CaCO3/l) in the fourth year of the study period;

• The unsaturated crushed waste rock having medium (NNP = -10.7 kg

CaCO3/tonne) and low (NNP = +13.8 kg CaCO3/tonne) acid generation

potentials did not produce acidic drainage during the entire study period.
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DETAILED SUMMARY OF FINDINGS

In 1989, under the Mine Environmental Neutral Drainage (MEND) program, a joint research

project titled “Development of Wet Barriers on Pyritic Uranium Tailings for Controlling Acid

Generation” was established between CANMET, Elliot Lake Laboratory and Rio Algom

Limited, Elliot Lake, Ontario, Canada.  This research program encompassed a variety of

laboratory and field studies designed to evaluate the performance of a shallow water cover or

other wet barriers on pyritic uranium tailings as a close-out option for controlling acid generation

and release of metals and radionuclides.

As a part of this program, extensive laboratory column leaching studies were conducted to

evaluate oxidation and leaching characteristics of tailings and waste rock samples under

unsaturated conditions, tailings amended with 7.5 % (w/w) limestone of varying screen sizes,

and submerged coarse tailings.

For these tests, two types of  tailings and three types of waste rock were chosen.  The two

types of tailings were: total mill tailings (unclassified), approximately 50 % less than 74 µm; and

coarse tailings, approximately  84 % greater than 74  µm.  The three types of waste rock were

categorized as having, low   (NNP = +13.8), medium (NNP = -10.7) and high  (NNP = -17.8

kg CaCO3/tonne) acid generation potentials.  The experiments were conducted in PVC

columns, under unsaturated and submerged conditions. T he latter tests were conducted only for

coarse tailings, where a shallow water cover, approximately

0.45 m in depth, was provided using distilled water.

For both unsaturated and submerged cases, the tailings or waste rock were allowed to weather

at the exposed surface or tailing / water interface and leached with natural lake or distilled water

(for submerged tailings only).  The unsaturated tailings and waste rock were batch leached by

adding 1 l (litre) natural lake water every two weeks where as the submerged tailings were

trickle leached with a continuous inflow of distilled water.  The leachates were allowed to
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percolate through the test media and collected as drainage effluents from the bottom of the

columns in all cases.

The experiments, conducted at the CANMET, Elliot Lake Laboratory, were started in April

1989 and concluded in June 1993.

Table S1 provides a brief summary of various test conditions and porewater drainage (seepage)

quality results for this laboratory study.  The detailed leaching results, comprised of both the

drainage water quality and metal/radionuclide loadings are summarized below. In interpreting

these results, the reader is reminded of their origin under laboratory simulated and controlled

conditions, and they should be judged accordingly as well as in that context only.  The

laboratory conditions were designed to enhance chemical reactions  and may not represent

actual field conditions.

• The unsaturated coarse tailings without additional limestone (Control -2), were most

amenable to oxidation and acidic drainage.  These tailings drained quickly, had a high

hydraulic conductivity of 4 x 10-3 cm/s and produced a highly acidic drainage within two

months of batch leaching.

• During the acidic drainage period, the effluent from these tailings had an average pH of 1.2,

an oxidation-reduction potential (Eh) of 700 mV and an electrical conductance (Ec) of

40,000 µS/cm.  The effluent average loading rates were:  70,000 µg CaCO3 equivalent

acidity, 80,000 µg SO4
-2, 25,000 µg Fe, 690 µg Ca and 6.2 mBq Ra-226/kg tailings/day.

For the four year study period, the cumulative productions/removals (loadings) for major

species were, respectively, 58 % of total acid generation potential, 67 % of total sulphur,

68.7 % of total iron, 19 % of total calcium and 0.17 % of total Ra-226 contained in the

tailings.
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• The acidic drainage also caused significant mobilization and release of other metals and

radionuclides including:  Al, Ce, Cu, Mg, Mn, Ni, Pb, Th, U, Zn and various isotopes of

radium, Ra-223, Ra-224 and Ra-228.

 

• The acidic drainage in these tailings started prior to full consumption of the total available

alkalinity, although it was present only in a small amount.  At the time of acidic drainage,

approximately 60 -65 % of available alkalinity was still present in the tailings.

• It was estimated that under laboratory controlled conditions, a 0.45 m high column of coarse

tailings would be completely oxidized and  depleted of pyrite in approximately 6.5 years.

For Ra-226, it would take approximately 5000 years for complete removal excluding its

natural decay or ingrowth in this sample.

• Prior to the acidic drainage, the Ra-226 leachability from the coarse tailings was constant

and controlled by the gypsum solubility.  With the onset of the acidic drainage, it increased

with the leaching of thorium isotopes.  In the absence of gypsum, Ra-226 leachability

decreased with increasing acidity and sulphate ion concentration.  The mobilization and

release of thorium isotopes were accompanied by an increased release of radium isotopes

including Ra-228, Ra-226, Ra-224 and Ra-223.  At the peak acidic drainage period, the

activities of other radium isotopes were considerably higher than that of Ra-226.

 

• The unsaturated coarse tailings containing 7.5 % (w/w) of coarse limestone of screen size -

6.3 mm also oxidized and produced a highly acidic drainage.  The onset of the acidic

drainage in these tailings, however, was delayed by approximately one year in comparison to

coarse tailings without the additional limestone (Control -2) which occurred in two months.

• During the acidic drainage period, the effluent from the coarse tailings - coarse limestone

sub-group had an average pH of 2.5, Eh of 700 mV and Ec of 6000 µS/cm.  The effluent

average loading rates were:  25,000 µg CaCO3 equivalent acidity, 28,000 µg SO4
-2, 8000
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µg Fe, 3800 µg Ca and 7 mBq Ra-226/kg tailings/day.  The cumulative

productions/removals (loadings) for major species during the study period were,

respectively, 17 % of total acid generation potential, 25 % of total sulphur, 17 % of total

iron, 12 % of total calcium and 0.29 % total Ra-226 contained in the tailings-limestone

mixture.  The acidic drainage also caused significant mobilization and release of other

constituents including Al, Ce, Cu, Mg, Mn, Ni, Pb, Th, U and the various isotopes of

radium.

• The acid neutralization efficiency achieved for coarse limestone (-6.3 mm), prior to the

occurrence of the acidic drainage, was less than 10 %.  The acidic drainage in coarse tailings

- coarse limestone sub-group started with 90 % of the total available limestone alkalinity still

remaining in the mixture.

• The unsaturated coarse tailings mixed with 7.5 % (w/w) wet ground and pulverized limestone

did not produce any acidic drainage during the four year study period.  Oxidation and acid

generation were also taking place in these tailings, but the finely ground limestone provided

complete acid neutralization, thus preventing acidic drainage.

• During the study period, the effluent from coarse tailings - wet ground limestone sub-group

was nearly neutral to slightly alkaline with a pH of ? 8, Eh ? 480 mV and Ec ? 2200

µS/cm.  The effluent was saturated with respect to gypsum and contained appreciable

amounts of dissolved sulphate, calcium, and magnesium, resulting from acid neutralization,

and Ra-226.  In the absence of the acidic drainage, the release of other oxidation related

reaction products, e.g. acidity, Al, Ce, Cu, Fe, Ni, Pb, Th, U and Zn was absent or present

in trace amounts only.  Mn was present in small quantities in the neutral effluent.  The

cumulative productions/removals (loadings) for major constituents of the effluent were:  7 %

of total sulphur, 8.8 % of total calcium and

0.16 % of total Ra-226 contained in the tailings-limestone mixture.
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• Approximately 13 % of the total available limestone alkalinity in the coarse tailings - wet

ground limestone mixture was consumed in complete acid neutralization during the entire

study period.  For these samples, the remaining alkalinity would provide additional acid

neutralization for another 29 years assuming a 100 % limestone neutralization efficiency, and

for a shorter period at reduced efficiency.  The data did not permit determination of the

neutralization efficiency factor and prediction of acid drainage, if any.

• The unsaturated total mill tailings without additional limestone (Control -1) also produced

acid drainage, but it was moderate and less severe than for  coarse tailings(Control -2).

These tailings had a low hydraulic conductivity of 8.7 x 10-6 cm/s and retained appreciable

amounts of moisture which caused slow oxidation resulting in reduced acid generation and

release of oxidation reaction products.

• During the acidic drainage period, the effluent from Control - 1 tailings had an average pH of

~3.0, Eh ? 780 mV and Ec ? 2500 µS/cm.  The effluent contained appreciable amounts of

gypsum, and the average loading rates were:  2100 µg CaCO3 equivalent acidity, 6000 µg

SO4
-2, 100 µg Fe, 1500 µg Ca and 4 mBq Ra-226/kg tailings/day.  The cumulative

productions/removals (loadings) of major species during the entire study period were:  3 %

of total acid generation potential, 8 % of total sulphur, 0.33 % of total iron, 13.6 % of total

calcium and 0.08 % of total Ra-226 contained in the tailings.

• The acid generation rate for total mill tailings (Control - 1) was approximately 30 to 35 times

less than that for  coarse tailings(Control - 2).  The acidic drainage from these tailings also

caused mobilization and release of other metals and radionuclides:  Al, Ce, Cu, Mg, Mn, Ni,

Pb, Th, U, Zn and other isotopes of radium, but in reduced amounts.

• At the observed low acid generation rate, the present 0.35 m high column of unsaturated

total mill tailings without additional limestone would produce acid drainage for approximately

90 years.
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• Disposal of tailings as a homogeneous mixture without segregation of various particle size

fractions, would offer many advantages including:  low hydraulic conductivity and increased

surface drainage; increased water retention, high phreatic surface and shallow unsaturated

zone amenable to oxidation; low acid generation and effluent loading rates, and low

treatment costs;  and a low risk of cover failure.

• The unsaturated total mill tailings mixed with 7.5 % (w/w) limestone of various screen sizes,

from coarse (-6.3 mm) to wet ground and pulverized, did not produce any acidic drainage

during the entire study period.  Both, the oxidation and acid generation processes were also

active in these tailings-limestone sub-groups, but a low rate of acid generation resulted in a

complete acid neutralization for all limestone sizes and acidic drainage was prevented.  The

reactivity of the tailings decreased with the decrease in limestone particle size from coarse to

pulverized and wet ground.  The low rate of acid generation in combination with increased

effluent retention time, contributed to the complete acid neutralization for total mill tailings

mixed with coarse limestone as well.

• For all test columns containing total mill tailings amended with various screen sized limestone,

the effluents were saturated with respect to gypsum and the effluent average pH, Eh and Ec,

were, respectively, 7.5, 550 mV and 2200 µS/cm.  After two years, the effluents were

alkaline with alkalinity production (loading) rate of approximately 200 µg CaCO3/kg

tailings/day.  During the study period, the effluent average loading rates were:  5000 µg SO4
-

2, 1800 µg Ca and 3 mBq Ra-226/kg tailings/day.  The corresponding cumulative

productions/removals (loadings) were:  8.6 % of total sulphur, 5.7 % of total calcium, 22 %

of the initial gypsum and 0.06 % of total Ra-226 contained in the tailings.  The release of

other oxidation reaction products, acidity, Al, Ce, Cu, Fe, Ni, Pb, Th. U and Zn were

absent or present only in trace amounts.  Mn was present in small quantities in the neutral to

alkaline effluents.

• It was estimated that the added limestone alkalinity to total mill tailings would effectively

prevent acid drainage from test samples for approximately 100 years assuming a 100%
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limestone neutralization efficiency, and for a reduced period of time if the efficiency was less.

The data indicated that at 100% limestone neutralization efficiency, these tailings-limestone

samples should not produce any acidic drainages, but the determinations of their actual

neutralization efficiencies and predictions of acid drainages were not possible.

• Disposal of low sulphur tailings amended with finely ground pulverized limestone, added in

stoichiometric proportion to their maximum acid generation potential, in the form of a

thickened paste may provide an alternate insitu method of controlling acid generation above

the water table.

• For pyritic uranium tailings mixed with pulverized limestone, there was the added advantage

of immobilization and containment of the associated radioactivity in a gypsum controlled

system, further reducing the risk of environmental migration of radionuclides.

• For the submerged coarse tailings, there was no acidic drainage for the first three years of

the study.  With the initial high porewater flow, the tailings were depleted of gypsum and

other soluble minerals during the first three months of leaching.  After gypsum removal, the

drainage effluents were nearly neutral with a pH ∼ 7.0, Eh ∼ 425 mV and Ec ∼ 80 µS/cm.

During that period, no oxidation reaction products, most notably Fe, Al, Mn and Th, were

produced or released, and the tailings produced slightly alkaline effluents with alkalinity in the

range of 10 - 40 mg CaCO3/l.

• The submerged tailings started to produce slightly acidic porewater drainages in the fourth

year of the study, with effluents having pH’s of  ∼ 5.5, total acidities of  ? 10 - 20 mg/l,

dissolved total Fe concentrations of  ? 1 - 20 mg/l and Ra-226 concentrations of ? 5000 -

25,000 mBq/l.  The results indicated onset of a slow oxidation process at the surface of the

tailings contributing to 10 to 30 fold increases in Ra-226 mobilization and release to the

porewater associated with iron oxidation and its increased drainage.



xii

• After the removal of gypsum and other soluble minerals, the effluent average loading rates for

submerged coarse tailings were: 180 µg CaCO3 equivalent acidity, 300 µg SO4
-2, 20 µg Fe,

200 µg Ca and 150 mBq Ra-226/kg tailings/day.  The corresponding cumulative

productions/removals (loadings) were: 0.2 % of total acid generation potential, 0.03 % of

total sulphur, 0.07 % of total iron, 6 % of total calcium and 5.5 % of total Ra-226 contained

in the tailings.

• In comparison to unsaturated coarse tailings (Control - 2) and total mill tailings     (Control -

1), the shallow water cover on coarse tailings reduced total acidity production by factors of

295 and 10, total sulphate production by 200 and 20, and total iron production by 950 and

3, respectively.

• For total mill tailings mixed with 7.5 % limestone of various screen sizes, the corresponding

decrease in total acidity production was by factors of 1900, 50 and 7 when compared with

unsaturated coarse tailings, unsaturated total mill tailings and submerged coarse tailings,

respectively.  For the duration of the present study, the limestone amendment to total mill

tailings was more effective in preventing acid drainage than water cover on coarse tailings.

However, limestone was consumed in the acid neutralization process and its addition would

provide benefits for a finite period.

• For submerged tailings, the Ra-226 mobility was initially controlled by gypsum dissolution,

which decreased with the depletion of gypsum.  In the absence of gypsum, and without

oxidation, there was no corresponding increase in Ra-226 drainage although the effluent

sulphate concentrations were very low.  With the onset of a slow oxidation, the mobility of

Ra-226 increased significantly, up to 30 times the pre-oxidation value, and correlated with

the corresponding slow increase in iron and perhaps, Th-230 release.  The effluent sulphate

loading also increased at the same time, but it was statistically not significant.
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• The cumulative Ra-226 removal from submerged tailings during the study period was

approximately 30 to 50 times greater than those for unsaturated coarse and total mill tailings

without or with limestone amendments.  This increased Ra-226 drainage was   3 to 6 times

more than the corresponding increase in cumulative effluent volume for the submerged tailings

over those of the unsaturated tailings. Perhaps, in the absence of gypsum and/or the lack of a

moderate to severe acidification in the submerged tailings, the sulphate concentration was too

low to suppress or adversely effect radium solubility.

• In the water column above the tailings surface, when both surface and pore water flows were

present, and in the absence of gypsum, there was very little upward diffusion of dissolved

metals and oxidation reaction products except Ra-226, whose concentration varied between

30 - 140 mBq/l in the surface water. In comparison to porewater effluents, which became

slightly acidic, Ra-226 concentrations in the surface water were low and below the

regulatory discharge guidelines of 1000 mBq/l.

 

• Because of high porewater flows in the present study, the surface water quality above the

submerged tailings resembled that of the inflowing distilled water.  The surface water was

characterized by a pH in the range of ~ 5 - 5.7, Eh ~ 500 - 600 mV, Ec ~10 - 15 µS/cm,

both acidity and alkalinity in the range of ~ 3 - 6 mg CaCO3/l, SO4
-2

 ~ 3 - 8 mg/l, Fe ~ 0.01 - 0.05 mg/l, Ca ~ 0.1 - 1.0 mg/l and Mn ~ 0.08 - 0.1 mg/l.

• The leaching experiments for submerged tailings were conducted with distilled water which

lacked in alkalinity and organic matter contents of natural waters.  The observed increase in

radium mobility with the oxidation of tailings underwater, after gypsum had been depleted,

however suggested that additional oxidation control measures might be required in preventing

tailings from going acidic.

• In shallow waters, and, in the absence of oxygen consuming covers or barriers such as

organic-rich sediments, the tailings surface at the tailings-water interface was subjected to
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well oxygenated water and was amenable to oxidation.  In the presence of gypsum, the

radium mobility and release was limited and controlled by gypsum solubility with or without

oxidation of pyrite.  However, after all the gypsum was dissolved and removed,  further

oxidation of tailings contributed to additional release of radium isotopes via both surface and

ground water regimes. This scenario may occur many years after decommissioning and

monitoring phases, and should be given due consideration in environmental impact

assessment and modeling, as well as additional oxidation controlling measures.

• The unsaturated crushed waste rock with high acid generation potential (NNP = -17.8 kg

CaCO3/tonne) also oxidized and produced a highly acid drainage in the fourth year of the

study period.  The leaching characteristics resembled those of coarse tailings with 7.5 %

coarse limestone where delayed acid drainage occurred.

• In the acidic effluent, the average pH, Eh and Ec were, respectively, 2.2, 780 mV and 7000

µS/cm.  The effluent average loading rates were: 38,000 µg CaCO3 equivalent acidity,

42,000 µg SO4
-2, 12,500 µg Fe, 2000 µg Ca and 3.0 mBq Ra-226/kg       waste rock/day.

The cumulative productions/removals (loadings) during the four year study period for major

species were: 53 % of total acidity, 60 % of total sulphur, 31 % of total iron, 59 % of total

calcium and 0.08 % of total Ra-226 contained in the waste rock, respectively.

• The reactivity of the high acid generating crushed waste rock was higher than that for coarse

tailings, and most of its leaching occurred during the last year of the study period.  The acidic

drainage also caused significant mobilization and release of other constituents including Al,

Ce, Cu, Mg, Mn Ni, Pb, Th, U, Zn and various isotopes of radium.

• The acid drainage in the high acid generating waste rock also occurred with 75 % of the

available limestone alkalinity still remaining, resulting in an average neutralization efficiency of

approximately 25% for this type of crushed waste rock.  As the acid drainage related

concentration peaks of various species occurred during the last year of the study period, the
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data did not fully permit extrapolation and computations of reaction rate constants for acid

production and metal mobilities, etc.

• The unsaturated crushed waste rock with medium acid generation potential           (NNP = -

10.7 kg CaCO3/tonne) did not produce any acidic drainage during the study period.  The

results indicated that oxidation, acid generation and neutralization processes were active

within the waste rock, but the acid was completely neutralized preventing acidic drainage and

release of oxidation reaction products.

• During the study period, the effluent from medium acid generating waste rock was nearly

neutral to slightly alkaline with a pH of ? 7.5, Eh ? 400 mV and Ec ? 1000 µS/cm.  It

contained mostly dissolved gypsum, resulting from acid neutralization, and Ra-226.  The

effluent cumulative productions/removals (loadings) for major species were, respectively:

11.9 % of total sulphur, 30 % of total calcium and 0.04 % of total Ra-226 contained in the

waste rock.  Some limestone dissolution contributed to alkalinity and additional calcium in

the effluents.

• The acid neutralization rate for the medium acid generating waste rock was comparable to

that of high acid generating waste rock, and by the end of the study period approximately 20

% of the total limestone alkalinity had also been consumed in preventing acidic drainage.

From acid generation/neutralization rates, it was calculated that acidic drainage would occur

from this waste rock after approximately 12 years of leaching, at 100 % limestone

neutralization efficiency, and sooner if the efficiency was reduced.

• The unsaturated crushed waste rock with low acid generation potential (NNP = +13.8 kg

CaCO3/tonne), also did not produce any acidic drainage during the study period.  Similar to

the medium acid generating waste rock, oxidation, acid generation and neutralization

processes were all actively taking place in this waste rock also, but the neutralization was
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complete and acidic drainage and concomitant mobilization of oxidation reaction products

were absent.

• The effluents from low acid generating waste rock were slightly alkaline during the entire

study period with a pH of ~ 8.0, Eh ~ 450 mV and Ec ~ 1000 µS/cm.  The drainages were

mostly gypsum derived and contained appreciable amounts of calcium, and sulphate,

resulting from complete acid neutralization, and Ra-226.  The effluent cumulative

productions/removals (loadings) for major species were, respectively:  19 % of total sulphur,

11.6 % of total calcium and 0.06 % of total Ra-226 contained in the waste rock.

• During the study period, approximately 2.5 g CaCO3/kg waste rock or 9 % of total

limestone alkalinity was consumed in the complete acid neutralization process in the low acid

generating waste rock. Stoichiometrically, at 100 % limestone neutralization efficiency and at

the experimentally determined acid generation/neutralization rates, this waste rock should not

produce any acidic drainage.  However, at a decreased limestone neutralization efficiency,

acidic drainage may occur in the next twenty years or so, when all the sulphur contained in

the waste rock is expected to oxidize.

• The calculated acid generation and limestone neutralization rates, prior to acidic drainage, for

the three waste rock types were comparable, but only the high acid generating waste rock

produced acidic drainage  The low total neutralization potential of 8.5 kg CaCO3/tonne for

the high acid generating waste rock and perhaps, the size and distribution of alkali minerals

with respect to sulphides were contributing factors in this waste rock.  For the other two,

low and medium acid generating waste rock, the total neutralization potentials were,

respectively, 26.82 and 15.06 kg CaCO3/tonne.

In conclusion, the usefulness of column leaching tests has been well demonstrated in

understanding the oxidation and leaching kinetics of reactive tailings and waste rock, and for

evaluating various decommissioning options.
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A shallow water cover on pyritic uranium tailings is very effective in controlling/limiting their

oxidation and acid generation to very low rates, but lacked in complete prevention. The tests

have also shown that radium mobility increases, in the absence of gypsum, when acidic

conditions develop at the surface of underwater deposited tailings. Limestone amendments to

tailings , in some cases, provided short-term controls on acidic drainage.
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Table S1:  Summary of test conditions and porewater effluent (seepage) quality results for column leaching studies.

Experimental
Arrangement

Sample
Type

Material
Classification

Amendments Leaching
Conditions

Leaching
Solution

Porewater Effluent Characteristics

Acid Mine
Drainage

Effluent
pH

Major Metals and
Radionuclides

Group #1

Columns
#1 - #3

Tailings
(Control-1)

Unclassified
total mill
tailings,
un-oxidized

None Unsaturated Gravel pit
lake water

Yes
Moderate
acidity:
500 - 1500
mg CaCO3/l

Initial
7.0 - 8.0
final
2.0 -3.0

Al, Ca, Ce, Cu, Fe,
Mg, Mn, Ni, Pb, Zn,
Th, U and
Ra-226 (500 - 3500
mBq/l)

Columns
#4 - #6

Tailings Unclassified
total mill
tailings,
un-oxidized

7.5% (w/w)*
coarse
limestone,
size -6.3 mm

Unsaturated Gravel pit
lake water

None 7.0 - 8.0 Ca, Mg, Mn and
Ra-226 (300 - 2000
mBq/l)

Columns
#7 - #9

Tailings Unclassified
total mill
tailings,
un-oxidized

7.5% (w/w)*
medium size
limestone,
size -2.4 mm

Unsaturated Gravel pit
lake water

None 7.0 - 8.0 Ca, Mg, Mn and
Ra-226 (300 - 2000
mBq/l)

Columns
#10 - #12

Tailings Unclassified
total mill
tailings,
un-oxidized

7.5% (w/w)*
fine limestone,
size -0.84 mm

Unsaturated Gravel pit
lake water

None 7.0 - 8.0 Ca, Mg, Mn and
Ra-226 (300 - 2000
mBq/l)

Columns
#13 - #15

Tailings Unclassified
total mill
tailings,
un-oxidized

7.5% (w/w)*
pulverized wet
ground
limestone

Unsaturated Gravel pit
lake water

None 7.0 - 8.0 Ca, Mg, Mn and
Ra-226 (300 - 2000
mBq/l)
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* w/w = weight percentage
Table S1(continued):  Summary of test conditions and porewater effluent (seepage) quality results for column leaching studies.

Experimental
Arrangement

Sample
Type

Material
Classification

Amendments Leaching
Conditions

Leaching
Solution

Porewater Effluent Characteristics

Acid Mine
Drainage

Effluent
pH

Major Metals and
Radionuclides

Group #2

Columns
#16 and #17

Tailings
(Control-2)

Coarse
tailings,
un-oxidized

None Unsaturated Gravel pit
lake water

Yes,
High acidity:
12,000-30,000
mg CaCO3/l

Initial
7.5 - 8.0
final
1.0 - 2.0

Al, Ca, Ce, Cu,
Fe, Mg, Mn, Ni,
Pb, Zn, Th, U and
Ra-226 (100 -
5000 mBq/l)

Columns
#18 and #19

Tailings Coarse
tailings,
un-oxidized

7.5% (w/w)*
coarse
limestone,
size -6.3 mm

Unsaturated Gravel pit
lake water

Yes,
1 year delay,
High acidity:
4000-12,000
mg CaCO3/l

Initial
8.0 - 8.5
final
2.5 - 3.0

Al, Ca, Ce, Cu,
Fe, Mg, Mn, Ni,
Pb, Zn, Th, U and
Ra-226 (600 -
4500 mBq/l)

Columns
#20 and #21

Tailings Coarse
tailings,
un-oxidized

7.5% (w/w)*
pulverized
wet ground
limestone

Unsaturated Gravel pit
lake water

None 8.0 - 8.5 Ca, Mg, Mn and
Ra-226 (500 -
2000 mBq/l)

Group #3

Columns
#22 - #24

Tailings Coarse
tailings,
un-oxidized

None Submerged Distilled
water

None for the
first three years,
very weak in
the fourth year:
acidity 10-20

Initial
7.5 - 8.0
final
5.5 - 7.0

Ca, Fe, Mg, Mn,
and Ra-226 (1000
- 27,000 mBq/l)
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mg CaCO3/l
* w/w = weight percentage
Table S1(continued):  Summary of test conditions and porewater effluent (seepage) quality results for column leaching studies.

Experimental
Arrangement

Sample Type Material
Classification

Amendments Leaching
Conditions

Leaching
Solution

Porewater Effluent Characteristics

Acid Mine
Drainage

Effluent
pH

Major Metals
and
Radionuclides

Group #4

Columns
#25 and #26

Waste rock Crushed,
size -2.0 mm,
un-oxidized,
medium acid
generating,
NNP = -10.7 Kg
CaCO3/tonne

None Unsaturated Gravel pit
lake water

None 7.2 - 8.0 Ca, Mg, U and
Ra-226 (50 -
300 mBq/l)

Columns
#27 and #28

Waste rock Crushed,
size -2.0 mm,
un-oxidized, high
acid generating,
NNP = -17.8 Kg
CaCO3/tonne

None Unsaturated Gravel pit
lake water

Yes:
3 year delay,
High acidity:
7,000-20,000
mg CaCO3/l

Initial
7.5 - 8.0
final
2.0 - 2.5

Al, Ca, Ce, Cu,
Fe, Mg, Mn, Ni,
Pb, Zn, Th, U
and Ra-226 (100
- 2000 mBq/l)

Columns
#29 and #30

Waste rock Crushed,
size -2.0 mm,
un-oxidized, low
acid generating,
NNP = +13.8 Kg
CaCO3/tonne

None Unsaturated Gravel pit
lake water

None 7.5 - 8.0 Ca, Mg, U and
Ra-226 (100 -
450 mBq/l)
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1.  INTRODUCTION

CANMET, Elliot Lake laboratory and Rio Algom Limited, Elliot Lake Division, under the

umbrella of the Mine Environment Neutral Drainage (MEND) Program, signed a memorandum

of understanding (MOU) in 1989, to undertake a three year joint research program dealing with

the development of a shallow water cover or wet barriers on pyritic uranium tailings.  The

objective was to investigate the feasibility of establishing such covers on existing tailings, as a

decommissioning option, for long term management and control of acid generation, and to study

the associated mobilization of heavy metals and radionuclides.

During this program, CANMET, Elliot Lake Laboratory conducted extensive laboratory and

field investigations for evaluating the oxidation, leaching and limestone neutralization

characteristics of unclassified total mill tailings, coarse mill tailings and waste rock, and the role

of a shallow water cover and wetlands in controlling acid generation and release of tailings

derived contaminants into the environment.  Rio Algom Limited undertook detailed geotechnical

studies dealing with the establishment of a large scale field demonstration and water cover test

site, its construction as a pilot project and monitoring of its performance for water cover

retention and impact on  surface and ground water quality.  At the completion of these studies,

Rio Algom Limited awarded a contract to CANMET, Elliot Lake Laboratory in late 1993 for

compilation and reporting of the laboratory experimental results.  This work was performed by

N. Davé and the scientific and technical staff of the Elliot Lake laboratory.

1.1 Acid Generation Control - Shallow Water Cover / Wet Barriers

Uranium mining waste in Elliot Lake is both acid generating and slightly radioactive.  Acid

generation is the single most important problem causing mobilization of iron, other    metals and

radionuclides resulting in a low level radioactive acid mine drainage.  With the  acidic conditions,

most of the uranium and thorium decay series radionuclides are also mobilized, notably

radioisotopes of U, Th and Ra, etc.  Ra is also leached at neutral and alkaline pH conditions but
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its solubility is inversely dependent upon the sulphate ion concentration.  With unsaturated

conditions and upon drying, the waste material is further subjected to wind erosion, where

dispersal of radioactive dust particulates, and radon gas and its progeny  also becomes very

important factor that needs to be addressed when considering the long term management

aspects of these wastes.

Acid generation from reactive sulphide wastes can be controlled by eliminating or reducing one

or more of the essential components:  Reactive sulphide minerals, water or moisture and

oxygen; or by controlling the environment at source in order to retard the rate of acid generation

to an insignificant level.  The exclusion of oxygen from the reactive waste is probably the most

effective long-term acid generation control technique.  Appropriate cover materials for the

purpose of limiting oxygen entry include water, low permeability soils and clays, synthetic liners

and their combinations.

Water, with its low oxygen diffusion coefficient (2x10-9 m2 s-1) and low oxygen solubility (~8.6 g

m-3 at 25 °C), is probably the most economical and best oxygen limiting cover that is readily

available for acid generation control measures.  In the absence of convective transport , the rate

of oxygen diffusion through water is too slow to be of any significance for acid generation (Davé

1992).

Similar to oxygen, the diffusion coefficient of radon gas in water (1.13 x 10-9 m2 s-1 ) is

approximately four orders of magnitude lower than in air (1.1 x 10-5 m2 s-1 ) (Tanner, 1964 and

Nielson et. al 1984).  Further, in comparison to dry tailings, the radon exhalation rates from wet

and saturated uranium tailings decreased by factors of  4 to 20, depending upon the degree of

moisture saturation and particle size distribution of the tailings (Silker, et al 1979, Davé and Lim

1987, Silker and Heasler 1979, Strong K. P. and Levins, D. M, 1982, Macbeth et. al, 1977).

A water cover on uranium tailings, thus offers the added advantage of reducing or eliminating

radon exhalations and its decay products, as well as controlling the airborne dispersal of

radioactive dust particulates.
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Water cover or wet barriers on acid generating uranium tailings and waste rock provides the

following four important control measures:

1. Limiting available oxygen for the oxidation process, and hence controlling acid generation,

2. Eliminating surface erosion by wind and water action when placed in a depositional basin,

thus controlling dusting problems,

3. Creating a reducing environment suitable for supporting nitrate and sulphate reducing micro-

organisms in sediment/substrate where, respectively, ammonia alkalinity and hydrogen

sulphide gas are produced.  The latter reacts with dissolved metals and precipitates

insoluble metal sulphides, and

4. Attenuating or eliminating radon gas exhalations and radioactive dust particulates from the

uranium waste.

1.2 Background to the Study

In the uranium mining district of Elliot Lake, Ontario, all the operating uranium mines, except

one, are closed because of poor uranium prices and low ore grades.  In 1990, Rio Algom

Limited, Elliot Lake Division, closed the Quirke and Panel Mines, with the remaining Stanleigh

Mine, scheduled to cease operation in 1996 .  In 1992, another mining company, Denison

Mines, shut down its only operating mine.  There are approximately 170 million tonnes of

uranium tailings deposited at various surface impoundment facilities that will be decommissioned.

The uranium mill tailings in the Elliot Lake region are acid generating, low level radioactive

wastes, containing approximately 5 to 7% pyrite and low concentrations (10 to 15 Bq g-1) of

uranium and thorium decay series radionuclides, e.g. U-238, U-234, Th-232, Th-230, Ra-228,

Ra-226, and Pb-210 etc.  Although the tailings were discharged at neutral to alkaline pH’s, the

resident alkalinity of the host rock was consumed in the milling  process, where an acid leach

process was used for uranium extraction.  Consequently, these tailings have low buffering

capacity.  Acid generation and the concomitant release of metals and/or radionuclides are
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environmental problems that need to be addressed when evaluating decommissioning options

for such wastes.

In the past, many such inactive tailing sites have been successfully reclaimed by re-vegetation

which has been very effective in providing physical stability and improving aesthetics.  The

vegetative cover, however, has not been effective in providing any control over acid generation

and migration of contaminants (Veldhuizen et al 1987, Davé and Lim 1988, and Boucher et Al

1989).

With the wet barriers/water cover as an emerging technology for controlling acid generation as

well as radon exhalation, both Elliot Lake mining companies have proposed decommissioning of

their recently inactive tailings sites by a large scale submersion of  tailings underwater and

establishment of an insitu water cover.  All of the sites are ideally situated in valleys with cross-

valley engineered dams and favourable topography for providing a permanent water cover.

Rio Algom’s plan for covering Quirke and Panel waste management areas (Fig. 1) with water

consists of raising the crests of low elevation impoundment dams to submerge all the exposed

waste underwater either as a single basin (Panel site) or as a multi cell terraced basin (Quirke

site).  In both cases, a minimum of 0.6 m deep water cover will be provided at high elevation

tailings discharge locations.  At far ends and low elevation locations, the depth of the water

cover may vary from 1 m to several meters.

The Quirke waste management area contains approximately 48 million tonnes of uranium mine

tailings and development waste rock (approximately 4 million tonnes), and covers an area of

190 ha with a drainage basin of 275 ha (Balins et 1991 and Kay et Al 1992).  There is a 15 m

elevation difference between the west end of the Quirke tailings basin and the east end effluent

discharge area.  To enable covering the tailings with water, the basin will be developed in a

terraced manner by constructing four internal dykes and dividing the basin into a series of

internal cells, which will effectively deal with the decrease in the tailings’ surface elevation from
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west to east (Figures 2 and 3).  The drop in elevation from cell to cell will be about 4 m,

representing an overall average gradient of approximately 0.5%.  These internal cells will be

retained by dykes constructed of mine waste rock, tailings and glacial till.  The Quirke Waste

Management Area will be allowed to submerge underwater by normal precipitation over the

entire basin by collecting the area run-off in a nearby Gravel Pit Lake and diverting its overflow

to the tailings basin..

The Panel Waste Management area contains (Figure 4) approximately 16 million tonnes of

uranium mine tailings and waste rock (approximately 0.5 million tonnes), and covers an area of

84 ha in the main basin and 39 ha in the south basin.  The south basin contains relatively small

quantity of tailings that are about 30 years old and already underwater.  The main basin will be

covered with water as a single cell by natural precipitation (Rio Algom 1993).

In 1989, while preparing decommissioning plans for the facility, Rio Algom limited requested

CANMET’s participation in developing and undertaking a joint study program for evaluating

oxidation and leaching characteristics of exposed and submerged tailings and waste rock,

limestone neutralization of exposed tailings, and radionuclide leaching characteristics of water

covered tailings.  The concept of establishing wetland on submerged tailings, characterization of

existing wetlands on/or near uranium tailings and their propagation and transplantation studies

were also included in the study.

This research program offered a unique opportunity of studying large scale insitu establishment

of water cover on reactive acid generating tailings, which was of importance to the mining

industry and MEND.  Consequently, the present joint research program was initiated in 1989 to

evaluate the feasibility of establishing a shallow water cover on pyritic uranium tailings and

determine its performance, both under laboratory controlled conditions and in the field.  Funding

for the program was approved by MEND and shared jointly by CANMET and Rio Algom

Limited.
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1.3 Wet Barriers Research Program

The research program consisted of the following study projects:

• Literature review on the state of the art use of wet barriers and wetlands, both natural and

constructed, for controlling acid mine drainage,

• Field evaluations of established wetlands on existing tailings sites and their immediate vicinity

in the Elliot Lake area,

• Development and implementation of small scale field test plots to evaluate the suitability of

local wetland vegetation species for transplantation and establishment on existing tailings,

and determination of a suitable planting methodology,

• Column leaching and limestone neutralization tests to determine the oxidation rate of pyrite

and leaching rates of iron, calcium sulphate (gypsum) and radionuclides, both under

unsaturated and saturated (submerged) conditions.  Evaluation of the effectiveness of adding

limestone, or other natural alkaline materials, in varying concentrations and varying screen

sizes to neutralize porewater acidity in tailings, produced as a result of pyrite oxidation,

• Column leaching studies of crushed waste rock of different acid generation potentials under

unsaturated conditions,

• Diffusion and oxidation studies of underwater disposed un-oxidized (fresh), and oxidized

uranium mill tailings,

• Development of a large scale field demonstration and water cover test plot on existing

tailings for assessing the role of water cover/wetland in controlling acid generation,

• Hydrological assessment of the field demonstration site for water retention and storage

capacity of the tailings material, water balance of the area, storm flow control, and water

cover management during operational and draught conditions,

• Review and assessment of various internal dykes and cells designed for water retention

capabilities, mechanical stability and acid generation controls,

• Installation of field instrumentation and monitoring of the surface and ground water quality

for evaluating the hydro-geochemistry of the field demonstration site and other pertinent field

sites before and after the establishment  of water covers/wet barriers,
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• Compilation of all monitoring data needed to calibrate, confirm and verify various models

developed for predicting oxidation of pyrite and leaching of metals and radionuclides from

uranium tailings.

CANMET, Elliot Lake laboratory conducted the laboratory experimental at its facility in Elliot

Lake, and the field survey and monitoring work was done in collaboration with Rio Algom

Limited.  A large 65 ha field demonstration and water cover test site for this project was

developed by Rio Algom Limited at the Quirke Waste Management Area.  The site has been

continuously maintained underwater since October 1992 and monitored for its hydrological,

meteorological and water quality parameters.

In addition to the above studies, a separate environmental monitoring and survey project

consisting of evaluating a natural wetland basin containing partially submerged pyritic uranium

tailings (Panel Wetland) was also undertaken by CANMET, Elliot Lake laboratory in

collaboration with Rio Algom Limited.  Shared funding for this program was provided by the

Ontario Ministry of Northern Development and Mines (MNDM).

To-date, the following reports have been prepared and are available for distribution through

MEND secretariat and Rio Algom Limited, Elliot Lake:

• Wetlands and Their Role in Treating Acid Mine Drainage - A Literature Review (Davè and

Lim 1989),

• Panel Wetlands - A Case History of Partially Submerged  Pyritic Uranium Tailings Under

Water (Davé 1993),

• Investigations of the Hydrological Aspects of the Quirke Mine Waste Management Area

Decommissioning Plan (Cummings and Cockburn 1991),

• Geotechnical Aspects of Decommissioning the Quirke Mine Waste Management Area

(Golder Associates, 1991).
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Preliminary results of this study program were reported in 1990 by Davé et al (1990) and more

detailed results by Davé and Vivyurka (1993 and 1994).  This report provides a comprehensive

description of the laboratory lysimeter studies and in-depth analysis of the results obtained.

2.  LABORATORY LYSIMETER STUDIES - EXPERIMENTAL METHODOLOGY

The laboratory lysimeter studies were conducted at the CANMET, Elliot Lake Laboratory and

consisted of the following separate experimental arrangements:

• Column lysimeter leaching experiments, and

• Diffusion lysimeter transfer flux experiments.

2.1 Objectives and Study Plans

The column lysimeter leaching experiments were undertaken for determining the oxidation and

leaching characteristics of unclassified total mill tailings, coarse tailings, and crushed waste rock,

all under unsaturated conditions, and submerged coarse tailings with 0.4 m water cover.

Additional studies were conducted for the evaluation of neutralization characteristics of

commercial agricultural grade limestone of various grain sizes, mixed separately with unclassified

total mill tailings and coarse tailings, allowed to weather and leached under unsaturated

conditions.

The diffusion lysimeter studies were conducted for determining the diffusion related transfer

fluxes of soluble minerals, oxidation reaction products and radionuclides, across the solid liquid

interface, from un-oxidized and oxidized tailings deposited under 0.3 m water cover.  These

studies determined the diffusion controlled surface water quality of underwater deposited tailings

in the absence of vertical advection or porewater flow.  The un-oxidized tailings had been under

a continuous water cover for the past twelve years and the oxidized tailings were freshly
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deposited underwater in 1990., both in the laboratory diffusion lysimeters for related previous

studies.

The details of the column leaching experiments are discussed in this report and those of the

diffusion flux experiments are given separately in an accompanying report (Part III).

2.2 Column Lysimeter Leaching Studies

As mentioned previously, column lysimeter leaching tests were conducted to determine

oxidation and leaching characteristics of pyritic uranium tailings under unsaturated (control) and

submerged conditions, and mine development waste rock.  Tests were also conducted for

available net neutralization potentials for coarse and fine grained limestone mixed with tailings.

The results of this study would be useful in evaluating the effectiveness of various covers,

disposal methods and surface amendments in controlling acid generation, and determining the

economics of their applications.

For these tests, two types of tailings and three types of waste rock were chosen. The tailings

were:

• Un-oxidized total mill tailings (fresh and unclassified), approximately 50% less than 74 mm

or-200 mesh, obtained from the tailings filtration circuit of Rio Algom’s Quirke mill.

• Un-oxidized (fresh) coarse tailings, 94% greater than 74 µm or +200 mesh, obtained from

the Quirke West Arm tailings area.

The waste rock was selected from the Quirke West Arm internal dykes and roadways and

classified into the following three acid generation categories:

• High acid generation potential waste rock a having net neutralization potential

(NNP) of -17.8 kg CaCO3 /tonne,
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• Medium acid generation potential waste rock having a net neutralization potential (NNP) of

-10.7 kg CaCO3 /tonne, and

• Low acid generation potential waste rock having a net neutralization potential

(NNP) of +13.8 kg CaCO3 /tonne.

The limestone used was of commercial agricultural grade screened to sizes of -6.3 mm

(-4 mesh), -2.4 mm (-8 mesh), -0.84 mm (-20 mesh), and wet ground and pulverized.

For tailings, the leaching tests were conducted for both unsaturated and submerged conditions,

and the limestone neutralization tests were conducted for the two tailings, each mixed with 7.5%

(by weight) limestone of various screen sizes, and under unsaturated conditions as follows:

Un-saturated Conditions:

• Un-oxidized total mill tailings (fresh and unclassified) without additional limestone (Control -

1),

• Un-oxidized total mill tailings (fresh and unclassified) mixed with 7.5% (by weight) limestone

of screen sizes: -6.3 mm, -2.4 mm, -0.84 m, and wet ground,

• Un-oxidized (fresh) coarse tailings without additional limestone (Control - 2),

• Un-oxidized (fresh) coarse tailings mixed with 7.5% (by weight) limestone of screen size -

6.3 mm, and wet ground,

• Un-oxidized crushed waste rock (-6.3 mm, 0.25 inch) having the three different acid

generation potentials

The limestone, 7.5% by weight, was added in stoichiomatric proportion to the total acid

generation potential of tailings containing 5% pyrite.

 

 

 Submerged Conditions with 0.45 m Water Cover:

• Un-oxidized (fresh) coarse tailings without additional limestone.
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For leaching under submerged conditions, only coarse tailings were chosen for their high

oxidation potential when unsaturated and low residual limestone and gypsum contents which

allowed study of leaching and dissolution kinetics of Ra-226 and other radionuclides, both

before and after gypsum removal.

The laboratory experimental arrangement of submerged tailings was designed to simulate

conditions of the field demonstration water cover test site at the Quirke Mine Waste

Management area.  This test site, designated as Quirke Cell #14, is located at the high elevation

western part of the Quirke Tailings basin (Fig. 2) and contained mostly coarse tailings near the

surface and along the perimeter dams.  The course tailings drained rapidly and are susceptible to

oxidation when exposed.  Upon submersion, a certain oxidation probability still existed for

exposed beaches and uplands during dry summer periods or draught conditions.  Also, at this

site the water flow is predominantly through the groundwater regime transporting the oxidation

reaction products (if any) downstream including dissolved gypsum, metals and radionuclides etc.

2.3 Experimental Details

2.3.1 Column Lysimeter  - Experimental Arrangement

The leaching experiments were conducted using cylindrical column lysimeters made from

schedule 80 grey PVC pipe, of thickness 1.25 cm and nominal diameter 15.2 cm (I.D. 14.5

cm).  Each column was approximately 122 cm in height  and closed at the bottom end with a

PVC end cap that contained, in the middle, a 1.25 cm diameter PVC fitting for drainage via a U

- tube. A 60 cm long polypropylene drainage tube was connected to the fitting, and bent

appropriately to form a U trap at the bottom and another inverted U at the top, whose height

defined the water table elevation in the test sample. Another PVC fitting, 1.9 cm in diameter,

was connected approximately 25 cm below the top of the lysimeter for overflow.   This

arrangement provided a water trap in the effluent drainage line for preventing air entry and waste
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oxidation from the bottom.  At the bottom, the lysimeter column contained two 6.5 cm thick

layers, one each of clean sand and gravel, for filter and bed support purposes.  Each column

contained approximately 14.3 kg of the sample material which filled it to a height of 35 cm

above the filter bed for unclassified total mill tailings, and 45 cm for coarse tailings and waste

rock.

Figs. 5 and 6, show, the experimental arrangements of column lysimeters for leaching under

unsaturated and submerged conditions, respectively.

In total 30 such columns were filled with tailings or tailings and limestone mixture or waste rock,

and grouped into the following four experimental arrangements:

Group 1:  Un-oxidized Total Mill Tailings (Unclassified), Unsaturated Conditions

Contained five sets, each with three replicates, and consisted of:

• Columns #1-3, containing un-oxidized total mill tailings without additional limestone, Control

- 1,

• Columns #4-6, containing un-oxidized total mill tailings mixed with 7.5% (by weight) coarse

limestone of screen size -6.3 mm (-4 mesh),

• Columns #7-9, containing un-oxidized total mill tailings mixed with 7.5% (by weight)

medium size limestone of screen size -2.4 mm (-8 mesh),

• Columns #10-12, containing un-oxidized total mill tailings mixed with 7.5%

(by weight) fine limestone of screen size -0.84 mm (-20 mesh), and

• Columns #13-15, containing un-oxidized total mill tailings mixed with 7.5%

(by weight) wet ground limestone.

Group 2:  Un-oxidized Coarse Tailings, Unsaturated Conditions
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Contained three sets, each with two replicates, and consisted of:

• Columns #16 and 17, containing un-oxidized coarse tailings without additional limestone,

Control - 2,

• Columns #18 and 19, containing un-oxidized coarse tailings mixed with 7.5%

(by weight) coarse limestone of screen size -6.3 mm (-4 mesh), and

• Columns #20 and 21, containing un-oxidized coarse tailings mixed with 7.5%

(by weight) wet ground limestone.

Group 3:  Un-oxidized Coarse Tailings, Submerged Conditions

Contained a single set with three replicates and consisted of:

• Columns #22-24, containing un-oxidized coarse tailings without additional limestone and

covered with a 0.4 m of water cover.

Group 4:  Un-oxidized Waste Rock, Unsaturated Conditions

Contained three sets, each with two replicates, and consisted of:

• Columns #25-26, containing crushed waste rock (size -2.0 mm) of medium acid generation

potential, having a net neutralization potential (NNP) of -10.7 kg CaCO3/tonne.

• Columns 27-28, containing crushed waste rock (size -2.0 mm) of high acid generation

potential, having a net neutralization potential (NNP) of  -17.8 kg CaCO3/tonne), and

• Columns 29-30, containing crushed waste rock (size 2.0 mm) of low acid generation

potential, having a net neutralization potential (NNP) of  + 13.8 kg CaCO3 /tonne.

The initial set up of columns was followed, in order, by saturated hydraulic conductivity

measurements, inoculation of columns with Thiobacillus ferro-oxidans culture solution and

column leaching experiments.
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2.3.2 Sampling Procedure:  Tailings and Waste Rock

The required tailings and waste rock samples were collected by personnel from the Research

and Development department (during its operational period) of Rio Algom Limited.  The

following sections detail the sample collection methods for total mill tailings, coarse tailings and

waste rock.

2.3.2.1 Unclassified Total Mill Tailings

Representative, fresh (un-oxidized) and unclassified “Total Mill Tailings” samples for these tests

were collected daily, in batches over a period of five days, from the solid-liquid filtration circuit

of the Quirke Mill.  Each day, a total of 21 sample batches, each weighing approximately 5 kg,

were collected and arranged as shown in table 1. This sampling procedure was followed to

ensure that representative and well mixed tailings samples were  obtained, over a reasonable

milling period, prior to any segregation of particle size following discharge of tailings.

Table 1. Sample arrangement: batch sampling of total mill tailings from Quirke Mill filtration
circuit.

DAY
NO.

SAMPLE NO.

1 A1, B1, C1, etc. ...                                   ...U1
2 A2, B2, C2, D2, etc. ...                             ...U2
3 A3, B3, C3, D3, E3, etc. ...                       ...U3
4 A4, B4, C4, D4, E4, F4, etc. ...                 ...U4
5 A5, B5, C5, D5, E5, F5, G5, etc. ...           ...U5

A true representative mixture of unclassified total mill tailings containing a broad range of grain

size from coarse to fine tailings was achieved by creating a composite sample, such as

composite sample #1, which was made by mixing samples A1, A2, A3, A4 and A5, obtained

during the five day sampling period.
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Similarly, for composite sample #2, batch samples B1, B2, B3, B4 and B5 were mixed.  A total

of 21 similar composite samples were thus created as unclassified total mill tailings.  These

samples were first de-watered to remove the remaining liquid, followed by drying in a nitrogen

environment to avoid oxidation, packed in plastic bags and transported to the CANMET

Laboratory for loading the experimental columns. For the purpose of this report, to simplify the

terminology, these tailings are referred throughout as total mill tailings.

2.3.2.2 Coarse Tailings

The un-oxidized coarse tailings samples were obtained directly, as field samples, from the West

Arm tailings basins of Quirke Waste Management area, near the tailings discharge point.

Random grab samples were collected of freshly discharged tailings in a bucket from the surface

of the settled tailings in the basin and blended in the field.  Multiple sample buckets were

collected from the entire sampling area to create 20 random field samples, each containing

approximately 10 kg of tailings and bagged individually for transportation to the CANMET

Laboratory.  Size distribution analysis on a random composite field sample showed that the

tailings contained less than 4% (by weight) of size fraction less than 75 µm (- 200 Mesh). In this

report, these tailings are referred throughout as coarse tailings.

2.3.2.3 Waste rock

The waste rock samples were also collected in the field from the West Arm tailings basin of the

Quirke Waste Management Area, where the waste rock was used in the construction of internal

dykes and access roads.  A total of 12 random samples approximately 15-20 kg each, were

collected from different locations over a period of two months. The waste rock, originating from

the Quirke Mine, was relatively un-weathered, and was sampled during the construction of the

internal dyke at Cell #14, the water cover experimental test site.

Individual waste rock samples were crushed, using jaw and roller crushers, to 2 mm diameter

particle size (-10 mesh) and a representative sample from each batch was collected.  These

representative samples were oven dried at 70 °C in dry nitrogen environment (oxygen free),
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cooled and pulverized first in a disk grinder followed by a ball mill.  The pulverized waste rock

samples were analyzed for total sulphur content (acid  generation potential) and total available

alkalinity, measured as kg CaCO3/tonne waste rock, and their net neutralization potentials

(NNP) were determined.  Based on these results, the waste rock samples were classified into

the following three categories:

• Quirke waste rock, sample A (QWR-A), medium acid generation potential, having an

average net neutralization potential (NNP) of -10.7 kg CaCO3 /tonne.

• Quirke waste rock, sample B (QWR-B), high acid generation potential, having an average

net neutralization potential (NNP) of -17.8 kg CaCO3 /tonne, and

• Quirke waste rock, sample C QWR-C), low acid generation (net acid consumption)

potential,  having an average net neutralization potential (NNP) of +13.8 kg CaCO3/tonne.

These samples, labeled as QWR-A, B, and C, were individually bagged and transported to the

CANMET laboratory for column leaching experiments.

2.3.3 Sample Preparation and Column Loading

The samples were prepared for individual column sets in each experimental group by randomly

selecting individual composite samples from each group and mixing them in a cement mixer for

one hour.  For example, for columns #1-3, (Control - 1) samples, several bags of total mill

tailings were selected and mixed to produce a total of 53.5 kg of the sample.  The mixed sample

was divided into two or three equal portions, depending upon sample replicates, and a 14.3 kg

portion of the mixed sample was placed in each column which filled it to a height of 35 to 45 cm

above the sand and gravel filter depending upon the particle size of the sample material.  Coarse

tailings and waste rock samples filled the columns to greater heights than those of total mill

tailings which, because of their particle size distribution, compacted more.  The excess mixed

sample was retained for physical and chemical analyses and as an additional backup sample.
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For tailings samples mixed with limestone, 53.5 kg of a given tailings sample were mixed with 4

kg of limestone of certain screen size to produce a homogeneous mixture containing 7.5% of

limestone by weight proportions.

All loaded columns were set upright in a wooden support frame, for column permeability and

leaching experiments.

2.3.4 Column Permeability Measurements

The saturated hydraulic conductivity or column permeability of each column was measured using

a constant head method using the experimental arrangement for submerged tailings as shown in

Figure 6.

Initially after loading, all columns were filled with distilled water from the bottom to displace

trapped air.  Occasionally a rubber mallet was used to tap the columns to enhance the

settlement of tailings/waste rock and further release trapped air.  The columns were then  filled

with distilled water up to the overflow level by adding water continuously from the top, allowing

the test materials to settle and consolidate further, and the flow was reversed allowing a free

drainage from the bottom.

For saturating hydraulic conductivity measurements, distilled water was added at an appropriate

constant flow rate at the top of the column for maintaining a constant water head above the test

material, and its flow volume (V, ml) in a given time (t, sec) through the column was measured.

With a given hydraulic head (h, cm) above the test material of thickness (l, cm) the saturated

hydraulic conductivity was calculated using the Darcy’s expression for flow through saturated

porous media:

V = 
K A h l t

l
* * ( ) *+

eq.(1)
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Where A is the cross sectional area of the column (cm2) and K is the saturated hydraulic

conductivity (cm/s), obtained by:

K = 
V l

A h l t
*

*( ) *+
eq.(2)

Experiments were carried out over several hours (for coarse tailings and waste rock) to several

days (for total mill tailings) for collecting a sizable drainage volume from individual columns, and

repeated three to four times for measuring variations within  the column.

These saturated hydraulic conductivity measurements were for initial or original conditions of

tailings and waste rock prior to any alterations in their phase compositions, particle size

distributions and porosities as a result of oxidation/reduction and neutralization reactions taking

place during the leaching studies. The production of iron hydroxide and gypsum sludge in the

limestone neutralization process may decrease the available open pore channels and hence the

initial hydraulic conductivity, which may increase again with the removal of gypsum and other

soluble minerals from the system.

2.3.5 Leaching Studies:  Schedule and Sampling Procedures

At the completion of the column permeability studies, all the columns except columns #22-24,

were drained to establish unsaturated hydraulic conditions within test samples by adjusting the

phreatic surface (water table) just below the tailings/waste rock and sand/gravel filter interface.

For the submerged tailings columns #22-24, the water level was maintained at the overflow

mark.  All the columns were then inoculated with 100 ml of an acidic leachate, a Thiobacillus

ferro-oxidans culture solution, obtained from an underground leaching stope of the Quirke

Mine, and the columns were allowed to acclimatize for a few days (a week) prior to draining the

leaching solution.

Initially for the first year, all columns from #1-21 and #25-30 were batch leached under

unsaturated conditions by daily addition of 100 ml of well aerated natural lake water, collected



1-19

from Gravel Pit Lake near the West Arm tailings basin of the Quirke Waste Management Area

(Figure 2). The water was added, by pouring onto the surface of the test material, for five

consecutive days with a two day rest period every week, and collected on a weekly basis.  The

columns drained freely through the U-tube water trap and the effluents were collected in 1l

(litre) polypropylene sample bottles.

The U-tube water trap prevented air entry through the bottom of the column.  This eliminated

drain and column clogging problems arising from the oxidation of the sample material at the

bottom, and precipitation and crystallization of dissolved salt during low or no flow conditions.

As mentioned previously, the water table or phreatic surface in the columns was adjusted near

the bottom of the tailings/waste rock at the sand/gravel filter bed interface, which represented a

field scenario of severe drought condition, where the water table in the basin would drop 30 to

40 cm below the surface of the waste exposing it to oxidation and leaching.

For each column, the effluent sample was collected every week and its volume and primary

water quality parameters: pH, redox potential, Eh, electrical conductance, Ec, told acidity and

alkalinity were measured.  The effluent sample was then filtered using a

0.45 µm membrane filter, and acidified with HCl (20 to 30 ml per litre of sample). For each

column, the sample were then individually composited, every two weeks, to constitute a bi-

weekly composite sample.  The composite samples were then analyzed for total dissolved

concentrations of Al, Ca, Ce, Cu, Fe, Mg, Mn, Ni, Pb, Th, U Zn, SO4
-2 and Ra-226.

During the first year of such a daily leaching scheme, it was observed that most of the tailings

and some waste rock columns were retaining appreciable amounts of moisture or were

excessively wet near the surface.  This condition delayed air entry and establishment of

unsaturated conditions within the tailings and waste rock substrates, thereby reducing their

chances of air exposure and oxidation.  The leaching scheme was then changed, at the end of

the first year, to a batch leaching schedule, where 1 l of well aerated natural lake water was
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added in a single batch every two weeks, allowing the columns to oxidize between rinse cycles.

The effluent samples were then collected on a bi-weekly basis and composited every four

weeks for analyses as above.

The water covered tailings, in columns #22 to 24, were trickled leached with distilled water

under submerged conditions.  Distilled water was continuously added at the top of each column

at a sufficient flow rate to maintain the water cover, allowing pore water drainage and collection

of approximately 1 l of effluent per day.  This practice was continued for a period of two years,

and afterwards the pore water flow rate was decreased to allow collection of 1 l of effluent per

week.  The procedure represented accelerated leaching of coarse tailings under submerged

conditions, where over a period of four years, approximately 250 porewater volumes were

exchanged.  This scenario of high porewater flow simulation was followed to rapidly leach and

remove soluble minerals like gypsum to enable further studies on oxidation and leaching

characteristics of residual minerals and radionuclides, especially Ra-226, post gypsum depletion

and removal of

SO4
-2 ion solubility control.

For submerged tailings, the use of distilled water as cover as well as for leaching purposes was

preferred over that of the Gravel Pit lake water to provide a continuous source of low

background water supply for measuring incremental changes in parameters such as acidity, Fe,

SO4
-2 and Ra-226, within the water column above the tailings and in the porewater

Periodically, water samples were also collected from the upper lying water column at near

surface, mid depth and near bottom locations.  All surface and drainage water samples were

analyzed for water quality parameters as described previously.
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2.4 Analytical Procedures and Quality Assurance / Quality Control

2.4.1 Water Samples

The water samples were analyzed for primary parameter: pH, Eh, Ec, total acidity and alkalinity,

total dissolved concentration of SO4
-2 and metals Al, Ca, Ce, Cu, Fe, Mg, Mn, Ni, Pb, Th, U,

Zn and Ra-226.  For most analyses, the Standard methods for the examination of water and

waste water (American Public Health Association, 1992) were followed.  Dissolved

metals/elements concentrations were measured using an Inductively Coupled Argon Plasma

Atomic Emission Spectrophotometer (ICAP-AES), and SO4
-2, Ra-226 concentrations were

determined using radiochemical methods as described below.

2.4.1.1 Primary Parameters

The primary parameters were measured in water samples as collected and prior to their filtration

for maintaining sample integrity, without loss of dissolved gases or oxidation of metal ions

specially ferrous Fe+2.  The pH was measured using a standard glass body combination pH

probe with a saturated Ag/AgCl reference electrode.  The redox-potential, Eh, was measured

using platinum and a calomel (Hg/Hg2Cl2) reference electrodes. The measured Eh was

normalized to standard hydrogen electrode reference (NHE) by adding calomel and hydrogen

electrodes potential difference of +244 mV.  The electrical conductivity, Ec, was measured

using a small volume (5 ml) conductivity cell.

All these parameters were measured at the  ambient sample temperature (as received ) and

normalized to the standard room temperature of 25 °C with an automatic temperature

compensator (ATC) or a temperature compensation procedure for Ec measurements.

Total acidity and alkalinity were measured by titrametric methods.  The acidity in sample

solutions containing hydrolizable metal ions, e.g. Fe+3, Al+3, etc. and polyvalent cations, was

measured as a maximum potential acidity.  The pH of the sample solution was lowered below 4

by addition of a standard acid solution (H2SO4) and the reduced ionic species were oxidized
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with a few drops of 30% H2O2.  The sample solution was then titrated with a standard alkali

(NaOH) solution to pH 8.3 using a potentiometric titration method.  The sample acidity was

calculated as:

Acidity, as mg CaCO3/l = 
[( * ) ( * )]*

_ _ _
A B C D

ml of Sample Aliquote
− 50000

eq.(3)

Where:

A = Volume of NaOH titrant used to pH 8.3, ml

B = Normality of NaOH

C = Volume of H2SO4 to pH 4, ml

D = Normality of H2SO4

The alkalinity was also measured using a potentiometric titration method.  An aliquot of sample

solution was titrated with a standard acid (H2SO4) solution to pH 4.5.  For solutions containing

low alkalinity, additional titrant was carefully added to lower the pH further by exactly 0.3 pH

units and the total titrant volume was recorded.  The alkalinities were calculated as:

Alkalinity, as mg CaCO3/l = 
A N

ml of Sample Aliquote
* *

_ _ _
50000

eq.(4)

Where A = Volume of standard acid used, ml, and

N = Normally of the standard acid,

and low alkalinity as,

Total alkalinity, as mg CaCO3/l = 
( ) * *
_ _ _
2 50000B C N

ml of Sample Aliquote
−

eq.(5)
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Where B = Volume of titrant (standard acid) used to lower pH to 4.5, ml

C = Total volume of titrant used to reach pH 0.3 unit lower, ml, and

N = Normality of the standard acid.

2.4.1.2 Elemental Analysis

Quantitative analyses of dissolved metals and sulphur in solution samples were performed using

a Thermo Jarrel Ash Inductively Coupled Argon Plasma - Atomic Emission Spectrophotometer

(ICAP-AES), model Polyscan 61E.  Elemental concentrations were measured following

appropriate wave length calibration, standardization, matrix matching, inter-element and

background corrections, and quality control protocol.

The samples were analyzed in triplicate and the analytical variance among replicates was

typically less than 3%.  A quality control (QC) sample, having a similar composition and matrix

as those of the experimental samples, was also analyzed every ten samples and the system

stability was checked by the observed variances in concentrations of various elements in the QC

sample.  A QC fail command was set at the analytical variance exceeding 5% for a given

element, and upon the detection of the fail command the instrument was automatically re-

calibrated and the analyses repeated.  Typical detection limits for most elements, using ICAP-

AES, were below 0.05 mg/l.

2.4.1.3 Sulphate Analysis

For solution samples, the sulphate concentrations were measured with a radiochemical tracer

technique using a gamma emitter Ba-133 radioisotope.

The method consisted of precipitating sulphate as Ba (Ba-133) SO4 by the addition of a

precipitating solution containing a fixed ratio of BaCl2 /(Ba-133)Cl2 concentrations.  The sulphate

concentration was determined by measuring the recovery of Ba-133 radioisotope using a

gamma spectroscopy system.  The instrument measured the activity of Ba-133 isotope, using its

356 keV gamma energy peak, with a 10 cm x 10 cm diameter NaI ( Tl) detector.  By fixing the
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concentration ratio of BaCl2/(Ba-133)Cl2, three precipitating solutions, A, B and C were used

to measure total sulphate concentrations in the ranges of 10 - 100 mg, 1 to 10 mg and 0 to 1

mg SO4
-2, in the sample aliquot, respectively.

This method was preferred over other conventional methods e.g. gravimetric, turbidity etc., for

its applicability over a wide concentration range without sample dilution and the ease of sample

preparation and counting.  The method allowed sample preparation in large batches and

counting them at a later date and time without affecting results. For very low sulphate

concentrations (<10 mg/l) the above ICAP-AES method was generally used.

2.4.1.4 Ra-226 Analysis

For Ra-226 determination, the alpha spectrometric technique of Lim and Davé (1981) was

followed.  Radium was chemically separated in a two-step process, first as a radium-barium

sulphate using concentrated sulphuric acid and  lead sulphate as a carrier, followed by the

dissolution of the sulphate precipitate in an ammoniacal solution of EDTA (Ethylene Diamine

Tetra Acetic Acid), and selective precipitation of radium from this solution, as a radium-barium

sulphate, at pH 4.8 using glacial acetic acid and saturated ammonium sulphate solution.

A known amount of Ba-133 tracer (gamma emitter) was also added to the starting sample for

chemical recovery factor determination and correction.  The final precipitate was filtered on a

0.45 µm Millipore membrane filter and the concentration of Ra-226 (activity) on the filter was

measured by alpha spectrometry using a solid-state silicon surface barrier detector.  Ra-226

activity was calculated by measuring total disintegrations/counts for the 4.78 MeV alpha energy

decay peak with an energy selection window of 4.0 to 4.9 MeV.  The chemical recovery of Ra-

226 in the precipitate was calculated by measuring the recovery of Ba-133 tracer using the

gamma spectroscopy system as described above.
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2.4.1.5 Minimum Detection Limits

For solution samples, the measured instrumental detection limits, defined as 3σ where σ is the

standard deviation of the instrumental noise at background concentrations, are given in Table 2

for metals, SO4
-2  and Ra-226 for the analytical methods followed.

2.4.2 Solid Samples

The tailings and waste rock solid samples were pulverized to less 40 µm size and analyzed for

solid phase elemental and Ra-226 compositions following acid digestions and complete

dissolutions of the samples.  The sample solutions were individually brought to a standard

volume and were analyzed using the above described procedures.

2.4.2.1 Sample Digestion

For metals analyses, a pulverized tailings or waste rock sample (0.5  - 1.0 g) was completely

dissolved, first by digesting it with 20 ml of HNO3 in 100 ml Teflon beaker and boiling it to

dryness, followed by addition of 30 ml of HF and digestion at 100 °C for silica removal.  The

sample was cooled and digested with 15 ml of a cocktail containing perchloric (HCLO4), nitric

(HNO3) and hydrofluoric (HF) acids in a ratio of 2:1:7, slowly at 110 °C till dryness, followed by

baking at 180 °C till all the white fumes of perchloric acid dissociation were expelled.  The

sample was cooled again and dissolved completely in 50 ml of 50% HCl, by boiling, if

necessary.  All sample solutions were stabilized by adding HCl to a final concentration of 10%

acid. The final volume of the sample solution was brought to l l (litre) for most metals, and 100

ml for trace metal analysis by adding de-ionized water.

For volatile elements, e.g. Pb, the samples were dissolved with nitric acid (following silica

destruction) in high pressure Teflon vessels in a microwave digestion oven.  The digested

samples were then dissolved in 50% HCl and prepared as above.
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For total Ra-226 analysis, the solid sample (0.5-1g) was first digested with hydrofluoric acid in

a platinum crucible at a moderate temperature and evaporated to dryness, followed by a dilute

hydrochloric acid (HCl) dissolution.  The sample/solution mixture was brought to a boil, cooled

and filtered.  The filtrate was transferred to a pre-acid washed sample bottle.  The residue (if

any) was heated in a muffle furnace at 550 °C for approximately 12 hours and cooled slowly.

The ashed residue was mixed with a sodium carbonate/boric acid flux in the ratio of 1 to 5,

heated in the platinum crucible in a high temperature flame until a clear melt was obtained, and

then cooled slowly.  The mixture was dissolved in 50% HCl as above and the solution was

added to the filtrate in the sample bottle.  The final sample volume was brought to 1l by adding

de-ionized water, if necessary.  Prior to digestion, a known amount of Ba-133 radioisotope

tracer solution was also added to the solid sample for chemical recovery determination, as

mentioned previously.

2.4.2.2 Silica Analysis

For tailings and waste rock solid samples, silica was analyzed gravimetrically by fusion and

decomposition of the silicate matrix, and re-crystallization of pure SiO 2.  A portion, (0.5 to 1.0

g), of the finely ground solid sample was fused in a low-form zirconium crucible with sodium

peroxide (Na2O2) and sodium hydroxide (NaOH) crystals (pellets) at a high temperature (650

°C) in a muffle furnace.  The fused mixture was cooled and digested with 50% HCl, at a low

temperature on a hot plate, and evaporated to dryness until all the fumes of HCl ceased.  The

solids were washed with 50% HCl and filtered on an ashless filter paper.  The filter paper,

together with the solid residue, was ignited in a muffle furnace at a low temperature to burn the

filter paper, then heated to 1000 °C for 30 minutes.  The crystallized silica residue was cooled

in a desiccator for one hour and weighed for silica determination.

2.4.2.3 Sulphur Speciation

For solid samples, the sulphur species were determined by measuring concentrations of total

sulphur, total sulphate sulphur and obtaining the total sulphide sulphur concentration by

difference.
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The total sulphur concentration was measured using a Leco furnace sulphur analyzer.  A

measured amount of dry pulverized sample was ignited at a high temperature in an electric spark

furnace and the total sulphur concentration was determined by measuring the total quantity of

evolved sulphur dioxide gas using gas chromatography.  Occasionally, total sulphur

concentration was also determined by complete destruction of the silica matrix and oxidation of

sulphides to sulphates either by Na2O2 fusion or perchloric acid digestion as described before,

followed by measurement of total sulphate concentration in the sample solution by gamma

spectroscopy or ICAP-AES.

The total sulphate sulphur concentration of the sample was determined by leaching it with a very

dilute solution of hydrochloric acid (1%) to dissolve all water and acid soluble sulphates, and

measuring the dissolved sulphate concentration by gamma spectroscopy or ICAP-AES.

2.4.3 Quality Assurance/Quality Control (QA/QC)

The OA/QC program consisted of analyzing 15-20% sample replicates, sample and reagent

blanks, and certified reference standards for solid and liquid samples together with an inter-

laboratory comparison program of unknown and reference samples.

For quality control, the experimental samples were analyzed simultaneously with matrix matched

control samples, consisting of Canadian Certified Reference Material Standards (CCRMP) for

Uranium, Base Metal Tailings and Ore, and appropriate sample and reagent blanks.  All solid

samples were digested in duplicates and processed concurrently through the analytical

procedures. For dissolved metals, as discussed above, the instrumental analytical standard

deviations were set at the 5% variation level of a quality control (QC) sample for an automatic

QC pass /fail check and re-standardization, if necessary.  The overall precision and accuracy of

all measured analytical parameters were between ± 5 to 10% levels depending on the

concentration range.  For Ra-226 analysis, certified National Bureau of Standard (NBS)

reference materials were used for the QA/QC program, and the typical standard deviations
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were less than 10% at low concentrations (~300 mBq/l) and less than 3% at high

concentrations (~1000 mBq/l).

Tables 3-5, give the analytical results of certified reference materials consisting of a digested

river sediment solution sample, a trace metal drinking water and uranium ore standard samples,

respectively, analyzed for the QA/QC program established at the Elliot Lake Laboratory.

Tables 5 also gives results of an inter-laboratory comparison program.

3.  RESULTS

3.1 Column Permeability Results

Tables 6-9, show the column permeability results for Group 1 - unclassified total mill tailings,

Group 2 - coarse tailings, Group 3 - coarse tailings under submerged conditions and Group 4 -

crushed waste rock, respectively.  The analysis of variance and statistical significance of

measured permeabilities within each group are given in Tables 10 and 11.  The saturated

hydraulic conductivity’s were lowest for Group 1 -total mill tailings (mean average 7.03 x 10-6

cm/sec), in the range of silty sand to till, and were highest for coarse tailings and crushed waste

rock where the measured values were approximately three orders of magnitude higher (in the

range of ~ 2 - 4 x 10-3  cm/sec).  For both coarse tailings and crushed waste rock, the measured

hydraulic conductivity values were in the coarse sand fraction range, representing good drainage

and high air entry values.  Within each group, except Group 3 - submerged coarse tailings, the

results were significantly different at 5% level of significance but only marginally different at 10%

level of significance.  For the submerged coarse tailings group, where the three columns

contained same tailings, no significant variation in the measured hydraulic conductivity was

observed.
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For Groups 1 and 2, the variations were significant (marginally at 10%) amongst tailings without

and with limestone.  In general, the conductivity decreased with the addition of limestone as well

as with its decreasing particle size, the finer the limestone the smaller was the observed

conductivity.  Although, the observed differences were marginal between limestone groups, the

results showed the general trend that addition of finely ground limestone to tailings decreased

their saturated hydraulic conductivity.

Similarly for crushed waste rock, the observed hydraulic conductivities were lower (8 x 10-4

cm/s), by factors of 3 to 4, for low or non-acid producing waste rock (Quirke waste rock ‘C’,

NNP = +13.8 kg CaCO3/tonne, columns #29 and 30), than those for acid producing waste

rock (columns #25-28), where the measured values were in the range of 2.9 -3.3 x 10-3 cm/s.

Quirke waste rock ‘C’ contained approximately 0.42% total S and 26.82 kg CaCO3 /tonne

alkalinity, mostly on CaCO3 or limestone (see table 18).  Upon crushing, perhaps the limestone

fraction of that waste rock produced fine grind leading to observed differences in the saturated

hydraulic conductivity.

The saturated hydraulic conductivity, moisture retention and drainage characteristics, and air

entry parameters are intrinsically dependent on the particle size distribution of the porous media.

These parameters impact upon the oxidation, acid generation and neutralization, and

contaminants migration characteristics of the waste material.  Low hydraulic conductivity and

poor drainage contribute to increased water retention, resulting in low oxidation and acid

generation rates, and increased contact time for limestone neutralization and hence enhanced

neutralization efficiency.  Thus for similar acid generation potentials and weathering conditions,

coarse tailings and waste rock are more amenable to oxidation and acidic drainage than total

mill tailings.

Based on the present column permeability results, it could be predicted with a reasonable

certainty that coarse tailings from the Quirke Mine Waste Management area, if allowed to

oxidize, would contribute approximately 1000 times more to the acidic effluent than un-
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segregated total mill tailings of the same mass and under similar conditions.  This prediction will

further be examined when discussing column leaching results later in this report.

3.2 Solid Phase Composition

The solid phase compositions of total mill tailings (Control - 1, column #1-3), total mill tailings

mixed with 7.5% limestone by weight (columns #4-15), coarse tailings

(Control - 2, columns #16 and 17, and columns #22-24), coarse tailings mixed with 7.5%

limestone by weight (columns #18-21), medium acid generation potential waste rock (QWR-A,

columns #25 and 26), high acid generation potential waste rock(QWR-B, columns #27 and

28), and low acid generation potential waste rock (QWR-C, columns #29 and 30) are given in

Tables 12-18, respectively.

The data showed that both the tailings without additional limestone, total mill tailings and coarse

tailings were acid generating and the acid generation potential for coarse tailings (NNP = -

129.2 kg CaCO3/tonne) was almost twice that for total mill tailings (NNP = - 61.41 kg

CaCO3/tonne).  Coarse tailings mixed with 7.5% limestone as well as waste rock QWR-A and

QWR-B was also acid generating with NNP of -42.8 kg CaCO3/tonne, -10.7 and -17.8 kg

CaCO3/tonne, respectively.  Total mill tailings mixed with 7.5% limestone and Quirke Mine

Waste Rock QWR-C were non acid generating having NNP of +20.44 and +13.81 kg

CaCO3/tonne, respectively.

The coarse tailings were distinctly characterized by their high sulphide sulphur (4.22%) and iron

(3.99%) contents, and low calcium (0.4%), Mg (0.06%), Ba (0.078%), Pb (0.021%), Th

(0.02%) and total Ra-226 (3900 mBq/g) concentrations.  The corresponding parameters for

total mill tailings were, total sulphide sulphur (2.17%), iron (2.49%), Ca (1.71%), Mg

(0.085%), Ba (0.1%), Pb (0.035%), Th (0.031%) and Ra-226 (7500 mBq/g)  Most of Ca (as

gypsum, CaSO4), Mg etc. and Ra-226 were associated with the fine fraction of the tailings.

Because of their almost double sulphide (and hence pyrite) contents, the coarse tailings were
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potentially two times more acid generating than total mill tailings as the residual limestone

alkalinities in both the tailings were small, ~ 2.7 to 6.4 kg CaCO3/tonne.

The addition of 7.5% limestone by weight to both the tailings was based on the stoichiometric

limestone neutralization of total potential acidity produced by tailings containing on the average

5% pyrite (~2.5% sulphur as S, total acid generation potential 78.125 kg CaCO3/tonne or

~7.8%).  These experiments were originally planned using total mill tailings, where the added

limestone was sufficient for the neutralization requirements.  The coarse tailings experiments

were added later to establish drainage conditions similar to that of the experimental water cover

Cell #14 at the Quirke Waste Management Area, which contained a significant proportion of

coarse tailings in the upper most horizon.  In the actual cell, the limestone was to be

incorporated in the near surface layer of the tailings, up to a depth of 15 cm and at a rate of 200

tonne/ha.  Thus it was considered appropriate to add the same amount of limestone to the

experimental tailings as well.  The field limestone application rate of 200 tonnes/ha roughly

corresponded to 7.5% limestone by weight for coarse tailings having a dry bulk density of 1.8

tonne/m3.  The coarse tailings limestone mixtures were thus still potentially acid generating, but

were  representative of field conditions for both limestone neutralization and water cover studies

as stated previously in the objectives of the program.

Compared to tailings, the three types of waste rock were high in Al (4-5%), Ba (0.16-0.2%),

Mg (0.16 - 0.5%), Mn (90 - 490 ppm), and U (0.005-0.008%); variable concentrations of Fe

(1.5-3.8%), Ca (0.2-1.0%), Th (0.01-0.025%) and Ti (0.16-0.42%); and low concentrations

of total sulphur (0.42 - 0.86%), Pb (0.006-0.01%) and Ra-226 (1750-2770 mBq/g).  Waste

rock (QWR-C) contained higher concentrations of Fe, Ca, Mn and Zn, etc. than those of

QWR-A and QWR-B.  The mineralogy of the waste rock was not examined in this study.

The waste rock was primary used, below the projected water level, in the construction of

internal dykes and dams for water retention purposes. Periodically, the rock may be subjected

to exposure and hence oxidation, if the water levels were to fluctuate, contributing to acid
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generation and related impact on the water quality.  The leaching characteristics of the waste

rock were thus only studied under unsaturated conditions.

3.3 Column Leaching Results

The column leaching results for total mill tailings (Control - 1, columns #1-3) are given in

Appendix A.  Tables A-1 to A-3, give respectively, the leachate water quality results for

primary parameters and ionic concentrations (e.g. mg/l for metals), normalized loading and

removal rates (µg/kg per day) for metals, SO4
-2 and Ra-226, and total cumulative (as %)

productions/removals (loadings) of various species in the effluents.  Figures A-1 to A-16, show

variations in the effluent water quality as a function of time for pH, Eh, Ec, total acidity, total

alkalinity, sulphate, total iron, Ca, Mg, Al, Mn, U, Th, Pb, Ra-226 and total cumulative

drainage flow volume.  The corresponding tables and figures for total mill tailings mixed with

7.5% (w/w) limestone of screen sizes coarse (-6.3 mm  size, columns #4-6), medium (-2.4 mm

size, columns #7-9), fine (-0.84 mm size, columns #10-12) and pulverized wet ground

limestone (columns #13-15) are given in appendices B-E, respectively; for coarse tailings

without limestone (Control #2, columns #16 and 17), coarse tailings mixed with 7.5% (w/w)

limestone of screen sizes, coarse (-6.3 mm size, columns #18 and 19) and pulverized wet

ground limestone (columns #20 and 21) are given in Appendices F-H respectively; for coarse

tailings under submerged conditions (columns #22- 24) in appendix I; and for the three types of

waste rock having medium (QWR-A, columns #25 and 26), high (QWR-B, columns #27 and

28) and low (QWR-C, columns #29 and 30) acid generation potentials are given, respectively,

in appendices J-L.

These results are further detailed and discussed according to leaching conditions for the various

tailings and waste rock categories based on the group classification system described earlier in

section 2.3.1.
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3.3.1 Unsaturated Tailings

Initially for the first year, when the leaching scheme consisted of daily additions of 100 ml of

natural lake water to the columns, no acidic drainage was observed from any of the columns

including those containing waste rock.  Although columns #16-21 contained coarse tailings and

columns #25-30, crushed waste rock (screen size -2.0 mm), they appeared to retain

appreciable amounts of moisture, in the laboratory experimental arrangement, to maintain near

saturation conditions due to a shallow water table, approximately 35-40 cm below the surface,

and frequent water additions.  Because the objective of the study was to determine the

oxidation, leaching and limestone neutralization characteristics of tailings and waste rock under

different conditions, the leaching scheme for all unsaturated columns was modified after the first

year, in June 1990, to batch additions of 1 l of natural lake water every two weeks for flushing

and rinsing purposes.  In the intermediate period, the test samples weathered and oxidized at

room temperature under unsaturated conditions.

With the implementation of this batch leaching scheme, both control tailings without limestone,

Control - 1, total mill tailings (columns #1-3) and Control #2, coarse tailings (columns #16 and

17), as well as coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm,

columns #18 and 19), all started to oxidize produced acidic drainages.  The onset of the acidic

drainage and its quality depended upon the nature of the tailings material and limestone

amendments.  No acidic drainage was observed from other tailings and limestone mixtures.  The

detailed results are as follows:

3.3.1.1 Group 1:  Total Mill Tailings

3.3.1.1.1 Group 1: Control - 1, Total Mill Tailings Without

Additional Limestone, (Columns #1 - 3)

The total mill tailings (Control - 1) columns started to produce moderately acidic drainage six

months to one year after the introduction of the batch leaching scheme, with column #2
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producing acidic effluent approximately six months before Columns 1 and 3.  Figures 7-31

show the oxidation and leaching profile for Control - 1 tailings, respectively, for pH, Eh, Ec,

total acidity and alkalinity, effluent loading rates for SO4
-2, Fe, Ca, Mg, Al, Mn, U, Th, Pb and

Ra-226, and cumulative productions/removals (loadings) for total acidity,

SO4
-2, Fe, Ca, Mg, Al, Mn, Th and Ra-226, and total accumulated effluent drainage volume

from April 1989 to June 1993.  Except for effluent pH, Eh, and Ec, all other parameters were

normalized to the effluent volume collected for a given sampling period and converted to ionic

mass loading rate per unit mass of tailings per day (e.g. for total Fe as µg total Fe/kg tailings per

day) and cumulated mass (%) production/removal (loading) as:

Ionic loading rate , (µg ion/kg tailings/per day) = 
1000 * *

*
Ci V

M T
eq. (6)

Where, Ci = Ionic concentration in the effluent, mg/l,

V = Effluent volume collected during sampling period, l

M = Total mass of tailings, kg, and

T = Sampling period, d.

and

Cumulative mass (%) production/removal = 
( * )

*

Ci V

Mi
T

n

=
∑

0

10
eq.(7)

where, n =  Number of sampling periods,

Ci = Ionic concentration in the effluent, mg/l

V = Effluent volume collected during sampling period, l

Mi = Total ionic mass content of the tailings sample, g, and

T = Sampling period, d.

For data interpretation and understanding of various geochemical interactions within the

tailings/waste rock mass, the term oxidation is used for the oxidation process in sulphide

minerals producing sulphuric acid and dissolved metal sulphates irrespective of a partial or

complete acid neutralization process and precipitation of gypsum and metal hydroxides. The
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term acidic drainage is used when release of acid and oxidation reaction products, so produced,

occur in the effluent.  Thus the tailings or waste rock may be oxidizing at the exposed upper

surface in the columns, but the occurrence of acid drainage may be absent or delayed

depending upon the neutralizing conditions.  Also, acidic drainage is further classified, for

comparison purposes, as high when pH<2.5, acidity >1500 mg/l, SO4
-2 > 3000 mg/l and Fe >

1000 mg/l, moderate for pH’s between 2.5 -4, acidity 100-1500 mg/l, SO4
-2 1500-3000 mg/l

and Fe between 100-1000 mg/l, and low when pH is between 4-6, acidity < 100 mg/l SO4
-2 <

1500 mg/l, and Fe < 100 mg/l.  Because the effluent is usually saturated with gypsum, no

distinction is made based on Ca, Mg or Ra-226 concentrations.  However, all data showed

consistent trends of elevated Mg concentrations at the onset of oxidation and acid neutralization,

and elevated concentrations of Al and Mn with the occurrence of acidic drainage and

accompanied by high concentrations of Fe, SO4
-2 in accordance with the effluent Eh-pH phase

stability relationships (see for example Figures 15-24). This classification terminology is

frequently used in this report when interpreting column leaching results.

As mentioned previously, the total mill tailings (Control - 1 columns #1-3) produced moderately

acidic drainage with the following characteristic leaching profiles:

pH, Eh and Ec:

During the first year, the effluent pH’s were near neutral to slightly alkaline in the range of ~ 7-8,

dropping to between 2-3 subsequently (Figure 7), with column #2 leading in all parametric

changes. Acidic drainage started with column #2, approximately six months after the

implementation of batch leaching, followed by columns #3 and #1 within a six month period

(January-June, 1991). Near the completion of the study period, the column average pH was

approximately 3.  During the entire leaching period, a cumulative total of approximately 80 l of

drainage effluent was collected.

The oxidation - reduction potential (ORP) or Eh (normalized to hydrogen electrode reference,

NHE) increased during the same period from approximately 300 mV to 700 mV at the
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occurrence of the acidic drainage (Fig. 8).  It should be mentioned that Eh was measured in

effluent samples, collected over a two week period in open sample bottles, that were well

oxygenated.  Nevertheless, Eh was a good indicator of the oxidation stages of iron (Fe+2 and

Fe+3) whenever oxidation and acidic drainage occurred.  Fe+2 in these samples was usually not

measured because of its oxidation during and after sample collection.

The electrical conductance, Ec, for Control - 1 tailings increased slightly from approximately

2000 µs to 3000 µs during a six month period of peak acidic drainage and decreased

afterwards to approximately 2300 µs where it was controlled by the dissolution of gypsum

(CaSO4) (see for example Figures 9 and 17).  The peak in Ec was associated with increased

acid generation and iron mobility but at moderate rates to impact Ec significantly.

Acidity and Alkalinity:

Figures A-4 and A-5 show, respectively, the total acidity and alkalinity concentration profiles

for Control - 1 tailings.  The acidity loading rate, total cumulative acid production and alkalinity

loading rate profiles are shown in figures 10-12, respectively.  The results show very

illustratively the commencement of acidic drainage and termination of residual alkalinity in the

effluent at the beginning of 1991, again with column #2 leading in acidic drainage, followed by

columns #3 and #1, in that order.

The column average acidity initially increased with time and peaked with a maximum acidity of

approximately 1500 mg CaCO3/l for a period of six months, afterwards decreasing slowly to a

level of 500-600 mg CaCO3/l acidity.  During the remaining 2.5 year study period when acidic

drainage was occurring, the mean average column acidity generation rate was calculated as

2100 µg CaCO3 acidity/kg of tailings/day.  During the same period, a cumulative total of ~ 3%

of the maximum potential acidity was produced/removed from the Control - 1 tailings.  For

comparison, the average acid generation rate and cumulative acid production for coarse tailings

(Control #2, columns #16 and 17), reported later in this report, were: 70,000 µg CaCO3
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acidity/kg tailings/day and 58% of the maximum acidity generation potential of the tailings,

respectively.  The total mill tailings, because of their homogeneous particle size distribution, were

approximately 30 times less acid generating than coarse tailings.

Prior to the onset of the acidic drainage, the column average alkalinity of the effluent was

approximately 25 mg/l corresponding to a daily average alkalinity loading rate of approximately

100 µg CaCO3 alkalinity/kg of tailings/day.

Sulphate and Iron:

The dissolved SO4
-2 and total iron concentration profiles for Control - 1 total mill tailings are

shown in Figures A-6 and A-7, respectively.  Figures 13-16, show respectively, SO4
-2 loading

rate, cumulative SO4
-2 production, total iron loading rate and cumulative total iron production

characteristics.

Similar to Ec, the effluent SO4
-2 concentrations were controlled by gypsum dissolution and there

was a slight increase in dissolved SO4
-2 concentration near the peak acidic drainage period

(Figure A-6). The change was again most pronounced and occurred first in  column #2.  The

column average SO4
-2 loading or production rate increased from approximately 500 µg SO4

-2/kg

tailings/day to 6000 µg SO4
-2/kg tailings/day with the acidic drainage (Figure 13), having a

column mean average SO4 loading rate of 5500 µg SO4
-2/kg tailings/day for the entire four year

leaching period.  During that period, approximately

8.4 g SO4
-2/kg tailings of total sulphur as SO4

-2  or 8% of the total sulphur contained in the

tailings mass was leached and removed, most of it resulting from the dissolution of gypsum

associated with the tailings.  This total sulphate production represented approximately 21% of

the soluble SO4
-2 content of the tailings.

Prior to the onset of acidic drainage, the dissolved iron concentrations were very low (below

detection) which increased rapidly to 100-150 mg/l column average range during the maximum

acid generation period, and decreased to 20-30 mg/l range thereafter.  The column average iron
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loading rate during the same period was approximately 100 µg Fe/kg tailings/day with a

maximum production rate of 400 µg Fe/kg tailings/day.  During the acidic drainage period,

approximately 0.082 g of Fe/kg tailings or 0.33% of the total iron contained in the tailings was

removed.  Near the end of the study period, the iron production/removal rates from all the three

columns were low, ~ 15 µg Fe/kg tailings/day for the three columns.

Calcium and Magnesium:

Figs. A-8 and A-9 show, respectively, dissolved calcium and magnesium concentration profiles,

and figures 17-20, show calcium loading, cumulative calcium removal, magnesium loading and

cumulative magnesium removal characteristics, respectively, for the total mine tailings.

Similar to Ec and dissolved SO4
-2, the dissolved calcium concentration of the drainage effluent

was controlled by gypsum dissolution.  The effluent was saturated with respected to gypsum (~

550 mg/l Ca) for the initial two year period, decreasing slowly to column average concentration

range of 300-400 mg Ca/l.  During the peak acidic drainage period, no noticeable increase in

calcium concentration was observed because of gypsum saturation.  The column average

calcium loading or removal rate was approximately 1500 µg Ca/kg tailings/day.  During the

entire study period, approximately 2.33 g Ca/kg tailings or 13.6% of the total calcium contained

in the tailings was removed.

The effluent magnesium concentration increased slowly from an average of 3 mg/l to

approximately 30-40 mg/l with oxidation and acid generation.  As mentioned previously,

dissolved Mg concentration in the effluent was a good indicator of the initiation of oxidation/acid

generation and neutralization processes as the solubilities of MgSO4 and MgSO4.7H2O were

high, approximately 260 g/l and 710 g/l, respectively.  In Column #2, for example, the Mg

concentration in the drainage effluent started to increase slowly at least four to six months prior

to the occurrence of the acidic drainage (Figures A-9 and 19).  The column average magnesium

loading was in the range of 100-150 µg/kg tailings per day in the acidic effluent.  The observed

Mg concentrations and loading were fairly uniform over a period of approximately two years,

which suggested ongoing neutralization process.  During the entire oxidation/acid generation
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period, approximately 0.12 g of Mg per kg of tailings or 14% of the total amount of Mg

contained in the tailings was removed.  The total amounts of Ca and Mg removed, as a

percentages of the tailings contents, were comparable.

Initially for the first 2 to 3 weeks trial period, columns #1-15 were washed daily with 200 ml of

natural lake water (1 l per week) instead of 100 ml used afterwards, which resulted in increased

loading and removal of Ca, Mg and SO4
-2, as seen from Figures 13,

17 and 19.

Aluminum and Manganese:

Figures A-10 and A-11 show, respectively, the aluminum and manganese concentration

profiles, and Figures 21-24, show respectively, loading and cumulative removal characteristics

for aluminum and manganese.  These profiles were similar to those for column acidity and

magnesium, where both concentrations and loading increased with acid generation and drainage.

In the acidic effluent, the column average Al concentration and loading were in the range of 60

or 80 mg/l, and 200-250 µg Al /kg tailings/day, respectively.  During the total acidic drainage

period, approximately 0.17g Al /kg tailings or 0.6% of the total amount of aluminum contained

in the tailings was only removed.  The cumulative percentile removal of Al and Fe were

comparable.

The column average Mn concentration and loading rate were in ranges of 2-3 mg/l, and

5-10 µg/kg tailings/day, respectively.  During the acidic drainage period monitored,

approximately 6.4 mg of Mn/kg of tailings or 27% of total Mn contained in the tailings was

removed.  The cumulative removal of manganese was thus significantly greater than those of Al

and Fe.

Uranium, Thorium and Lead:
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The leaching characteristics of uranium, thorium and lead are shown in Figures A-12 to  A-13,

respectively, for effluent concentrations, in Figures 25, 26 and 28, respectively, the loading

characteristics of U, Th and Pb, and in Figure 27, the cumulative production/ removal

characteristics of Th.

The uranium concentrations in the effluents were near detection limit of ~0.2 mg/l and no

significant changes were observed with the acidic drainage.  Because of such low uranium

concentrations, the calculated loading rates were also very low, ~ 0.75 µg U/kg tailings/day, and

the data were not processed further in calculating cumulative uranium production/removal.

The column average effluent concentrations of Th showed similar characteristics to that of total

iron, increasing from very low (below detection) levels to peak concentrations of approximately

6-8 mg/l with the onset of acidic drainage and decreasing slowly afterwards to 2-4 mg/l range.

The columns average Th loading rate was approximately 15 µg Th/per kg tailings/day during the

acidic drainage period.  Within the same interval, approximately 13.7 mg of Th per kg of

tailings, or 4.4% of total thorium contained in the tailings was removed.

The effluent lead concentration and loading profiles were similar to those of Al and Mn,

increasing from very low (below detection) to approximately 2 mg/l and 5 µg Th/kg tailings/day

with the occurrence of acidic drainage.  During the acidic drainage period, Pb

production/removal was calculated as approximately 4.6 mg Pb/kg tailings or 1.5% of total Pb

contained in the tailings.

Other Metals, Ce, Cu, Ni and Zn:

The effluent concentrations and leaching profiles were measured for Ce, Cu, Ni and Zn but

because of their low concentrations in the tailings mass, the data were not processed in greater

details.  Tables A-1 and A-2, together with other parameters, give the concentration and

loading results for these metals. The general leaching characteristics of these metals were also

very similar to those of Fe and Al, where the concentrations and effluent metal loadings
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increased with the onset of acidic drainage, peaked, and decreased slowly afterwards to low

but detectable levels.

Ra-226:

The Ra-226 leaching characteristics of Control - 1 tailings are shown in Figure A-15 for

concentration (activity), and in Figures 29 and 30, respectively, for effluent loading rate and

cumulative Ra production/removal.

The data, both for effluent Ra-226 concentration and loading, showed very interesting

characteristics of increased Ra-226 leaching at the initiation of the batch leaching schedule,

where the parameters increased by 4 to 5 folds, peaked individually for each column and then

decreased slowly (see Figure A-15 and 29).  The initial column average Ra-226 concentration

was in the range of 200-500 mBq/l, with oxidation and acid generation it increased to a

maximum of 3000-3500 mBq/l (average ~ 1800 mBq/l) and decreased slowly to 500-1000

mBq/l range.  Unlike the acid generation order of the columns, increased Ra-226 drainage

started with column #1, followed by columns #2 and #3, in that order (Figure 29).

Similar to the effluent concentration profiles, the column average Ra-226 loading increased from

a low of approximately 1.5 mBq/kg tailings per day to a maximum of 10 mBq/kg tailings/day

(average ~ 6 mBq/kg tailings/day), then decreased slowly to 2-4 mBq/kg tailings/day range.

Similar to Ca, Mg and SO4
-2, Ra-226 loading were also high for the first few weeks when the

columns were flushed with double the volume of natural lake water (200 ml).

During the entire study period, approximately 6200 mBq Ra/kg tailings or only 0.08% of total

Ra-226 contained in the total mill tailings was removed, most of it resulting from oxidation and

acidic drainage.

The results also showed that for total mill tailings, the dissolved Ra-226 concentrations in the

effluent did not correlate with those of Ca and SO4
-2, but with the oxidation/acid generation
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reaction products.  These observations will be further examined for other tailings and waste

rock, and for different leaching conditions.

3.3.1.1.2 Group 1: Total Mill Tailings mixed with 7.5% Limestone (w/w) of

Various Grain Sizes (Columns #4 - #15)

The leaching characteristics of columns #4-15, containing total mill tailings mixed with 7.5%

(w/w) limestone of various screen sizes, from coarse (-6.3 mm) to wet ground and pulverized,

were generally similar in trends for individual parameters in each limestone  size category. During

the entire study period, of approximately four years, none of these columns produced any acidic

drainage.

During the monitoring period, each column received an average of 114 l of natural lake water

for leaching/flushing purposes, producing a cumulative column average drainage volume of

approximately 73 l, and the balance resulting in evaporation.  This drainage volume represented

an infiltration depth equivalent of approximately 1084 mm of annual precipitation.

Figures B-1 to B-16 (Appendix B) show respectively, the drainage effluent pH, Eh, Ec, total

acidity, total alkalinity, and concentrations of dissolved SO4
 -2, Fe, Ca, Mg, Al, Mn, U, Th, Pb,

Ra-226 and cumulative effluent volume, for total mill tailings mixed with 7.5% coarse limestone

(screen size -6.3 mm, columns #4-6).  The corresponding parameters, expressed as effluent

loading rates and cumulative mass productions/removals, for columns #4-6 are shown in Figures

32-51.  Because of the absence of acidic drainage, the effluent contained only appreciable

amounts of SO4
-2, Ca, Mg and Ra-226.  Thus the cumulative mass removal characteristics are

only shown for these parameters in Figures 38, 41, 43, and 50, following the corresponding

loading rate figures, respectively.

Similarly, Figures C-1 to C-16 (Appendix C) and 52-71, show the corresponding parameters

for total mill tailings mixed with 7.5% medium size limestone (-2.4 mm size, columns #7-9),

Figures D-1 to D-16 (Appendix D) and 72-91, for fine size limestone
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(-0.84 mm size, columns #10 -12), and Figures E-1 to E-16 (Appendix E) and 92-111, for wet

ground and pulverized limestone (columns #13-15), respectively.

The leaching characteristics of all the above sub-groups, each group belonging to a different

limestone screen size category (e.g. columns #4-6 for coarse limestone), were similar for

individual parameters measured as seen from the respective figures for each category.  No

acidic drainage was observed from any of the above sub-groups, as the effluent pH was neither

acidic nor it contained dissolved iron or other metals, mobilized as a result of oxidation and acid

generation (Figures B-7, C-7, D-7, E-7).  The results were thus grouped together and are

presented ensemble.

pH, Eh and Ec:

For all columns, the initial effluent pH was near neutral to slightly alkaline, in the range of ~ 7-8,

which decreased slowly during the first year to pH ~6, and increased gradually afterward to pH

~8 (Figures 32, 52, 72 and 92).  In few instances, some columns and particularly columns #8

and #11, produced low pH, ~ 4-5, effluents for a period of 3 to 4 months (Figure 52 and 72),

followed by a gradual increase in pH to near neutral.  This occurrence was limited to the initial

one and a half year period when the columns were mostly rinsed/flushed daily with 100 ml of

natural lake water.  During that period, it was observed that these two columns (#8 and #11)

were draining very slowly, occasionally forming a permanent water pool on top of the tailings.

Usually a vacuum suction was applied at the drainage tube to induce column drainage for

sampling and to remove any blockage in the flow path.  This procedure alleviated the problem

but introduced additional air within the tailings, probably creating some channeling and limited

oxidation along the flow paths.  After the introduction of the batch leaching schedule, no such

problems were encountered.

Not withstanding, the occasional drop in pH in few columns, generally the pH increased with

time in all columns, and after the second year in the study, the drainages were slightly alkaline

having pH’s on the order of ~ 8, irrespective of the particle size of the added limestone.
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The effluent redox potential, Eh, increased with time steadily from an average of 300 mV at the

beginning to a range of ~ 500-600 mV with the implementation of the batch leaching schedule.

These Eh’s were, however, lower than those for columns #1-3, which were in the range of ~

700-800 mV and where active oxidation and acid drainage were taking place.

The electrical conductance, Ec, of the effluent decreased initially with time during the first year,

from approximately 3000-3500 µS/cm to 2000-2200 µS/cm, and remained constant afterwards

it at the latter value . These values were similar to those for columns #1-3, and no effects of

limestone addition or its size were observed on the electrical conductance.  Ec was primarily

controlled by gypsum dissolution and its nearly saturated concentration.

Acidity and Alkalinity:

Initially for the first two years, the effluents from all columns containing limestone had an average

total acidity in the range of 20-30 mg/l, which peaked for some columns to 50-80 mg/l during

the first year, and decreased gradually to zero afterwards, (Figures B - 4, to C, D, and E - 4).

After approximately two years, the columns were producing slightly alkaline effluents having

total alkalinities in the range of ~50-60 mg/l. For columns #4-6 containing coarse limestone, the

alkalinity values peaked to approximately 100-120 mg/l range, where as in the other column

sub-groups, the total alkalinities gradually increased with time (Figures B - 5 to C, D, E -5).

The increased alkalinity was also associated with the corresponding increase in Ca and Mg

concentrations, probably as a result of oxidation, acid generation and neutralizing processes

within the tailings-limestone mixtures, thereby introducing additional carbonate/bi-carbonate

alkalinity to the effluents.  This phenomenon was more pronounced for columns #4-6, where

alkalinity generation rates were observed higher at ~ 300-400 µg CaCO3/kg tailings/day than

those for other columns at ~ 100-200 µg CaCO3/kg tailings/day, as seen from Figures

36,56,76, and 96. In total mill tailings without limestone amendment (Control -1 columns #1-3),
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such an initial alkalinity was rapidly consumed with the production of acidic conditions in the

tailings.

The column average acid generation or loading rates for all columns were low, approximately

50-60 µg CaCO3 acidity/kg of tailings/day, approximately corresponding to 36 mg CaCO3/per

kg of total acidity production/removal during the entire leaching study.  This value is to be

compared with the total acid generation potential of 61.9 g/kg tailings (kg CaCO3/tonne

tailings).

Sulphate and Iron:

The sulphate concentration profiles for columns #4-15 are shown in Figures B-6, C-6, D-6,

and E-6, and effluent loading rate and cumulative removal in Figures 37, 38, 57, 58, 77, 78, 97,

and 98, respectively, for the four sub-groups containing various mixtures of total mill tailings and

limestone.  For all columns, the effluent sulphate concentrations were nearly constant in the

range of 1200-1600 mg/l, and were controlled by the solubility of gypsum contained/produced

in the tailings.  The column average sulphate removal/loading rates were approximately 5000 µg

SO4
-2/kg tailings/day throughout the experimental period.  During that time, approximately 7.8 g

of SO4
-2  per kg of tailings or a column average of ~ 8.6% of total sulphur (as SO4

-2)  contained

in the tailings limestone mixture was removed.  This cumulative sulphate loading was comparable

to that for the Control-1 tailings.

The iron concentration and effluent loading profiles are shown in figures B-7, C-7, D-7 and E-7

and 39, 59, 79 and 99, respectively, for the four different groups of columns.  As mentioned

previously, the dissolved iron concentrations in the effluents were very low (below detection) to

0.2 mg/l range, except for occasional high values of ~ 0.5 - 0.6 mg/l for Column #11 for

reasons mentioned above.  The column average iron loading rates were practically zero (less

than 0.05 µg Fe/kg tailings/day).  The effluents from these columns were thus classified as non

acidic drainage derived.
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Calcium and Magnesium:

Figures B-8 and 9 to C, D and E-8 and 9, show respectively, the effluent concentration profiles

for calcium and magnesium for the four sub-groups. The corresponding loading rate and

cumulative mass production/removal profiles for Ca and Mg are shown in Figures 40-43, 60-

63, 80-63 and 100-103, for the four groups of columns, respectively.

The column average calcium concentrations, similar to sulphate, were nearly constant for the

first three years, in the range of  ~ 500 - 600 mg/l, where the were saturated with respect to

gypsum.  In the fourth year, Ca concentrations decreased to approximately 400-500 mg/l

range.  The corresponding calcium loading rates were in the range of ~ 1500-2000 µg Ca/kg

tailings/day, having a column average loading rate of approximately 1800 µg Ca/kg tailings/day

for all column sub-groups.  During the four year study period, an average of approximately 2.8

g Ca/kg tailings or 5.7% of total calcium contained in the tailings-limestone mixture was

removed.  This corresponded to removal of approximately 22% of the total gypsum contained

in the tailings.

The effluent magnesium concentrations were initially low, in the range of ~ 2-4 mg/l for the first

two years, which gradually increased in the third year to peak concentrations of approximately

10-20 mg/l and leveled to a column average range of ~ 8-10 mg/l.  The onset of increased Mg

in the drainage effluent appeared earlier for columns #4-6 and #7-9 containing coarse and

intermediate size limestone, respectively, than for Columns 10-15 which contained fine or

pulverized limestone.  Also the average Mg concentrations were higher in effluents from column

#4-6 than from other column sub-groups.  This indicated an early oxidation in the sub-group

containing coarse limestone, but the acid neutralization was complete and acidic drainage was

prevented.

For all columns, the columns average effluent loading or removal rates for Mg were in the range

of ~40-60 µg Mg/kg tailings/day, with columns #4-6 having the highest rates.  During the period

of increased Mg drainage (last 2.5 years of the study), an average of approximately 36.5 mg



1-47

Mg/kg of tailings/day or 3.3% of total magnesium contained in the tailings and limestone mixture

was removed.

Aluminum and Manganese:

The aluminum and manganese leaching characteristics are shown, respectively, in Figures B-10

and 11 to C, D, and E-10 and 1, for concentration profiles, and in Figures 44, 45, 64,65 84,

85, 104, and 105, for effluent loadings for the four sub-groups, respectively.

Similar to iron, the effluent aluminum concentrations were very low, in the range of

~ 0.1 - 0.2 mg/l, with corresponding low, < 1 µg Al/kg tailings/day, loading rates.

The effluent Mn concentrations varied with the column sub-groups, from a low range of 0.05 -

0.1 mg/l for columns #10-12 and #13-15, to a range of ~ 0.1 - 0.4 mg/l for columns #4-6 and

#7-9.  Appreciable amounts of Mn in the drainage effluents were only detected for columns

containing tailings mixed with coarse limestone, where Mn concentration peaks were also

observed in the third year of the study.  For other columns, Mn concentrations gradually

increased with time during that period.  The column average Mn loading rates were only

significant for columns #4-6, at approximately 1 µg Mn/kg tailings per day.  These results were

consistent with other observations, where an early stage of oxidation was indicated in limestone

amended tailings, which was more pronounced for the coarse limestone sub-group.

Uranium, Thorium, Lead and Other Metals:

The effluent concentrations of U, Th, Pb and other metals: Cu, Ce, Ni and Zn were below

detection to very low for all columns and there were no significant concentration trends.

Consequently, the data were not further analyzed.  For leaching characteristics, the reader is

referred to Figures B-12 to 14, to C, D and E-12 to 14, for concentration profiles and to

Figures 46-48, 66-68, 86-88 and 106-108, for loading profiles, respectively, for U, Th and Pb

for the four tailings-limestone sub-groups.

Ra-226:
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The Ra-226 leaching profiles for total mill tailings mixed with different sized limestone are shown

in Figures B-15, C, D to E-15, for concentrations and figures 49, 50, 69, 70, 89, 90, 109, and

110 for effluent loading rates and cumulative productions/removals of Ra-226, for all tailings-

limestone sub-groups.

Initially for the first year, the effluent Ra-226 concentrations were nearly constant for the all sub-

groups, averaging in the range of 300-500 mBq/l.  At the introduction of the batch leaching

schedule, Ra-226 concentrations increased in effluents from all columns, for about six months,

with characteristic peak concentrations in the range of ~ 1800-2000 mBq/l.  The concentrations

decreased afterwards to nearly constant values, between 600-800 mBq/l.  These trends were

similar to those for the Control -1 tailings without additional limestone, and were indicative of a

very early oxidation in limestone amended tailings.

Similar leaching trends were observed for effluent Ra-226 loading profiles for all columns,

having peak and column average loading rates of approximately 6 mBq

Ra-226/kg tailings/day and 3 mBq Ra-226/kg tailings/day, respectively.  During the complete

study period, the column average cumulative loading or total production/removal of Ra-226 was

calculated as ~ 4660 mBq/kg tailings or 0.06% of total Ra-226 contained in the tailings-

limestone mixtures.  The cumulative removal of Ra-226 was very small and comparable to that

for Control -1 tailings without limestone amendment, where it was calculated as 0.08%.

Also similar to Control -1 tailings, no correlations were observed among the effluent      Ra-226

and dissolved Ca, Mg or SO4
-2 concentrations. The effluent concentrations of these ions were

still controlled by gypsum dissolution, but its contribution to total Ra-226.  leachability could not

be established from the observed leaching profiles.

3.3.1.2 Group 2:  Un-oxidized Coarse Tailings
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3.3.1.2.1 Group 2:  Control -2, Un-oxidized Coarse Tailings Without

Limestone Amendment (Columns #16 and 17)

In Group 2 column leaching experiments, the coarse tailings without additional limestone

(Control - 2, columns #16 and 17) oxidized rapidly producing highly acidic drainage

(as defined previously) soon after and within two months of the introduction of the batch

leaching schedule.  The detailed leaching characteristics are shown in Figures F-1 to F-16 for

concentration profiles, and in Figures 112 to 137 for effluent loadings and cumulative mass

production/removal profiles, respectively.  Similar to the Group 1 - total mill tailings, the results

are discussed for the following parameter categories.

pH, Eh and Ec:

Figures 112 to 114 show, respectively, the variations of pH, Eh and Ec with time for   Control -

2 tailings.  Initially, during the first year, the column effluent pH’s were slightly alkaline at ~ 8,

which decreased to <3 within one to two months after the implementation of the batch leaching

schedule, and within six months decreased further to column average effluent pH’s of

approximately 1-2.  The effluents continued to drain at very low pH’s which increased very

slowly to ~ 1.8 near the end of the fourth year (Figure 112).  These pH’s were 1 to 2 orders of

magnitude lower than those of the Control - 1, total mill tailings.  During the four year study

period, a column average cumulative total of 81 l of drainage effluent was collected for each

column.  During the same period, each column had received, on an average, of approximately

104 l of natural lake water for leaching/rinsing purposes.

During the first year, the Control -2 effluent Eh’s were practically constant, within 350-450 mV

range when the columns were draining at near neutral to slightly alkaline pH’s.  With the

introduction of the batch leaching schedule and at the onset of acidic drainage, the Eh’s

increased rapidly to a range of ~ 680-700 mV within few months and remained constant at the

high range where low pH and highly oxidized conditions prevailed through to the rest of the

experimental period (Figure 113).
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The effluent electrical conductance, Ec, also increased rapidly with the occurrence of the acidic

drainage in the second year, from column average low Ec in the range of ~ 500-1000 µs/cm to

approximately 50,000-55,000 µs/cm range peak conductance.  Afterwards, it gradually

decreased to ∼ 20,000 µs/cm level (Figure 114).

Although the Group 2 tailings experiments were conducted in duplicates, both columns #16 and

17 exhibited remarkable similarity in the observed leaching profiles for the measured parameters

e.g. pH, Eh, Ec, etc., all of which indicated severe oxidation and acidic drainage for the Control

- 2 tailings.  The results also indicated that in coarse tailings without limestone amendment there

was very little residual carbonate or silicate buffering present and the acidic drainage occurred

early.

Acidity and Alkalinity:

The acidity and alkalinity profiles for Control- 2 tailings are shown, respectively, in Figures F-4

and F-5 for concentrations, in Figures 115 and 117 for effluent loading rates, and in Figures

116 for cumulative acidity production/removal..

With the onset of the acidic drainage after the first year, the effluent acidity increased very

rapidly from zero (very low) to peak concentration of approximately 25,000-30,000 mg

CaCO3/l within the first few months.  It decreased slowly afterwards to a column average

acidity range of ~ 12,000-15,000 mg CaCO3/l (Figure F-4).  The acidity loading profiles

showed similar results, increasing from 200 to peak loading rate of approximately 120,000 µg

CaCO3 /kg tailings/day, and decreased gradually to ~ 50,000 µg CaCO3 /kg tailings/day

(Figure 115).  During the three year acidic drainage period, a column average effluent

production/removal (loading) of total acidity was calculated as 76.7 g CaCO3 /kg tailings or

approximately 58% of total acid generation potential of coarse tailings

(Control - 2).  As mentioned previously, the Control - 2 tailings were producing acidic drainage

with total acidity loadings at a rate 30 times higher than that for Control - 1, total mill tailings.
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Prior to the onset of the acidic drainage, the Control - 2 tailings were producing slightly alkaline

effluents with a column average alkalinity of approximately 150 mg/l CaCO3 and a alkalinity

production rate of ~ 500 µg CaCO3 /kg tailings per day, which decreased to zero with the

occurrence of the acidic drainage (Figures F-5 and 117).  As with other tailings, the alkalinity

was produced by the increased dissolution of the residual carbonate minerals e.g. CaCO3

(calcite) and MgCO3 (Dolomite) contained in the tailings, which provided the initial acid

neutralization.  The rapid acidic drainage indicated that these minerals were present only in very

small quantities in Control - 2 tailings, and were either consumed fully or unavailable for further

acid neutralization.

Sulphate and Iron:

The dissolved SO4
-2 and total dissolved iron concentration profiles for Control -2 coarse tailings

are shown, respectively, in Figures F-6 and F-7.  Figures 118-121, show, respectively, SO4
-2

loading rate, cumulative SO4
-2 production/removal, total dissolved iron loading rate and

cumulative total iron production/removal characteristics.

Similar to Ec, the effluent sulphate concentrations increased from a low range of  ~ 500-1000

mg/l prior to acidic drainage to peak concentrations of  ~ 25,000-30,000 mg/l in the acidic

effluent, and then decreased slowly to ~ 12,000-15,000 mg/l range (Figure F-6).  The

corresponding column average effluent SO4
-2 loading rates were approximately 110,000 µg

SO4
-2/kg tailings/day during the peak acidic drainage period and ~  60,000 - 80,000 µg   SO4

-

2/kg tailings/day afterwards (Figure 118 and 119).

During the three year period for which acidic drainage was monitored, the column average

effluent sulphate loading rate was calculated as ~ 80,000 µg SO4
-2/kg tailings/day, which

corresponded to a cumulative effluent SO4
-2  production/removal of ~ 87.9 g SO4

-2/kg of tailings

or ~ 67% of total sulphur contained in the coarse tailings.  More than 95% of this total sulphur

removed resulted from the oxidation of pyrite contained in these tailings.
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Prior to the acidic drainage, the dissolved total iron concentrations in the effluents were very low

, < 0.3 mg/l, which increased to peak concentrations in the  range of ~10,000-12,000 mg/l at

the onset of acidic drainage and then decreased slowly to 5000-7000 mg/l range near the end

of the study period (Figure F-7).  During the same period, the column average effluent loading

rate of dissolved iron was approximately 40,000 µg Fe/kg tailings/day near the peak acidity

period, and decreased gradually to a range of ~ 15,000 - 20,000  µg Fe/kg tailings/day near the

end of the study period, corresponding to an average iron removal rate of approximately

25,000 µg Fe/kg tailings/day for the entire acidic drainage period ((Figure 118).  During that

time,  an average of approximately 27.4 g of iron/kg tailings was removed from each of the

Control -2 columns, which corresponded to a production/removal of ~ 67.7% of total iron

contained in the coarse tailings.

The cumulative percentile mass productions/removals for total iron and sulphur for Control -2

tailings were very comparable, indicating good correlation between Fe and S oxidations as well

as that of ionic mass balance in solid and effluent samples.

Compared to Control -1 total mill tailings, the total iron mobilization (%) in Control -2 coarse

tailings was approximately 210 times greater.  Because the sulphate removal rate in the former

tailings was controlled by gypsum dissolution, the cumulative total sulphur mobilization, as a

result of oxidation in the two tailings, was not comparable.

Calcium and Magnesium:

The calcium and magnesium leaching profiles for Control -2 tailings are shown, respectively, in

Figures F-8 and F-9, for concentrations, and in Figures 122-125, respectively, for calcium

loading rate, cumulative calcium removal, magnesium loading rate and cumulative removal

characteristics of magnesium.

The effluent calcium concentrations increased gradually from approximately 100 mg/l at the start

of the leaching experiment, to peak concentrations of ~ 600 mg/l upon the implementation of the
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batch leaching schedule and just before the onset of the acidic drainage.  In the acidic drainage

period, the calcium concentrations rapidly decreased, and within a year were in the range of ~

10-20 mg/l, and less than 10 mg/l afterwards (Figure F-8).  During the same period, the column

average effluent loading/removal rate for calcium increased from approximately 200-300 µg

Ca/kg tailings/day to maximum of 2500-3000 µg Ca/kg tailings/day, and then decreased rapidly

to less than 40 µg Ca/kg tailings/day (Figure 122).  This corresponded to an estimated column

average calcium removal of approximately 0.76 g Ca/kg tailings, or 19% of the total amount of

calcium contained in Control -2 tailings during the entire study. period.

These results indicated that in the coarse tailings without additional limestone, the oxidation, acid

generation and neutralization processes started very early in the experiment and acidic drainage

occurred upon consumption of the available alkalinity.  Because the total acid neutralization

potential and residual gypsum content of these tailings were small, ~ 2.7 kg CaCO3/tonne

(0.1% Ca) equivalent carbonate alkalinity and 0.6% (0.17% Ca) gypsum as CaSO4

respectively, the gypsum dissolution and removal rates were controlled by acid generation and

neutralization kinetics in the present experiments.  Taking the initial (prior to acidic drainage)

calcium production/removal rate of ~ 250 µg Ca/kg tailing/day as solubility contribution of

original gypsum residue in the tailings, the additional limestone neutralization and calcium

removal was calculated as 0.60 g Ca/kg of tailings or approximately 60% of total limestone

contained in the tailings.  Thus in the coarse tailings, the acidic drainage occurred before the full

consumption of the available limestone alkalinity, although, the latter was only present in a small

amount.

Similar to calcium, the effluent magnesium concentrations also increased gradually, from an initial

range of ~3-5 mg/l at the beginning of the leaching experiment, to peak concentrations of

approximately 30 mg/l near the onset of the acidic drainage.  In the acidic effluents, magnesium

concentrations decreased slowly to approximately 5 mg/l in the fourth year of the study (Figure

F-9).  During the same period, the column average effluent loading/removal rates for magnesium

increased from approximately 10-20 µg Mg/kg tailings/day to a maximum of 120 µg Mg/kg
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tailing/day, and decreased gradually to 10-20 µg Mg/kg tailings/day range near the end of the

study period (Figure 124).  The calculated column average cumulative magnesium

production/removal was approximately 0.077 g Mg/kg tailings or 13% of total magnesium

contained in the coarse tailings.  Although magnesium was easily mobilized in the oxidation and

acid generation processes, its removal rate was small even under severe acidic conditions,

probably because of the type of mineralization and its availability/distribution within the host

rock.

Aluminum and Manganese:

Figures F-10 and F-11, show respectively, the effluent aluminum and manganese concentration

profiles and leaching characteristics of Control -2 tailings.  The corresponding aluminum and

manganese loading rate profiles are shown in Figures 126 and 128 and cumulative mass

removal characteristics in Figures 127 and 129, respectively.

For Control -2 tailings, the aluminum leaching profiles were similar to those for iron, in both

cases the ionic mobility was directly related to the onset of acidic drainage.  Prior to acidic

drainage, the effluent aluminum concentrations were very low, in the range of

~ 0.02-0.3 mg/l, which increased with the acidic drainage by many orders of magnitude to peak

concentrations of approximately 500-600 mg/l.  In the acidic effluent, the aluminum

concentrations decreased very rapidly over a short period of time (within six months) to

approximately 100 mg/l, and thereafter decreased very slowly (Figure F-10).  The effluent Al

loading rate profiles were also similar, with column average peak Al loading rate of  ~ 2000 µg

Al/kg tailings/day, which decreased afterwards to ~ 200-500 µg Al/kg tailings/day range (Figure

126).  During the entire acidic drainage period, the column average cumulative

production/removal of aluminum was approximately 0.46 g Al/kg tailings or 1.76% of total

aluminum contained in the coarse tailings.  Unlike iron and because of the alumino- silicate

matrix, aluminum was not easily mobilized.  Consequently, pH buffering with the dissolution of

alumino-silicates was not significant in these tailings.
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The leaching characteristics of manganese resembled those of magnesium, where the ionic

mobility started with the oxidation and acid generation (Figures F-9 and 11).  With the acidic

drainage, the effluent manganese concentrations peaked in the range of 3-5 mg/l and then

decreased to 0.5-1.0 mg/l range over a one year period.  The corresponding column average

effluent loading rates were approximately 18 µg Mn/kg tailings/day near the peak acidic

drainage period and between 2 - 5 µg Mn/kg tailings/day elsewhere (Figure 128).  During the

entire study period, a column average total of approximately 6 mg Mn/kg tailings or 21% of

total Mn contained in the Control -2 coarse tailings was removed.  The manganese removals

from both Control -1 and -2 tailings, during the study period, were significant, and in both cases

were significantly greater than that of Al.  In Control -2 tailings, the total removal rate iron was,

however, greater than that of Mn.

Uranium, Thorium and Lead:

The leaching profiles for uranium, thorium and lead are shown, respectively, in

Figures F-12 to F-14 for effluent concentrations, in Figures 130, 131 and 133 for effluent

loading rates, and in Figures 132 and 134 for cumulative mass removal of thorium and lead,

respectively.  For uranium the cumulative mass removal profile was not computed as there some

uncertainty in the measurement of solid phase uranium composition of the tailings, at low

concentration range using an Inductively Coupled Plasma Argon Emission Spectrophotometer

(ICAP-AES), where the minimum detection limit was high, ~ 40 µg/g (0.2 mg/l in solution).

The leaching profiles for both uranium and thorium were quite similar in their effluent

concentrations and loadings characteristics, and their mobilities resulted by the acidic drainage.

The effluent peak concentrations, though very significant at ~ 16 mg/l for U and 135 mg/l for Th,

decreased sharply to very low levels within four to six months of the occurrence of the acidic

drainage (Figures F-12 and 13, and 132 and 133).  In both columns #16 and 17, increased Th

concentrations in the effluents were detected four months before U and where Th

concentrations and loading rates were high for a longer period of time.  In the acidic effluent, the

column average peak effluent loading rates for uranium and thorium were determined as ~ 60 µg
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U and 550 µg Th/kg tailings/day respectively.  During the entire acidic drainage period, it was

estimated that approximately 7 mg of total uranium/kg tailings, and 110 mg of Th/kg tailings or

54% of total thorium contained in the tailings were removed.  Thus for Control -2 tailings the

thorium mobility was high and comparable to that of iron.

The leaching profiles for lead were very similar to those for iron, where effluent lead

concentrations and loading rates increased rapidly with the acidic drainage to peak values of

approximately 3 mg/l and 12 µg Pb/kg tailings/day, and decreased slowly in the acidic effluent

(Figure F-14 and 133).  The calculated column average Pb removal, during the acidic drainage

period, was approximately 11 mg/kg tailings or 5% of  the total lead contained in the tailings.

Other Metals, Ce, Cu, Ni and Zn, etc.:

Similar to Control -1 tailings, the leaching profiles were also measured for Ce, Cu, Ni and Zn

for Control -2 tailings, but because of their low concentrations in the tailings, the date was not

processed in greater detail.  Their concentrations and loading results are provided in Tables F-1

and F-2 together with other parameters measured.

For coarse tailings (Control -2), the general leaching characteristics of these metals (and

presumably other rare earths that were not measured e.g. yttrium, etc.) were similar to those of

iron and aluminum, where the effluent concentrations and metal loading rates increased with the

onset of acidic drainage, peaked and decreased slowly afterwards to low but detectable levels.

The average peak concentrations of these elements in the acidic effluents were significant at: 33

mg/l Ce, 21 mg/l Cu, 10 mg/l Ni and 9 mg/l.  The corresponding column average effluent peak

loading rates were, approximately 150 µg Ce, 88 µg Cu, 45 µg Ni and 40 µg Zn/kg tailings/day.

Ra-226:

For Control -2 coarse tailings, the Ra-226 leaching characteristics are shown in

Figure F-15 for concentration, and in Figures 135 and 136 for effluent loading rate and

cumulative Ra-226 removal profiles, respectively.
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Initially, in the absence of the acidic drainage, Ra-226 was leaching at a high rate with effluent

concentrations in the range of 1400-1800 mBq/l, which increased with the acid generation,

within few months, to peak concentrations of ~ 5000 mBq/l.  Afterwards in the acidic effluent,

Ra-226 concentrations decreased very rapidly, also within a short period of time, to very low

values in the range of 100-200 mBq/l (Figure F-15).

These results are to be compared with Control -1, total mill tailings, which contained

approximately twice the amount of Ra-226 in the solid phase (7500 mBq/g compared to 3900

mBq/g for coarse tailings), and where effluent Ra-226 concentrations were in the range of 200-

500 mBq/l initially, increasing to 3000-3500 mBq/l with the acidic drainage and then decreasing

slowly to  a 500-1000 mBq/l range (Figure A-15).  Thus in the absence of acidic drainage and

before its occurrence, Ra-226 leachability was higher for coarse tailings than for total mill

tailings.  In the acidic effluent, the case was reversed after Ra-226 concentrations peaked with

the acidic drainage.  The data indicated decreased

Ra-226 leachability with the development of severe acidic conditions in Control -2 tailings and

in the absence of gypsum, in contrast to Control -1, total mill tailings, where the acidic

conditions were moderate and gypsum was present in significant amount.

The effluent Ra-226 loading rates were similar in characteristics to its concentration profiles,

where the column average effluent loading rate increased from an initial range of ~ 5.7 mBq Ra-

226/kg tailings/day to peak loading rate of approximately 22 mBq

Ra-226/kg tailings/day, and decreased rapidly to ~ 1-2 mBq/kg tailings/day range (Figure 135).

During the entire study period, a column average of approximately 6800 mBq/kg tailings of total

Ra-226 or only 0.17% of total Ra-226 contained in the coarse tailings was removed.  For

Control -2 tailings, the cumulative (%) Ra-226 removal was approximately twice that of Control

-1, total mill tailings.  In the former case, most of the Ra-226 was mobilized prior to and at the

onset of the acidic drainage, whereas in the latter tailings, it was mobilized after the onset of the

acidic drainage.
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While measuring Ra-226 concentrations (activity) using an alpha spectroscopy technique, it was

observed that in the acidic effluent, Ra-226 and its progeny alpha decay peaks were

accompanied by large concentration peaks of Ra-223, Ra-224 and their progeny, whose

activities were one to two orders of magnitude higher than that of Ra-226.  Figure 138 shows a

typical alpha energy spectrum of the acidic effluent collected from column #17 near the peak

acidic drainage period (July 1990), where the alpha energy peaks from various radium isotopes

and their progeny, as well their relative abundances are clearly seen.  It is believed that the

increased drainage of radium isotopes, Ra-226, Ra-224 and Ra-223 and their progeny,

resulted from leaching of their corresponding parent thorium isotopes, e.g. Th-230, Th-232 and

Th-229, upon acid generation.  With the leaching of Th and Ra isotopes, a new secular

equilibrium was re-established in the drainage effluent samples, which was disturbed by the

differential leaching of various radioisotopes from the solid phase.  Such occurrences of

increased Ra-223 and Ra-224 isotopes and their progeny in the acidic porewaters of tailings

were common in the field, as observed by Lim (1988).

Similar profiles for radium isotopes in the acidic drainage were also observed for other tailings

and waste rock groups.

3.3.1.2.2 Group 2:  Un-oxidized and Coarse Tailings Mixed With 7.5% (w/w) Coarse

(-6.3 mm Size) Limestone (Columns #18 and 19)

The coarse tailings mixed with 7.5% by weight coarse limestone of screen size -6.3 mm (column

#18 and 19), also oxidized and produced highly acidic drainage but its onset was delayed by

approximately one year in comparison to Control -2 coarse tailings without limestone, where it

occurred soon after the introduction of the batch leaching schedule.  The detailed leaching

characteristics for columns #18 and 19 are shown in Figures G-1 to G-16 for concentration,

and  in Figures 139-164 for effluent loading rates and cumulative mass removal profiles,

respectively.  Similar to Control -1 tailings, a column average cumulative total of 75 l of effluent

was collected from each column during the four year study period.  During the same period
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each column had received an average of approximately 104 l of natural lake water for

leaching/rinsing purposes.  The results are discussed below in detail:

pH, Eh and Ec:

Figures 139-141 show, respectively, the variations of pH, Eh and Ec with time for coarse

tailings mixed with coarse limestone.  As mentioned previously, these columns were producing

slightly alkaline effluents with pH’s ~ 8.0 during the first two years of the study.  Acidic drainage

started near the end of the second year (April 1991), where the pH dropped from ~8 to ~ 2.5

within a two month period and remained low thereafter.  The two columns differed slightly in

their effluent characteristics, with column #19 leading by few months in the occurrence of acidic

drainages as well as accompanied chemical species. (Fig. 139).

Although, the tailings were mixed with an additional 7.5% coarse limestone (NNP-42.8

kg CaCO3/Tonne), its quantity was, however, not sufficient enough to provide a acid complete

neutralization for a prolonged period. In comparison to coarse tailings without limestone

(Control - 1), the addition of coarse limestone to coarse tailings prevented acidic drainage for

an extra year.  In these tailings-limestone mixtures, some acid neutralization was still taking

place, as seen from effluent pH’s and dissolved calcium concentrations, but because of their

high hydraulic conductivities and rapid drainage characteristics, the effluent residence times in

the tailings were not long enough for complete acid neutralization and utilization of the available

alkalinity in preventing acidic drainage.

Similar to Control -2 tailings, the effluent Eh’s were within 350-450 mV prior to the occurrence

of the acidic drainage.  With the acidic drainage, the Eh’s increased rapidly to a range of ~ 650-

700 mV, corresponding well oxidized conditions, and remained constant at these values in the

acidic effluent throughout the experiment (Figure 140).  The transition in effluent characteristics

for column #19 was once again early.
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In contrast to the above two parameters, the effluent Ec increased slowly from 400 to 3000

µs/cm before the occurrence of the acidic drainage, and then at a higher rate in the acidic

effluent, increasing from approximately 3000 µs/cm to  a peak range of ∼ 8000-10,000 µs/cm.

Towards the end of the study, the effluent Ec decreased to a column average  of ~ 6000 µs/cm

(Figure 141).  For Control -2 tailings, the corresponding Ec values were 3 to 6 times higher,

indicating that for coarse tailings-coarse limestone mixture, there was an ongoing acid

neutralization and the effluent was saturated with respect to the gypsum.

Acidity and Alkalinity:

The acidity and alkalinity profiles for coarse tailings mixed with coarse limestone are shown in

Figures G-4 and G-5 for concentrations, in Figures 142 and 144 for effluent loading rates, and

in Figure 143 for cumulative acid production/removal characteristics, respectively.

Prior to the onset of acidic drainage during the first two years, the effluent acidities were zero.

Acidities increased very rapidly with the acidic drainage, and within few months, were in the

range  of ~ 5000-6000 mg CaCO3/l, and continued to increase for the next two years to a

column average peak acidity of ~ 12,000 mg CaCO3/l, and decreased afterward to ~ 4000 mg

CaCO3/l near the end of the study period (Figure G-4).  These acidities were lower by  factors

of 3-4 than those for Control -2 tailings.

The acidity loading profiles showed similar results, increasing from zero to a peak value of

approximately 40,000 - 60,000 µg CaCO3 acidity/kg tailings/day, then decreased to

 ~ 20,000 µg CaCO3 acidity/kg tailings/day near the end of the study period (Figure 142).

During the acidic drainage period of approximately two and a quarter year, lasting till the end of

the study, a column average acidity load of the effluent was calculated as 20.5 g CaCO3

equivalent acidity/kg tailings or approximately 17% of the total acid generation potential of the

coarse tailings and limestone mixture.  Because of a shorter acidic drainage period and available

limestone buffering, the total acidities produced by such tailings - limestone mixtures were
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approximately 3 to 4 times less than those for

Control - 2 tailings during the study period, as observed earlier for effluent acidities.

As mentioned previously, the added 7.5% limestone was not stoichiometrically equivalent to the

maximum acid generation potential of coarse tailings (118.75 kg CaCO3/tonne).  The additional

alkalinity, which provided a total neutralization potential of 75.9 kg CaCO3/tonne, was,

however, comparable to the total column average acidity production of 76.7 kg CaCO3/tonne

tailings by Control -2 tailings during the entire experimental leaching period of approximately

years (see Section 3.2.1.2.1).  The limestone addition to coarse tailings had thus not only

delayed the onset of acidic drainage by one additional year but suppressed the production of

additional acidity by ~  56.2 kg CaCO3/tonne tailings, or 47% of maximum potential acidity.

These results indicated some initial delay and suppression of acid generation in tailings mixed

with limestone because of prevailing alkaline conditions, as well as acid neutralization prior to

the occurrence of acidic drainage.  As shown below, the total limestone neutralization achieved

in these tailings was much less.

As seen from effluent calcium concentrations, the drainage effluents from all Group -2 coarse

tailings and coarse tailings-limestone mixtures, columns (#16-21), were initially unsaturated with

respect to gypsum and before occurrences of substantial oxidation and acid generation

conditions (see for example Figures F-8, G-8 and H-8).  With acid generation and its

neutralization, both effluent calcium concentrations and loading rates increased with time until

complete saturation with respect to gypsum and remained constant thereafter.  For both Control

-2 tailings (columns #16 and 17) and coarse tailings - coarse limestone (columns #18 and 19)

groups, the effluent gypsum saturation was observed near the occurrence of the acidic drainage.

Based on the measured column average effluent calcium loading rate of   ~ 2500 µg Ca/kg

tailings/day for columns #18 and 19, the total acid generation and hence limestone neutralization

of this sub-group of tailings-limestone, prior to acidic drainage, was calculated as 4.6 g

CaCO3/kg tailings or ~ 6% of total neutralization potential.  These results indicated that for

coarse tailings mixed with coarse limestone, only less than 10% of the available alkalinity was
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utilized before the occurrence of the acidic drainage.  Thus the neutralization efficiency of coarse

limestone was very low.

Similar to Control -2 tailings, the coarse tailings - coarse limestone subgroup was also

producing slightly alkaline effluents at the beginning and prior to acidic drainage with column

average alkalinity in the range of 150-180 mg CaCO3/l and an alkalinity production rate of

approximately 600 µg CaCO3/kg tailings/day.  The effluent alkalinity decreased rapidly to zero

with the occurrence of the acidic drainage (Figures G-5 and 144), further indicating insufficient

neutralization.

Sulphate and Iron:

The leaching characteristics for coarse tailings mixed with coarse limestone for dissolved

sulphate and total dissolved iron are shown, respectively, in Figures G-6 and G-7 for

concentrations, in Figures 145 and 147 for effluent loading rates, and in Figures 146 and 148

for cumulative mass removal profiles.

The dissolved sulphate concentration profiles were very similar to those for electrical

conductance, Ec’s, where during the non acidic drainage period, the sulphate concentration

increased slowly with time, from an initial range of ~ 100-200 mg/l to approximately 2000 mg/l.

With the onset of acidic drainage, sulphate concentrations increased gradually but at a higher

rate to peak concentration in the range of 1200-1600 mg/l over a two year period and then

decreased to 6000-8000 mg/l range near the end of the study period (Figure G-6).  The

sulphate loading rate profiles were similar, increasing from a low range of ~ 2000-5000 µg SO4
-

2/kg tailings/day to peak levels of 40,000-50,000 µg SO4
-2/kg tailings/day.  During the entire

study period, a column average of approximately 28 g of total sulphate/kg of tailings or 25% of

total sulphur contained in the tailings-coarse limestone mixture was removed.  More than 85%

of the sulphur removed resulted from the oxidation of these tailings.
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The iron concentration and loading rate profiles were similar to those of total acidity, increasing

from near zero to very low values prior to acidic drainage, then to peak concentrations and

loading rates of approximately 5000 mg/l and 15,000 µg Fe/kg tailings/day, respectively, with

the acidic drainage, and after a two year period, decreased to ~ 2000 mg/l and 10,000 µg

Fe/kg tailings/day, respectively (Figures G-7 and 147).  During the entire acidic drainage period

monitored, a column average effluent loading and cumulative removal of iron was calculated as

6.6 g of iron/kg tailings or approximately 17% of total iron contained in the tailings limestone

mixture.  Because of continued limestone reactivity and acid neutralization to a certain extent,

the total amount of iron removed was somewhat less than that of sulphur.

Compared to Control - 2 coarse tailings, the cumulative (%) sulphur and iron removals for

coarse tailings - coarse limestone mixtures were reduced by factors of 3 to 4, resulting from

delayed acid generation and continued limestone neutralization.  Further monitoring of these

columns is required for evaluating the impact of coarse limestone in controlling the release of

acidity, iron, sulphate and other oxidation derived reaction products.

Calcium and Magnesium:

The calcium and magnesium leaching profile for coarse tailings - coarse limestone subgroup are

shown in Figures G-8 and G-9, for concentrations, and in Figures 149-152, respectively, for

calcium loading rates and cumulative calcium removal, magnesium loading rates  and cumulative

removal characteristics of magnesium.

As mentioned previously in the acidity section, the effluent calcium concentrations increased

gradually from ~100-150 mg/l range at the beginning of the leaching experiments to peak

concentrations of ~ 580 mg/l near the onset of  the acidic drainage.  Since then, the calcium

concentrations remained constant and were controlled by gypsum dissolution (Figure G-8).

During the same period, the effluent calcium loading rates increased gradually from ~ 300 µg

Ca/kg tailings/day to maximum of 3500-4500

µg Ca/kg tailings/day (Figure 149).  This corresponded to an estimated column average calcium
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removal of  4.3 g Ca/kg tailings, or 12% of total calcium contained in the tailings coarse

limestone mixture during the entire study period.  In comparison, the cumulative (%) sulphur

removal was higher because of acidic drainage and lack of adequate neutralization.

Similar to calcium, the effluent magnesium concentrations also increased, at first slowly from an

initial 3-5 mg/l range at the beginning of the leaching experiments, then rapidly to peak

concentrations of  ~ 80 mg/l near the occurrence of the acidic drainage and in the acidic effluent.

Near the end of the fourth year, magnesium concentration gradually decreased to 20-30 mg/l

range (Figure G-9).  During the same period, the column average effluent loading rates for

magnesium increased from ~ 25 µg Mg/kg tailings/day to peak values of 300-300 µg Mg/kg

tailings/day, decreasing gradually to 75-100 µg Mg/kg tailings/day range near the end of the

experiment (Figure 151).  During the entire study period, the column average magnesium

removal was calculated as 166 mg/kg tailings or

 ~ 26% of total magnesium contained in tailings-coarse limestone mixture.  Compared to

Control -2 tailings, the increased removal of magnesium in coarse tailings-coarse limestone

mixture resulted from acid neutralization by the additional magnesium alkalinity contained in the

limestone, and increased solubility of MgSO4 which also resulted in higher magnesium removal

than that for calcium.

Aluminum and Manganese:

Figures G-10 and G-11 show, respectively, the effluent aluminum and manganese concentration

profiles and leaching characteristics of coarse tailings-coarse limestone subgroup.  The

corresponding effluent loading rate profiles are shown in Figures 153 and 155, and the

cumulative mass removal characteristics in Figures 154 and 156, respectively.

Similar to Control -2 tailings, the aluminum leaching profiles for coarse tailings-coarse limestone

mixtures were similar to those for iron, increasing rapidly from below detection and very low

concentrations in the absence of acidic drainage to 150-200 mg/l range in the acidic effluent.

Near the end of the study, the aluminum concentrations decreased to 50-80 mg/l range (Figure
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G-11).  The corresponding column average effluent aluminum loading rates increased from zero

to peak loadings of ~ 600 µg Al/kg tailings/day, decreasing afterward to 150-200 µg Al/kg

tailings/day (Figure 153).  During the acidic drainage period, a column average total of 206 mg

of Al/kg tailings or approximately 0.8% of total aluminum contained in the tailings-limestone

mixture was removed.  Thus with the acidic drainage, the mobilization of aluminum was limited

to less than 1% of Al content of coarse tailing-coarse limestone test samples, which was

approximately half that for Control -2 tailings due to the delayed onset of acidic drainage.  In

both cases, the cumulative removal of aluminum removal was much less than that of iron.

The leaching characteristics of manganese, similar to coarse tailings (Control -2),  resembled

those of magnesium, where both were mobilized with the oxidation and acid generation (Figures

G-9 and G-11).  In the neutral to alkaline drainage the effluent manganese concentrations were

very low, ~ 0.2-0.5 mg/l, which increased with the increased acidity to peak concentrations in

the range of 3-4 mg/l, decreasing thereafter to approximately 1.0 mg/l near the end of the fourth

year of the study.  The corresponding effluent manganese loading rates increased from 1 µg

Mn/kg tailings/day to peak maximums in the range of ~ 12-14 µg Mn/kg tailings/day, and then

decreased to approximately 4 µg Mn/kg tailings/day.  For coarse tailings-coarse limestone

samples, a column average effluent manganese removal during the study period was calculated

as approximately 7.0 mg/kg tailings or 75% of total manganese contained in the mixture.

Although, the total mass of manganese removed for Control -2 and coarse tailings-limestone

sub groups was comparable, the cumulative percentile value was higher in the later case

because of low to near detection manganese concentration in the solid phase.  In both cases, the

cumulative removal of manganese was much greater than that of aluminum.

Uranium, Thorium and Lead:

The leaching profiles for uranium, thorium and lead for coarse tailings-coarse limestone mixture

are shown, respectively, in Figures G-12 to G-14 for effluent concentrations, in Figures 157,

158, and 160 for effluent loading rates, and in Figures 159 and 161, respectively, for cumulative

mass removal characteristics for thorium and lead.  Similar to Control -2 tailings, because of low
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solid phase uranium concentrations, the cumulative mass removal profiles for uranium were not

computed.

As seen from Figures G-12 and 157, the effluent uranium concentrations and loading rate

profiles were somewhat poorly defined with occasional peaks at different times for the two

columns (#18 and 19).  During the acidic drainage period, some mobility of uranium was

indicated where effluent concentrations and loading rates increased from below detection to

approximately 2.5 mg/l and 12 µg U/kg tailings/day, respectively.

The effluent thorium concentrations and loading rates increased from below detection and very

low values to approximately 30-40 mg/l range and 100-150 µg Th/kg tailings day range peaks,

respectively, in the acidic effluent (Figures G-13 and 158), then decreased to ~ 3 mg/l and 25

µg Th/kg tailings/day, respectively, near the end of the study period.  Unlike uranium, the

leaching characteristics of thorium were better defined.  During the acidic drainage period

monitored, a column average effluent thorium removal was calculated as 41 mg Th/kg tailings or

approximately 22% of total thorium contained in the tailings-coarse limestone mixture.  Similar

to Control -2 tailings, the cumulative (%) thorium and iron removals were comparable.

Similar to thorium and iron, the effluent lead concentration and loadings increased from below

detection levels to peak values of approximately 0.8 mg/l and 6 µg Pb/kg tailings/day, then

decreased to 0.1 mg/l and 1.0 µg Pb/kg tailings/day, respectively.  The occurrence of lead

drainage in the effluent was delayed, and where column #18 was most active in comparison to

acidity, iron and aluminum drainages (Figures G-14 and 160).  A column average effluent lead

removal with the acidic drainage was calculated as ~ 1.3 mg Pb/kg tailings or only 0.5% of total

lead contained in the tailings-limestone mixture.

Compared to Control -2 coarse tailings, the effluent loadings and mass removals for most

parameters for the coarse tailings-coarse limestone sub group were low because of the delayed
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acidic drainage and to a certain extent continued limestone neutralization, although at a reduced

rate.

Other Metals, Ce, Cu, Ni and Zn, etc.:

The concentrations and loading results for other metals are provided in Tables G-1 and G-2,

and as in the previous cases, the data were not processed in greater details because of low solid

phase compositions of these metals.  Similar to Control -2 tailings, the leaching profiles for these

metals for coarse tailings-coarse limestone sub-group were also similar to those for Fe and Al,

etc. where increased acidic drainage resulted in increased mobilities of various metals and then

decreased to low but detectable levels.  The column average peak concentrations of these

elements in the acidic effluent were also significant at:

6 mg/l Ce, 6 mg/l Cu, 7 mg/l Ni and 3 mg/l Zn.  The corresponding column average effluent

peak loading rates for various metals were: ~ 20 µg Ce, 20 µg Cu, 25 µg Ni and 10 µg Zn/kg

tailings/day.  These values were lower than those for Control -2 tailings.  Also similar to

observations made for other parameters, the leaching profiles obtained for column #19 were

characterized by higher effluent concentrations, loading rates and early occurrences in the

drainage than those for column #18.

Ra-226:

For coarse tailings mixed with coarse limestone, the Ra-226 leaching characteristics are shown

in Figure G-15 for concentrations, and in Figure 162 and 163 for effluent loading rates and

cumulative Ra-226 removal profiles, respectively.

Initially during the first year when the effluent was near neutral to alkaline, the effluent Ra-226

concentrations were in the range of 1000-1500 mBq/l, which similar to other tailings above,

increased rapidly with the introduction of the batch leaching schedule to peak concentrations in

the range of 3000-4000 mBq/l, and then decreased equally rapidly to 1200-1500 mBq/l range

before the occurrence of the acidic drainage.  In the acidic effluent, Ra-226 concentration

increased again to a second peak with concentrations in the range of 3500-4500 mBq/l and

decreased somewhat differently for the two columns in the fourth year.  For column #18, Ra-
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226 continued to leach at a higher rate for about a year than for column #19 where Ra-226

concentrations decreased rapidly in the acidic effluent (Figure G-15).  Near the end of the study

period, the column average effluent Ra-226 concentrations were ~ 600-800 mBq/l.

In the acidic effluent, similar to Control-2 tailings, the Ra-226 concentrations were controlled by

the effluent acidity, where Ra-226 leaching and drainage decreased with severe acidic

conditions.

The effluent Ra-226 loading profiles were similar to those for concentrations, where the effluent

loading rates increased from approximately 4 mBq/kg tailing/day in the first year to

approximately 12 mBq/kg tailings/day at the introduction of the batch leaching schedule, and

then to second peak loadings in the range of 12 - 18 mBq/kg tailings/day.  In the fourth year,

the column average effluent loading rates of Ra-226  decreased to a range of 3 - 6 mBq/kg

tailings/day (Figure 162).  The corresponding column average removal of Ra-226 during the

entire study period was calculated as approximately 10,800 mBq/kg tailings/day or

approximately 0.29 % of total Ra-226 contained in the tailings -coarse limestone mixture.  Thus

for the coarse tailings - coarse limestone sub-group, the cumulative Ra-226 removed was

approximately double that for Control - 2 tailings because of decreased cumulative total acidity

production in the former case as explained above.  However, similar to Control - 2 tailings, the

acidic effluent was characterized by an increased mobility of other radium isotopes, e.g.  Ra-

223, Ra-224 and Ra-228 and their progeny, resulting from increased leaching of corresponding

thorium parent radionuclides.  The increased mobility of radium isotopes with the acidic

drainage also correlated with the oxidation of pyrite and iron mobility in the tailings.

3.3.1.2.3 Group - 2:  Un-oxidized and Coarse Tailings Mixed With 7.5 % (w/w) Wet

Ground and Pulverized Limestone (Columns #20 and 21)

The coarse tailings mixed with wet ground and pulverized limestone did not produce any acidic

drainage during the study period.  Similar to total mill tailings mixed with various screen sized

limestone, the effluents from columns #20 and 21 were near neutral to slightly alkaline and
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contained appreciable amounts of dissolved SO4
-2, Ca, Mg and Ra-226.  The results further

indicated that although oxidation was also taking place in the coarse tailings - pulverized

limestone sub-group, the acid so produced was completely neutralized by the finely ground

limestone in combination with the increased retention time resulting from slightly decreased

hydraulic conductivities (Tables 7 and 10).  The mobilization of other oxidation related reaction

products, e.g. acidity, SO4
-2, Fe, Al, U, Th, Pb, Ce, Cu, Ni and Zn was absent or present in

trace amount except Mn which was present in small quantity. During the study period, the

leaching characteristics of coarse tailings mixed with wet ground limestone were very similar to

those of the coarse tailings mixed with coarse limestone prior to the occurrence of the acidic

drainage, where sufficient acid neutralization was taking place in the latter sub-group.

The detailed leaching characteristics of coarse tailings-wet ground limestone subgroup  (columns

#20 and 21) are shown in Figures H-1 to H-16 for concentration profiles, and in Figures 165 to

185 for effluent loading rates and cumulative mass removed profiles, respectively.  Similar to

other Group - 2 tailings, a column average cumulative total of 75 l of effluent was collected from

each column during the four year study period.  During the same period, each column had

received an average of approximately 104 l of natural lake water for leaching and rinsing

purposes.  The detailed results are as follows:

pH, Eh and Fe:

Figures 165 to 167 show, respectively, the variations of pH, Eh and Ec with time for coarse

tailings mixed with wet ground limestone (columns #20 and 21).  As seen from Figure 165,

these columns were producing slightly alkaline effluents with pH’s in the range of 8 - 8.5

throughout the study period.

The effluent Eh values increased very slowly from an initial range of ~ 350 - 400 mV to

approximately 500 - 500 mV near the end of the study, which indicated a small degree of
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oxidation in these tailings limestone mixtures (Figure 168).  At these observed pH - Eh values,

the effluents were characterized by precipitation of solid phase Fe(OH)3 and near the

precipitation boundary of Mn with a slight solubility of Mn+2.

Initially, the effluent electrical conductivities, Ec’s, increased from approximately 500 µS/cm to

1500 µS/cm during the first six months, and then dropped to approximately 1000 µS/cm range

and remained constant at that range for a further period of 6 to 8 months.  After the introduction

of the batch leaching schedule, the effluent Ec’s increased steadily to approximately 3000

µS/cm over a one year period, decreasing afterward to 2200 - 2500 µS/cm range for the rest

of the study period (Figure 167).  Similar to other tailings-limestone mixtures, the effluent Ec’s in

columns #20 and 21, prior to acidic drainage, were indicative of gypsum formation and its

solubility near saturation levels.  After the introduction of the batch leaching schedule, the

effluent quality results indicated oxidation, acid generation and complete limestone neutralization

in this sub-group of coarse tailings-wet ground limestone, although this mixture had a rather high

net acid generation potential (NNP = - 43 kg CaCO3 /tonne).  This observation was further

substantiated by acidity, Ca, Mg, Fe and SO4
-2  drainage results.  The long-term monitoring of

these columns would be interesting for evaluating the degree of limestone neutralization provided

prior to the occurrence of the acidic drainage, if any.

Acidity and Alkalinity:

The acidity and alkalinity profiles for coarse tailings mixed with wet ground limestone are shown

in Figures H-4 and H-5 for concentrations, and in Figures 168 - 169 for effluent loading rates,

respectively.

As seen from Figures H-4 and 168, the effluent acidities were absent throughout the

experimental period and there was no acidic drainage.  The columns were producing alkaline

effluents with alkalinities in the range of 180 - 200 mg CaCO3 /l for the first year, which
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decreased gradually to a range of 80 - 100 mg CaCO3 /l after the implementation of the batch

leaching schedule and were constant at these levels for the rest of the study period.  The

alkalinity production during this period increased from an initial 400 - 600 µg CaCO3 /kg

tailings/day range to peak alkalinities of  800 - 900 µg CaCO3 /kg tailings/day, decreasing

afterward to a range of 300 - 400 µg CaCO3 /kg tailings/day (Figures H-5 and 169).  The

results indicated existence of steady state conditions amongst oxidation, acid generation an

complete acid neutralization.  Thus it was not possible to speculate on the consumption of the

available buffering capacity and start of the acidic drainage from these test samples.

Sulphate and Iron:

The leaching characteristics of dissolved sulphate and total iron for coarse tailings mixed with

wet ground limestone are shown, respectively, in Figures H-6 and H-7 for concentrations and in

Figures 170 - 172 for effluent sulphate loading rates, cumulative sulphate removals and iron

loading rates.

The effluent sulphate profiles were similar to those for Ec, where sulphate concentrations and

loading rates increased uniformly from initial 200 - 400 mg/l and 1000 - 1500 µg SO4
-2 /kg

tailings/day ranges to steady states and uniform values in the ranges of 1600 - 1800 mg/l and

6000 - 6500 µg SO4
-2 /kg tailings/day, respectively (Figures H-6 and 170).  The observed

sulphate concentrations and loading profiles were comparable to those for coarse tailings

(Control - 2)as well as coarse tailings mixed with coarse limestone prior to the occurrence of

the acidic drainage from them.  During the entire study period, a column average cumulative

sulphate loading or total sulphate production/removal in the effluent was calculated as

approximately 8.2 g SO4
-2 /kg tailings or 7 % of total sulphur contained in the tailings-wet

ground limestone mixture.  Unlike the previous two sub-groups of coarse tailings and coarse

tailings - coarse limestone, where acidic drainage occurred, the total sulphur removed in the

present case was comparable to those for total mill tailings mixed with various screen sized

limestone (columns #4-15), and where effluent sulphate drainage was controlled by gypsum

dissolution.
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The effluent dissolved iron (total) concentrations were very low, less than 0.3 mg/l during the

first year and then below detection levels for the rest of the study period.  The effluent iron

loading rates were similarly low and of  little significance for iron drainage and mass removal

computations (see Figures H-7 and 172).

Calcium and Magnesium:

The effluent calcium and magnesium leaching profiles are shown, respectively in Figures H-8

and H-9 for concentrations, in Figures 173 and 175 for loading rates, and in Figures 174 and

176 for cumulative mass removal characteristics.

Similar to electrical conductance and sulphate, the effluent calcium concentrations were

characterized by initial increase from ~ 100 mg/l levels to approximately 300 mg/l peaks,

followed by a slight decrease to 200 mg/l levels during the first year.  After the implementation

of the batch leaching schedule, calcium concentrations increased steadily to maximum gypsum

solubility levels during the subsequent year and remained constant at 600 - 700 mg/l range for

the rest of the study period.  Similarly, the effluent calcium loading rates increased from an initial

range of ~ 500 - 1000 µg Ca/kg tailings/day to saturation values in the range of 2500 - 3000

µg Ca/kg tailings/day (Figures H-8 and 173).  During the entire study period, the column

average cumulative calcium loading or total mass production/removal was calculated as

approximately 3.1 g Ca/kg tailings or

8.8 % of total calcium contained in the tailings-wet ground limestone mixture.

Stoichiometrically, the cumulative mass removal of total calcium was higher than that of total

sulphate sulphur (7 %) as noted above, perhaps resulting from the increased solubility of

limestone in the natural lake water contributing to moderate effluent alkalinities as observed.  In

comparison to the coarse tailings - coarse limestone sub-group (columns #18 and 19), the total

calcium removal in the present case was less, ~ 75 % of that for the former case, resulting from

delayed establishment of gypsum saturation conditions, by approximately 8 - 10 months, in

tailings mixed with wet ground limestone (Figures 149 and 173).
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Although not very accurate, the effluent calcium loading results were extrapolated further to

estimate the degree of limestone neutralization achieved for the present sub-group.  Assuming

that the oxidation and hence the acid generation rates were increasing linearly with time, as

observed during the first two years of leaching and before gypsum saturation conditions, the

average acid generation or its neutralization rate during the study period was estimated as

approximately 6250 µg CaCO3/kg tailings/day from calcium equivalent rate of 2500 µg Ca kg

tailings/day (Figure 173).  The corresponding limestone neutralization, for the duration of the

study, was thus estimated as 9.7 g CaCO3 /kg tailing or 13 % of total limestone contained in the

tailings-wet ground limestone mixture.  After approximately four years of leaching under

unsaturated conditions, approximately 87 % of residual limestone alkalinity was still available in

this tailings-limestone subgroup, which would provide further acid neutralization for an additional

period of 29 years.  Further monitoring of these columns, for an additional period, would verify

predictions of continued acid neutralization and the occurrence of acidic drainage, it any.

The effluent magnesium profiles for concentrations and loading rates were also similar to those

of calcium, except during the first year where small peaks in magnesium parameters were

observed.  Both concentrations and loading rates increased very rapidly from initial ranges of 2

mg/l and 10 µg Mg/kg tailings/day to peak values of 12 mg/l and 40 µg Mg/kg tailings/day,

respectively, and decreased back to the initial values.  After the implementation of the batch

leaching schedule, the parameters increased again, over a one year period, to peak values and

then decreased slightly to ranges of 6 - 7 mg/l and 20 - 30 µg Mg/kg tailings/day, respectively

(Figures H-9 and 175).  During the complete study period, the column average magnesium

drainage was estimated as approximately

43 mg/kg tailings or 7 % of total magnesium contained in the tailings.  The effluent cumulative

magnesium removal was comparable to that of calcium, but was significantly less than that for

tailings mixed with coarse limestone, where it was high at ~23 % resulting from increased acidic

drainage in the latter case.  Total magnesium loadings for coarse tailings - pulverized wet ground

limestone and total mill tailings mixed with various screen sized limestone were comparable.
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Aluminum and Manganese:

The effluent aluminum and manganese leaching profiles are shown in Figures H-10 and  H-11,

respectively, for concentrations and in Figures 177 - 179 for loading rates and cumulative

manganese removals.

Similar to iron, the effluent aluminum concentrations and loading rates were very low, less than

0.2 - 0.3 mg/l and 1 - 2 µg Al/kg tailings/day, respectively, as the acidic drainage was absent.

The effluent manganese concentrations and loading rates were also low but at detectable levels,

in the ranges of 0.1 - 0.5 mg/l and 1 -2 µg Mn/kg tailings/day, respectively, and were indicative

of oxidation activities within these tailings-limestone mixtures.  As stated previously, the effluent

Eh and pH values were near the manganese precipitation boundary which affected Mn solubility

in the effluent.  During the study period, the column average cumulative manganese removal was

calculated as 0.3 mg Mn/kg tailings or approximately 3 % of total manganese contained in the

tailings-wet ground limestone mixture.

U, Th and Pb:

For the coarse tailings - wet ground limestone sub-group, the effluent U, Th and Pb leaching

profiles are shown in Figures H-12 to H-14 for concentrations and in Figures 180 - 182 for

loading rates, respectively.  The results for uranium indicated some initial mobilization during the

first year, where concentrations and loading rates increased from below detection to ranges of ~

1 - 2 mg/l and 4 -10 µg U/kg tailings/day, and decreased gradually to below detection levels in

the third year (Figure H-12 and 180).  Similar to iron and aluminum, no mobilization was

observed for thorium and lead in the absence of the acidic drainage.

Other Metals Ce, Cu, Ni and Zn:
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The leaching characteristics of other metals: Ce, Cu, Ni and Zn are given in Tables H-1 and H-

2, where in the absence of the acidic drainage, these metals were not mobilized from the coarse

tailings mixed with wet ground limestone.

Ra-226:

The effluent Ra-226 leaching characteristics are shown in Figure H-15 for concentrations

(activities) and in Figures 183 and 184, respectively, for effluent loading rates and cumulative

production/removal profiles, for coarse tailings mixed with wet ground and pulverized limestone.

Generally, the effluent Ra-226 concentrations (activities) increased gradually with time from an

initial range of ~ 500 - 1000 mBq/l to 1200 - 1500 mBq/l during the study period. During the

first year and at the start of the batch leaching schedule, two concentration peaks  at ~ 1200

mBq/l and 2000 mBq/l, respectively, were also observed (Figure H-15).  Similarly, the effluent

loading rates increased from approximately 2 mBq/kg tailings/day to 4 mBq/kg tailings/day with

intermediate peak loading rates at ~ 4 and 8 mBq/kg tailings/day (Figure 183).  The occurrence

of these peaks was coincident with those for calcium and magnesium.  During the entire study

period, the column average cumulative  Ra-226 production/removal (loading) was calculated as

approximately 5900 mBq/kg tailings or 0.16 % of total Ra-226 contained in the tailings -

limestone mixture.  The cumulative Ra-226 removal was comparable to coarse tailings without

limestone amendment (Control - 2 ), and less than that for the coarse tailings - coarse limestone

sub-group.  For all group - 2 coarse tailings-limestone mixtures, the radium removals were more

than double of those for group - 1 total mill tailings, although the Ra-226 contents of latter

tailings sub-group were higher.

For coarse tailings without or mixed with limestone, there appeared to be no correlation

between total Ra-226 removal and effluent acidity/alkalinity.

3.3.2 Submerged Tailings
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3.3.2.1 Group 3: Submerged Coarse Tailings

3.3.2.1.1 Group 3:  Un-oxidized Coarse Tailings Submerged

Under 0.45 m Water Cover (Columns #22-24)

The leaching characteristics of submerged coarse tailings are shown in Figures I-1 to I-16 for

concentrations, and in Figures 186 - 209 for primary parameters, loading rates and cumulative

mass removal profiles for various ions and radionuclides.  As mentioned in the experimental

methods section, these columns were leached under submerged conditions by continuous

addition of distilled water at the top of the columns, letting the water run through the tailings and

collecting as porewater drainage.  The planned leaching scheme consisted of accelerated

leaching at the rate of  1 l/day porewater flow for the first two years for removal of water

soluble minerals (i.e. gypsum), followed by decreased porewater flow at the rate of 1 l/week.

In the actual practice, because of manual flow control valves, the effluent volume varied

between ~ 0.4 l to 1 l/day with an yearly cumulative effluent flow volume of approximately 190 l

for the first two years, followed by 100 l/y for the balance of the study period.  At the end of the

four year study period, a column average cumulative flow volume of 580 l of effluent was

collected for each column, which represented approximately 270 pore volume exchanges. This

leachate volume was approximately 7 times more than that used for leaching/rinsing purposes

for the other unsaturated tailings and waste rock groups.

It should also be mentioned that because of the manual flow control valves, there had been

occasional difficulty in maintaining a constant height of the water cover above the tailings.  In one

or two instances, around the middle of study the period, the water cover fell close to the tailings

surface.  The problem was quickly corrected by increasing the distilled water inflow

appropriately and frequent monitoring of water levels in the columns.  The inflow of the distilled

water was, however, not metered in this study.

With the accelerated porewater flow, the soluble minerals (i.e. gypsum) were mobilized very

rapidly and were mostly depleted, within a short time interval of initial three months, with a
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cumulative effluent volume of approximately 50 l.  During the first three years, the submerged

coarse tailing produced no acidic drainages.  The effluents were nearly neutral with pH’s in the

range of ~ 6.5 - 7.5 and zero to very low acidities.  There was no mobilization of oxidation

reaction products most notably Fe, Al, Mn and Th during this period.  In the fourth year,

however, the columns started to produce slightly acidic drainages with dissolved iron and

manganese concentrations in the ranges of  2 - 20 mg/l and 0.1 - 0.3 mg/l, respectively.  Also,

there was about a 10 - 20 fold increase in Ra-226 mobilization from the submerged tailings.

Further, the effluents had low dissolved oxygen, where concentrations decreased from near

saturation, ~8 - 10 mg/l, in the well oxygenated feed water to approximately 2 - 4 mg/l in the

drainage effluents.  The water columns above the tailings surfaces were well oxygenated and

there were no oxygen gradients.  As well, there was no evidence of sulphate reduction in the

submerged tailings, as noted by the absence of characteristic H2S odour in the effluents.

The submerged tailings were leached directly with distilled water which lacked the natural

alkalinity and organic matter contents of natural run-off and lake waters.  If the leaching water

had contained alkalinity levels typical of the local run-off, some moderation in acidic drainage

from submerged tailings was expected. Also, in the absence of any oxygen consuming organic

layer covering the tailings, there was no other oxygen sink except tailings which were directly in

contact with well oxygenated surface water, and to a certain extent porewater because of its

accelerated flow rate.  In the field, natural alkalinity and organic matter would be present in

water covers of submerged tailings. The water column above the tailings was also monitored

periodically at various depths and the results are given in Table I-4, together with drainage

effluent water quality in Table I-1 to I-3 (Appendix I).  The detailed results are as follows:

pH, Eh and Ec:

Figures 180 -188, show the drainage effluent pH, Eh and Ec profiles for submerged coarse

tailings (columns #22-24).  Initially during the first two years, the effluents were near neutral to

slightly alkaline with pH’s in the range of 7.5 and 8.  Afterward, the pH’s started to decrease

gradually, and near the end of the study period, the effluent pH’s were in the range of ~ 5.5 -
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7.0.  As seen from Figure 186, it was observed that column #24 was producing slightly more

acidic effluents, which indicated an early start of oxidation, than the other two columns.  This

column also had early occurrences of acidity, total iron, manganese and Ra-226, as discussed

below.  Because many of these changes were occurring near the end of the study period, it was

difficult to predict if the oxidation process would continue and would also occur in the other two

columns.

In the water columns above the tailings surface, the pH’s were fairly uniform and decreased

slightly with time from a column average of 5.7 to 5.0.  These pH’s were in the range of aerated

distilled water containing dissolved carbon dioxide (Table I-4).

The drainage (porewater) effluent Eh’s were fairly uniform around 400 mV with a slight

decreasing trend from an initial range of 450 - 500 mV in the first year to 350 - 400 mV in the

final year of the study.  Similarly, in the water column above the tailings, the Eh’s were in the

well oxygenated range of 500 - 600 mV.

The effluent electrical conductances, Ec’s, corresponded to rapid dissolution and leaching of

soluble minerals, most notably gypsum, during the initial three month period.  It increased rapidly

from initial values of ~ 1000 µS/cm to peak conductances in the range of ~ 2100 - 2400

µS/cm during the first month, and then decreased during two to three month period that

followed to constant conductances in the range of approximately 70 - 100 µS/cm (Figure 188).

Generally, the drainage Ec’s were fairly uniform, following the initial gypsum dissolution peaks,

during the rest of the study period with minor fluctuations occasionally.

In the water columns above the tailings, the electrical conductance peaked at a column average

of approximately 115 µS/cm around the middle of the study period, decreasing afterwards to

10 - 15 µS/cm range, which was slightly above the feed water range of 3 - 6 µS/cm.  Because

of the high power water flow and flushing of the soluble minerals, the water columns were not

monitored for the first two years.  In the following years, there appeared to be insignificant
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upward diffusion of oxidation reaction products from submerged tailings to the water column

above,  although a limited  oxidation was taking place at the surface of the tailings at the

interface.

Acidity and Alkalinity:

The acidity and alkalinity profiles for the effluent drainage are shown, respectively, in Figures I-4

and I-5 for concentrations, and in Figures 189 - 191 for acidity loading rates, cumulative acidity

production and alkalinity loading rates respectively.

At the start of the experiments, columns #22-24, produced slightly acidic effluents which were

flushed within the first few weeks.  Since then, and for the next three years, the drainage effluent

acidities were very low to zero.  At the beginning of the fourth year of the underwater leaching

study, the columns started to produce slightly acidic effluents, most notably column #24, in the

range of ~ 10 - 20 mg/l CaCO3  acidity.  During this period,  the drainage effluent acidity

loading rates were in the range ~ 500 - 1500 µg CaCO3/kg tailings/day (Figures I-4 and 189).

During the entire study period, the column average cumulative acidity production/removal

(loading) was calculated as 0.26 g CaCO3/kg tailings or 0.2 % of total acid generation potential

of the coarse tailings.

The total acidity produced by the submerged coarse tailings is to be compared with those for

Control - 1, total mill tailings, and Control - 2, coarse tailings, without limestone amendments

where the acidities were, respectively, 1.9 g CaCO3 /kg tailings and 76.7 g CaCO3/kg tailings.

During the experimental leaching period, a shallow distilled water cover on coarse tailings in the

laboratory studies reduced acidity production by factors of approximately 10 and 300 in

comparison to those for total mill tailings and coarse tailings leached under unsaturated

conditions, respectively.  However, for total mill tailings mixed with 7.5 % limestone of various

sizes, and also leached under unsaturated conditions, the total acidity production was only 0.04

g CaCO3 /kg tailings.  The latter combination was thus more effective in preventing acidic

drainage, for a shorter time period, than water cover on coarse tailings.  The benefits of
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limestone amendments in the surface layer of the tailings, however,  would be only temporary

unless appropriate quantity of limestone was incorporated in the tailings above the minimum

elevation of the phreatic surface for complete acid neutralization purposes.

Initially during the first year, the submerged tailings were producing alkaline effluents with

column average alkalinity in the range of ~ 40 - 100 mg CaCO3 /l, which gradually decreased in

subsequent years to a range of approximately 8 - 10 mg CaCO3 /l at the end of the study.

During the same period, the corresponding alkalinity production rate decreased from 8000 to

500 µg CaCO3/kg tailings/day.  As was observed for other leaching columns under unsaturated

conditions, most of the alkalinity production resulted from the dissolution of residual limestone in

the coarse tailings, estimated to be approximately 2 g CaCO3 /kg tailings (2 kg CaCO3 /tonne

tailings or 0.2 %) from drainage effluent alkalinities (Figures I-5 and 191).  The total available

neutralization potential for coarse tailings was measured as 2.7 kg CaCO3 /tonne tailings.

In the water cover above the tailings, the column average acidity and alkalinity were in the range

of 3 - 6 mg CaCO3 /l, mostly resulting from aerated distilled water and absorption of

atmospheric gases, e.g. CO2 etc.

Sulphate and Iron:

The drainage effluent sulphate and iron leaching profiles for submerged tailings are shown,

respectively, in Figures I-6 and I-7 for concentrations, in Figures 192 and 194 for effluent

loading rates, and in Figures 193 and 195 for cumulative mass removal profiles for total sulphate

and iron, respectively.

Similar to Ec’s, the effluent sulphate concentrations were gypsum solubility derived and were

quickly depleted from peak concentration of ~1500 mg/l to a range of ~ 10 - 20 mg/l during the

first three months.  For the remainder of the study period, sulphate concentrations were fairly

constant at the lower range of ~ 10 - 20 mg/l.  The corresponding column average effluent

sulphate loading rates  were approximately 70,000 µg SO4
-2/kg tailings/day at the peak and
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between 200 - 400 µg SO4
-2/kg tailings/day following gypsum removal (Figures I-6 and 192).

For the duration of the study period, the columns average cumulative sulphate

production/removal (loading) was estimated as approximately 2.6 g SO4
-2/kg tailings or 2.0 %

of total sulphur contained in the coarse tailings.  The corresponding total sulphate loading for

coarse tailings under unsaturated leaching conditions was 87.9 g SO4
-2/kg tailings or ~ 67% of

total sulphur content.

The total amount of sulphate removed in the drainage effluent, 2.6 g SO4
-2/kg tailings, for

submerged tailings corresponded to approximately 0.87 g soluble sulphur (as S) per kg tailings

or 0.09 % total soluble sulphur, which was equivalent to 0.38 % CaSO4 (gypsum) or 0.11 %

Ca as soluble gypsum.  These values were closely comparable to those measured in bulk coarse

tailings samples as shown in Table 14.

The drainage effluent total iron concentrations were zero to very low during the first three years

of the study, and increased gradually in the fourth year in effluents from all column, to a range of

~ 1 - 20 mg/l.  As mentioned previously, the largest iron drainage was observed from column

#24, ~ 5 - 20 mg/l, followed by columns #23 and #22 in that order, where the effluent iron

concentrations were in the range of ~ 0.1 - 1.0 mg/l.  Near the end of the study period, the iron

concentrations in effluents from column #24 had peaked at

~ 20 mg/l and then decreased to a range of ~ 6 - 8 mg/l (Figures I-7).  The corresponding

drainage effluent iron loading rates were in the column average range of ~ 50 - 200 µg Fe/kg

tailings/day in the fourth year (Figure 194).  The column average cumulative iron

production/removal (loading) for the duration of the study period was calculated as

approximately 29 mg Fe/kg tailings/day or 0.07 % of total iron contained in coarse tailings.

The results clearly indicated that for coarse tailings under a shallow water cover, oxidation and

iron mobilization processes have established, although, to a very limited extent.  However, in

comparison to Control - 2, coarse tailings, where total iron removal was very high at   68.9 %,

the total iron mobilization and removal from the submerged tailings was insignificant at 0.07 %.
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For Control - 1, total mill tailings, total iron removal was also low at approximately 0.33 %.  No

iron mobilization was observed for total mill tailings mixed with 7.5 % limestone of various

screen sizes and coarse tailings mixed with wet ground limestone.

Similar to total effluent acidity results, the performance of a shallow distilled water cover on

coarse tailings was second to total mill tailings mixed with limestone, for a limited time period,

when drainage effluent water quality results were compared.

In the water column above the tailings, dissolved total iron and sulphate concentrations were at

background levels, in ranges of 0.01 - 0.5 mg/l and 3 - 8 mg/l, respectively.

Calcium and Magnesium:

For submerged columns, the leaching profiles for calcium and magnesium are shown,

respectively, in Figures I-8 and I-9 for concentrations, in Figures 196 and 198 for drainage

effluent loading rates, and in Figures 197 and 199 for cumulative mass removal characteristics.

Similar to Ec and sulphate leaching characteristics, the effluent calcium drainage was controlled

by gypsum dissolution, reaching a peak calcium concentration of approximately ~ 600 mg/l

during the first month, and decreasing very rapidly afterwards to  a range of approximately 10 -

15 mg/l during two to three months period that followed.  For the remainder of the study period,

calcium concentrations were constant at the above low range (Figure I-8).  Correspondingly,

the drainage effluent calcium loading rates were approximately 30,000 µg/kg tailings/day at the

peak and between 100 - 300 µg/kg tailings/day range elsewhere (Figure 196).  For the duration

of the study period, the column average cumulative calcium production/removal (loading) was

calculated as approximately 1.3 g Ca/kg tailings or 32 % of total calcium contained in the

coarse tailings.  Most of the calcium removed resulted from the dissolution of gypsum from the

tailings which contained ~ 1.1 g Ca/kg tailings or 0.11 % Ca as gypsum.  The cumulative

calcium removed from submerged tailings was higher than that from Control - 2, unsaturated

coarse tailings, where it was approximately 19 %.
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The drainage effluent magnesium concentration and loading rate profiles were also similar to

those for calcium and SO4
-2, but for Mg the drainage peaks lasted for a shorter duration and

were at ~ 16 mg/l and 700 µg Mg/kg tailings/day, respectively.  After the first three months,

magnesium concentrations and loading rates decreased to ranges of ~ 0.1 - 0.3 mg/l and 2 - 10

µg Mg/kg tailings/day, respectively.  The magnesium data indicated slightly increase drainage in

the third year, perhaps a indicating an onset of very limited oxidation (Figure 198).  The

drainage effluent cumulative magnesium production/removal (loading) during the study period

was calculated as approximately 20 mg/kg tailings/day or 3.4 % of total magnesium contained in

coarse tailings.  Approximately half of the total magnesium removed resulted from the initial

dissolution of readily soluble magnesium salts contained in the tailings.  For comparison, the

column average magnesium removed from Control - 2 unsaturated coarse tailings, which

produced acidic drainage, was approximately 13 %.

In the water column above the tailings surface, the dissolved calcium and magnesium

concentrations were very low in ranges of 0.1 - 1.0 mg/l and 0.08 - 0.1 mg/l, respectively.

Aluminum and Manganese:

Figures I-10 and I-11, show respectively, the drainage effluent aluminum and manganese

concentration profiles, Figures 200 and 202, the corresponding effluent loading rates, and

Figures 201 - 203 the cumulative mass removal profiles, respectively.

The drainage effluent aluminum concentrations were very low to below detection levels,

< 0.03 mg/l, during most of the study period, except for a few weeks at the beginning of the

study and occasional small peaks where dissolved aluminum concentrations were less than 0.5

mg/l (Figures I-10).  Similarly, the effluent aluminum loading rates were less than 3 µg/kg

tailings/day range except a few peak loading rates in the range of approximately 10 - 30  µg/kg

tailings/day (Figure 200).  The corresponding column average cumulative aluminum

production/removal (loading) was calculated as 6 mg Al/kg tailings or less than 0.02 % of total
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aluminum contained in coarse tailings.  Thus, for submerged coarse tailings aluminum removal

was insignificantly small.

The drainage effluent manganese profiles were combinations of those for calcium and iron.

Initially, during the first three months and similar to gypsum, soluble manganese salts were

removed with peak manganese concentrations and loading rates in ranges of 0.6 - 0.8 mg/l and

25 - 30 µg Mn/kg tailings/day, respectively.  In the period that followed, the effluent manganese

levels were near background or below detection for approximately six months, and increased

slightly in drainage effluents from all three columns, at different times, to concentrations and

loading rates in ranges of ~ 0.1 - 0.4 mg/l and 5 - 20 µg Mn/kg tailings/day, respectively

(Figures I-11 and 202).  Similar to iron, the effluent manganese drainage was most significant

from column #24 where it increased to peak concentrations and loading rates of approximately

0.4 mg/l and 20 µg Mn/kg tailings/day at the end of the third year, and decreased gradually to

0.2 mg/l and 5 µg Mn/kg tailings/day, respectively, in the fourth year.  During the entire study

period, the column average cumulative manganese production/removal (loading) was calculated

as 4 mg Mn/kg tailings or 14 % of total manganese contained in coarse tailings.  It was

estimated that approximately 50 % of the observed Mn drainage resulted from surface oxidation

of tailings underwater.

Similar to iron, the slight drainage of manganese in the effluent indicated active oxidation and Mn

mobilization at very low rates in the submerged tailings.  During this period, the dissolved

concentrations of Fe and Mn were controlled by effluent Eh - pH phase stability relationship

which, for example, indicated Mn+2 solubility and Fe near Fe(OH)3 precipitation boundary for

column #24, whose drainage effluent had a pH of ~ 5.5 and Eh ~ 350 mV.  During the last year

of the study the effluent sample bottles for column #24 were stained with characteristic Fe(OH)3

orange colouration.

In the upper-lying water column above the tailings, aluminum was detected in trace amounts,

0.03 - 0.6 mg/l and manganese concentrations were very low, to below detection levels.
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Uranium, Thorium and Lead:

The drainage effluents leaching profiles for submerged coarse tailings for uranium, thorium and

lead are shown in Figures I-12 to I-14 for concentrations, and in Figures 204 to 206 for effluent

loading rates, respectively.

The effluent uranium concentrations were slightly elevated and above detection limits,

approximately 0.3 - 0.4 mg/l, for the first few weeks at the very beginning of the experiment,

where residual uranium salts from the tailings were mobilized.  Since then, the uranium

concentrations were fairly uniform and below detection levels, <0.2 mg/l, during the rest of the

study period.  The drainage effluent loadings were similarly near background levels, < 10 µg

U/kg tailings/day, except during the initial leaching period of few weeks, where the loading rates

were in the range of ~ 20 - 25 µg U/kg tailings/day.  Because of flow variations and occasional

detection of uranium in the effluent, some fluctuations in both parameters were observed

(Figures I-12 and 204).

The drainage effluent thorium and lead concentrations were generally below detection levels and

no loadings above background levels were noted.  Because of low concentrations and loadings

of these trace elements, no cumulative mass removal profiles were plotted.

Other Metals Ce, Cu, Ni and Zn:

The leaching results for other metals, Ce, Cu, Ni and Zn, are given in Tables I-1 to I-3

(Appendix I) for submerged coarse tailings.  Similar to thorium and lead, no mobilization of

these metals in the drainage effluent was observed.

In the water column above the tailings surface, the concentrations of U, Th, Pb, Ce, Cu, Ni and

Zn were very low to below detection levels.

Ra-226:
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The leaching characteristics of Ra-226 for the submerged coarse tailings are shown in Figure I-

15, for concentrations (activities), and in Figures 207 and 208, respectively, for effluent loading

rates and cumulative removal profiles.

For submerged coarse tailings, Ra-226 leaching characteristics resembled those of manganese,

where ionic mobilites were observed both at the beginning of the experiment and near the end of

the study period.  Initially, at the start of the leaching and accelerated porewater flow, the

column average Ra-226 concentrations in the drainage effluent decreased very rapidly, from

approximately 5000 mBq/l to 1000 mBq/l during the first three months.  During this period and

unlike gypsum dissolution characteristics, no       Ra-226 concentration peaks were observed.

For the next two years or so, Ra-226 concentrations in the drainage effluents were fairly

constant in the range of ~ 800 - 1000 mBq/l, which increased subsequently to peak

concentrations in the range of ~ 5000 - 27,000 mBq/l near the end of the study period.  The

increase was initially gradual and then very rapid, and was most significant for column #24,

where Ra-226 concentrations in the drainage effluents increased by approximately 25 times,

followed by columns #23 and #22 (Figure I-15).  The increase in Ra-226 drainage was

coincident with acidic conditions occurring in the leachates.  The corresponding Ra-226 loading

profiles were similar, with column average loadings rates during initial, intermediate and end of

the study periods were ~ 200, 40 and 800 mBq Ra-226/kg tailings/day, respectively (Figure

207).  For column #24, the peak loading rate was approximately 1700 mBq/kg tailings/day.

The cumulative column average production/removal (loading) for  Ra-226 removal during the

study period was calculated as ~  215,000 mBq/kg tailings or 5.5 % of total Ra-226 contained

in coarse tailings.  Of the cumulative total Ra-226 removed; approximately

0.23 %  was associated with the initial removal of gypsum, 1.5 % with intermediate leaching at

neutral pH conditions, and 3.7 % with the on-set of slow oxidation conditions underwater and

concurrent with the increased drainage iron in the effluent.  The last process, however, was most

significant for column #24.  Thus, in comparison to

Control - 1, total mill tailings and Control - 2, coarse tailings without limestone amendments,
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where cumulative Ra-226 removals with acidic drainages under unsaturated conditions were,

respectively, 0.08 % and 0.17 %, Ra-226 drainage from coarse tailings under submerged

conditions increased by factors of ~ 69 and 32, respectively.

For submerged coarse tailings, there were many interesting and important features associated

with the leaching of Ra-226.  Firstly, in the initial gypsum dissolution phase during accelerated

leaching, the effluent Ra-226, gypsum and hence sulphate concentrations decreased

simultaneously.  During this period, the residual gypsum in the tailings was mostly depleted

within the first three months, where the corresponding effluent sulphate concentrations

decreased from approximately 1500 mg/l to 10 - 20 mg/l, and Ra-226 concentrations

decreased from 5000 mBq/l to 1000 mBq/l.  There was no increase in the solubility and

mobilization of Ra-226 with decreasing sulphate concentrations in the gypsum removal process,

where both Ra-226 and sulphate concentrations were controlled by gypsum dissolution.

Secondly, during the intermediate leaching period, and in the absence of gypsum, where effluent

pH’s were nearly neutral, both sulphate and Ra-226 concentrations were fairly constant.

Finally, near the end of the study period, where a slow oxidation process had started, there was

a significant increase in Ra-226 concentration in the drainage effluent which was associated with

the development of slow oxidation and slight acidic conditions at the tailings surface, and

coincident with the mobilization of iron in low concentration in drainage effluents.  During this

period, sulphate concentrations had increased slightly but the change was not statistically

significant.

These observations were in non-conformity with the most commonly held view that in a simple

solid-liquid phase partition, the liquid phase Ra-226 solubility was controlled and inversely

related to the sulphate ion concentration.  However, with the development of slow oxidation and

acidic conditions in submerged coarse tailings under a shallow water cover, the large increase in

Ra-226 release was most probably associated with the mobility of parent Th-230 isotope but in

low chemical (molecular) concentration similar that of  iron.  Perhaps, during this period, radium

solubility was high because of low sulphate concentrations.  As described previously, the
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association of radium and thorium mobilities with oxidation and acidic conditions was also

observed in other unsaturated tailings sub-groups.  However, the above mentioned Ra/Sulphate

inverse solubility relationship was observed to be valid only for severely acidic effluents from

unsaturated coarse tailings (Control - 2, columns #16 and 17).

The increased effluent loading rate and cumulative removal of Ra-226 from submerged tailings,

each by a factor of 32, in comparison to Control - 2 tailings did not correspond to the increased

porewater in the former case.  The cumulative effluent flow volumes for the two cases were,

respectively, 580 l and 75 l, contributing a volume increase factor of ~ 8 for the submerged

tailings.  As noted above, the slow oxidation and acidification of submerged tailings at the

surface increased Ra-226 mobility significantly.

In the water column above the submerged tailings, some upward diffusion of Ra-226 was

observed, where dissolved Ra-226 concentrations varied between 30 - 140 mBq/l.  Compared

to Ra-226 concentrations in porewater drainage effluents, the surface water concentrations

were low and below the regulatory guidelines of 1000 mBq/l for effluent discharge.

Although the leaching experiments for submerged tailings were conducted with distilled water,

which lacked in natural alkalinity and organic matter contents, the radium mobility results post

gypsum depletion implied a futuristic scenario of increased radium leachability and release from

underwater deposited tailings upon development of acidic conditions.  In shallow water and in

the absence of an oxygen consuming cover layer or barrier such as organic rich sediments, the

surface at the tailings - water interface is subjected to well oxygenated water and is thus

amenable to oxidation and acidification.  In the presence of gypsum, the radium mobility and

release are limited and controlled by gypsum dissolution irrespective of tailings oxidation.

However, post gypsum dissolution and depletion, further oxidation and acidification of tailings

may lead to increased release of radium isotopes to both surface and ground water regimes.
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This scenario may occur many years past decommissioning and monitoring phases, and should

be given due consideration in environmental impact assessment and modeling.

It is believed that in the field, the natural alkalinity of run-off water and gradual development of

an organic cover layer at the surface of the submerged tailings may play a significant role in

controlling the surface oxidation and acidification of the tailings, and hence radium drainage.

Additional leaching tests using natural lake water and an organic cover layer on gypsum

depleted submerged tailings will further improve the understanding of radium dissolution and its

partitioning dynamics amongst various solid-liquid phases.

3.3.3 Crushed Waste Rock

3.3.3.1 Group - 4:  Un-oxidized Crushed Waste Rock

(Unsaturated Conditions)

The leaching results for the three types of crushed waste rock (particle size - 2.0 mm) are given

in Appendices J, K, and L, Tables J(1-3) to L(1-3) and in Figures J(1-16) to L(1-16),

respectively, for medium (NNP = -10.7 kg CaCO3/tonne), high (NNP = -17.8 kg

CaCO3/tonne) and low (NNP = +13.8 kg CaCO3/tonne) acid generating waste rock.  As

mentioned previously in the experimental method section, the waste rock was only leached

under unsaturated conditions, similar to those for the two types of tailings, and the drainage

effluent monitored similarly.  The study period lasted for four and a quarter years, during that

time each column received an average of 104 l of natural lake water for leaching/rinsing

purposes and produced a cumulative effluent volume of approximately

76 l.

The leaching characteristics of the waste rock varied according to its neutralization potential and

were different for the three waste rock sub-groups.  For both medium (columns #25 and 26)

and low (columns #29 and 30) acid generating waste rock, no acidic drainage was observed

during the entire study period, although their net neutralization potentials (NNP's) were on
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different sides of the scale, as mentioned above.  The leaching characteristics were quite similar

to those of coarse tailings mixed with 7.5 % pulverized limestone (columns #20 and 21), as well

the results indicated that oxidation, acid generation and neutralization processes were all active

within these waste rock sub-groups.  For the waste rock with a high acid generation potential

(columns #27 and 28), no acidic drainage was observed during the first three years of the study.

The occurrence of acidic drainage started at the end of the third year and severe acidic

conditions prevailed thereafter.  The leaching characteristics of the high acid generating waste

rock resembled those of coarse tailings mixed with 7.5 % coarse limestone where severe acidic

drainage conditions developed after two years of leaching.  The detailed results for the waste

rock sub-groups are given below.  Because of similarities between coarse tailings and waste

rock sub-groups, greater details are discussed only where significant differences existed among

them.

3.3.3.1.1 Group - 4:  Un-oxidized Crushed Waste Rock with Medium Acid Generation

Potential (NNP = -10.7 kg CaCO3/tonne, Columns #25 and 26)

The leaching characteristics of the medium acid generating waste rock are shown in Figures J-1

to J-16 (Appendix J) for concentration profiles, and in Figures 210 - 230, for effluent loading

rates and cumulative mass or Ra-226 activity removal profiles respectively.  As shown in Table

16, the acid-base accounting components of the medium acid generating waste rock were:  total

sulphur (as S) 0.82 %, equivalent total acid generation potential 25.77 kg CaCO3/tonne, total

neutralization potential equivalent 15.06 kg CaCO3/tonne and net neutralization potential of -

10.7 kg CaCO3/tonne.  As mentioned previously, the waste rock did not produce any acidic

drainage during the four year study period.

pH, Eh and Ec:

The drainage effluent pH, Eh and Ec profiles for the medium acid generating waste rock are

given, respectively, in Figures 210 - 212.  Throughout the study period, the effluents were near

neutral to slightly alkaline with pH's in the range of ~  7.2 to 8.0 (Figure 210).  The column
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average effluent Eh increased from 300 mV to 400 mV during the initial six month period,

remained fairly uniform at approximately 400 mV for the next two years, and afterwards

increased gradually to approximately 500 mV (Figure 211).  The effluent Ec’s increased slightly

during the first few months of the study, from 200 to 600 µS/cm peak, and decreased slowly to

approximately 400 µS/cm in another few months.  After the introduction of the batch leaching

scheme in the second year, Ec’s increased rapidly to a peak range of 1400 - 1700 µS/cm and

decreased slightly afterwards to a constant column average conductance of approximately 1250 

µS/cm.  Similar to coarse tailings mixed with wet ground limestone (columns #20 and 21), the

effluent Ec was derived and controlled by gypsum formation and its dissolution (Figure 212).

Acidity and Alkalinity:

The drainage effluent acidity and alkalinity profiles for the medium acid generating waste rock

are shown in Figures J-4 and J-5, respectively, and in Figures 213-214 for effluent acidity and

alkalinity loading rates.  The effluents had no acidities and were slightly alkaline.  The column

average effluent acidity and acidity loading rates were zero throughout the leaching period,

except for one composite sample where the measured values were, respectively, 18 mg

CaCO3/l and 170 µg CaCO3/kg tailings/day (Figures J-4 and 213).

The column average effluent alkalinity and alkalinity loading rates increased slightly from initial

values of 100 mg CaCO3/l and 400 µg CaCO3/kg tailings/day to peak values of approximately

160 mg CaCO3/l and 700 µg CaCO3/kg tailings/day in the second year after the introduction

of the batch leaching schedule, and decreased afterwards to uniform ranges of 60 - 70 mg

CaCO3/l and 200 - 300  µg CaCO3/kg tailings/day, respectively (Figures J-5 and 214).

Similar to columns #20 and 21, coarse tailings with wet ground limestone, the effluent alkalinity

was produced by the dissolution of carbonate minerals present in the waste rock.
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Sulphate and Iron:

The sulphate and iron leaching profiles for the medium acid generating waste rock are shown,

respectively, in figures J-6 and J-7 for concentrations, and in Figures 215 - 217, respectively,

for effluent sulphate loading rates, sulphate mass removal characteristics and iron loading rates.

The drainage effluent sulphate concentrations increased, after the introduction of the batch

leaching scheme, from an initial range of ~ 100 - 120 mg/l to 600 - 800 mg/l, during the first

year that followed and remained fairly uniform thereafter (Figure J-6).  The corresponding

sulphate loading rates increased from column average loading rate of approximately 500 to

2500 µg SO4
-2 /kg tailings/day (Figure 215).  During the four year study period, the column

average cumulative sulphate production/removal (loading) was calculated as 2.9 g SO4
-2 /kg

tailings or approximately 11.9 % of total sulphur (as SO4
-2) contained in the medium acid

generating waste rock.  Most of the sulphate drainage  resulted from complete acid

neutralization by the available limestone alkalinity in the waste rock during the study period.

The results indicated that although some oxidation was taking place within the waste rock

samples(as seen above from sulphate and Ec results), the available alkalinity provided complete

acid neutralization preventing acidic drainage and release of iron and other metals.  The effluent

iron concentrations were below detection levels, < 0.01, to very low <0.05 mg/l, with negligible

loading rates (Figures J-7 and 217).

Calcium and Magnesium:

The drainage effluent calcium and magnesium profiles are shown, respectively, in Figures J-8

and J-9 for concentrations, in Figures 218 and 220 for effluent loading rates, and in Figures 219

and 221 for cumulative mass removal characteristics.

Similar to coarse tailings mixed with wet ground and pulverized limestone (columns #20 and

21), the effluent Ca, SO4
-2  and Ec leaching profiles were similar, gypsum derived and

controlled by its dissolution.  The effluent calcium concentrations increased gradually after the
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introduction of the batch leaching schedule, from an initial range of ~ 30 - 80 mg/l to nearly

constant drainage range of 300 - 400 mg/l, and were below the gypsum saturation limit of

approximately 600 mg/l.  The corresponding effluent loading rates increased from approximately

250 µg Ca/kg tailings/day at the beginning of the experiment to 1200 µg Ca/kg tailings/day near

the end of the study period.  The column average cumulative calcium production/removal

(loading) during the study period was calculated as approximately 1.4 g Ca/kg tailings or 30 %

of total calcium contained in the waste rock.

Stoichiometrically, approximately 1.2 g Ca/kg tailings or 25 % g total calcium contained in the

waste rock was mobilized as a direct result of limestone neutralization and gypsum drainage.

Because the effluents were not saturated with respect to gypsum, the average acid production

or limestone neutralization rate  was calculated as approximately 2600 µg CaCO3/kg

tailings/day equivalent from gypsum formation and its release.  Theoretically at 100 % limestone

neutralization efficiency, the available alkalinity in the medium acid generating waste rock would

be sufficient for approximately 12 to 15 years of acid neutralization, corresponding to oxidation

of  60 % of total sulphur contained in the waste rock.  Thus, acidic drainage from such a waste

rock would occur after approximately 12 years of exposure in a vertical pile configuration,

similar to the column arrangement, where the drainage occurs only from the bottom.  The waste

rock, however, may produce acidic drainage early, depending upon the geometry of the waste

rock pile and efficiency of the limestone neutralization.

The effluent magnesium concentration and loading rate profiles were also similar to those for the

coarse tailings - wet ground limestone mixture.  The column average magnesium concentrations

peaked at ~ 4 mg/l during the first three months of leaching, then increased slowly near the end

of the second year, and decreased afterwards to approximately 2 mg/l (Figure J-9).  The

corresponding column average magnesium loading rates were between 20 - 25 µg Mg/kg

tailings/day in the peak regions and approximately 5 - 6 µg Mg/kg tailings/day elsewhere.

During the experimental period, the cumulative total magnesium drainage was calculated as

approximately 13 mg Mg/kg tailings or 0.8 % of the total magnesium contained in the waste
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rock.  The cumulative removal of magnesium was significantly less than that of calcium during

the same leaching period.

Aluminum and Manganese:

The drainage effluent aluminum and manganese profiles are shown, respectively in Figures J-10

and J-11 for concentrations and in Figures 222-223 for loading rates.  Similar to iron, the

effluent aluminum concentrations were low and less than 0.2 mg/l throughout the study period.

The corresponding effluent aluminum loading rates were also low and less than 1 µg Al/kg

tailings/day, except near the end of the study period where they increased slightly to 2 µg Al/kg

tailings/day (Figures J-10 and 223).

The effluent manganese concentrations were slightly elevated at the beginning of the study

period, in the range of ~ 1 - 2 mg/l, which increased to peak manganese drainage in the range of

2 - 4 mg/l with the implementation of the batch leaching schedule.  Manganese drainage slowly

decreased to below detection after the second year, except one isolated instance where the

concentration in one of the columns (column #26) was 16 mg/l (Figure J-11).  The

corresponding effluent manganese loading rates were also low, and during the first year varied in

the range of 2 - 15 µg Mn/kg tailings/day (Figure 223).  Because of low drainage rates for

aluminum and manganese, no cumulative effluent loadings and metal removals were calculated.

Uranium, Thorium and Lead:

The leaching characteristics of uranium, thorium and lead for the medium acid generating waste

rock are shown, respectively, in Figures J-12 to J-14 for concentrations, in Figures 224, 226

and 227 for effluent loading rates, and in Figure 225 for cumulative uranium removal profile.

The effluent uranium concentrations increased gradually in the first year, from below detection

levels, < 0.02 mg/l, to peak levels in the column average range of 3 - 5 mg/l in the second year

of the study, and decreased afterward to 1 - 2 mg/l.  The effluent loading rates increased

correspondingly to column average range of 15 - 20 µg U/kg tailings/day and then decreased to

approximately 7 - 8 µg U/kg tailings/day.  The column average cumulative uranium drainage
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was calculated as approximately 15 mg U/kg tailings or 20 % of total uranium contained in the

waste rock.  Although the waste rock did not produce any acidic drainage, there was significant

mobilization of uranium after the introduction of the batch leaching schedule (Figures J-12 and

224).

In the absence of acidic drainage, the effluent thorium and lead concentrations and loadings

were below detection levels(Figures J-13, J-14, 226 and 227).

Other Metals Ce, Cu, Ni and Zn:

The leaching characteristics of other metals, Ce, Cu, Ni and Zn, are given in  Table J-1. Similar

to iron, thorium and lead, mobilization and drainage of Ce, Cu, Ni and Zn were not observed

for the medium acid generating waste rock.

Ra-226:

The leaching characteristics of radium-226 for the medium acid generating waste rock are

shown, respectively, in Figure J-15 for concentrations and in Figures 228 and 229 for effluent

loading rates and cumulative removal profiles.

Initially, during the first year, the effluent Ra-226 concentrations were practically constant in the

range of 80 - 120 mBq/l, which increased after the implementation of the batch leaching

schedule to approximately 200 mBq/l peaks.  Near the end of the second year, Ra-226

concentrations again increased slowly from 50 mBq/l to a range of approximately 200 - 300

mBq/l during the rest of the study period (Figure J-11).  The corresponding effluent Ra-226

loading rates increased from approximately 0.5 to 1.5 mBq Ra-226/kg tailings/day.  During the

entire study period, the column average cumulative Ra-226 drainage was calculated as

approximately 1020 mBq/kg tailings or less than 0.04 % of total Ra-226 contained in the waste

rock.  Thus in the absence of acidic drainage from the medium acid generating waste rock, the

mobility of Ra-226 was very low and controlled by dissolved gypsum.  Similar results were
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obtained for the two unsaturated tailings groups, coarse and total mill tailings mixed with

limestone, where acidic drainages were also absent.

3.3.3.1.2 Group - 4:  Un-oxidized Crushed Waste Rock with High Acid Generation

Potential (NNP = -17.8 kg CaCO3/tonne, Columns #27 and 28)

The leaching characteristics of the high acid generating waste rock are shown in Figure K-1 to

K-16 (Appendix K) for concentrations, and in Figures 231 - 257, for effluent loading rates and

cumulative mass or activity (Ra-226) removal profiles, respectively.  As shown in Table 17, the

acid base accounting components of the high acid generating waste rock were: total sulphur (as

S) 0.86 %, equivalent total acid generation potential (AP) 26.34 kg CaCO3/tonne, total

neutralization potential (NP) equivalent 8.5 kg CaCO3/tonne, and net neutralization potential

(NNP) of -17.8 kg CaCO3/tonne.  As mentioned previously, this waste rock produced highly

acidic drainage near the end of the third year of the study.  The detailed results are as follows:

pH, Eh and Ec:

Figures 231 - 233, show, respectively the pH, Eh and Ec profiles for the high acid generating

waste rock sub-group, where the leaching characteristics were similar to those for coarse

tailings mixed with coarse limestone (columns #18 and 19).  During the first three years, the

effluent pH's were near neutral to slightly alkaline ~ 7.5 - 8, which decreased very rapidly to  a

range of ~ 2.0 - 2.5 at the beginning of the fourth year with the start of a severe acidic drainage

(Figure 231).  The acidic drainage appeared early from   column #28 and three months later

from column #27.  Similarly, at the on-set of acidic drainage, the effluent Eh's increased from

approximately 400 mV to a range of ~  750 - 800 mV and were reflective of severe oxidation

and mobilization of iron (Figure 232).  During the same period,  the electrical conductances,

Ec’s, increased from column average range of 300 - 800 µS/cm in the neutral effluents to 6000

- 8000 µS/cm with the acidic drainage having peak conductances of approximately 9500 µ

S/cm, which were observed after transition to acidic conditions had been complete (December

1992), as seen from pH and Eh results.
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Acidity and Alkalinity:

The effluent acidity and alkalinity profiles are shown, respectively, in Figures K-4 and K-5 for

concentrations, in Figures 234 and 236 for effluent loading rates and in Figure 235 for

cumulative acidity production.  The effluent acidities were zero or absent (neutral to alkaline

effluents) for the first three years and increased very rapidly, with the on-set of acidic drainage,

to peak acidities in the range of ~ 18,000 - 20,000 mg CaCO3/l, decreasing afterwards to

column average acidity of approximately 7000 mg CaCO3/l.  The corresponding acidity loading

rates were 60,000 - 65,000 and 30,000 µg CaCO3/kg tailings/day, respectively  (Figures K-4

and 234).  With the occurrence of the acidic drainage at the beginning of the fourth year and

during the balance of the study period, a column average cumulative acidity production/loading

was calculated as approximately 13.9 g CaCO3/kg waste rock or 53 % of total acidic

generation potential of the waste rock.  Although, the waste rock contained lower

concentrations of sulphide (pyrite) and available limestone alkalinity than coarse tailings, its

reactivity was higher than that of coarse tailings mixed with coarse limestone fraction (columns

#18 and 19).

The effluent alkalinities increased initially from a range of ~ 30 - 50 mg/l to peak concentrations

of approximately 150 mg/l during the first year, and decreased slowly to zero at the on-set of

acidic drainage (Figure K-5).  The corresponding columns average alkalinity production rates

were in the range of 200 to 600 µg CaCO3/kg waste rock/day equivalents, respectively.

Similar to coarse tailings, the alkalinity was being produced by the dissolution of carbonate

minerals.  During the alkaline drainage period of initial three years, the corresponding cumulative

alkalinity production was calculated as 0.44 g CaCO3/kg waste rock or approximately 3 % of

total neutralization potential of the waste rock.

Sulphate and Iron:
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The leaching and mobilization characteristics of sulphate and iron for the high acid generating

waste rock are shown, respectively, in Figures K-6 and K-7 for effluent concentrations, in

Figures 237 and 239 for effluent loading rates and in Figures 238 and 240 for cumulative mass

removal profiles, respectively.

The column average effluent sulphate concentration increased from an initial range of 80 - 100

mg/l, first gradually and then very rapidly with the occurrence of the acidic drainage, to a peak

value of  approximately 20,000 mg/l (average 16,000 mg/l).  Near the end of the study period,

the sulphate concentration decreased to approximately 8,000 mg/l.  The corresponding effluent

sulphate loading rates were 70,000 (60,000 average) at the peak and 38,000 µg SO4
-2 /kg

waste rock/day near the end of the study period.  For the duration of the study period, the

column average cumulative sulphate production/removal (loading) was calculated as

approximately 15.4 g SO4
-2 /kg waste rock or 60 % of the total sulphur contained in the waste

rock.  Similar to total acidity, the corresponding sulphate production rate for the high acid

generating waste rock sub-group was very significant, most of it resulting from oxidation and

acid generation.

The effluent iron concentrations were zero to below detection levels, <0.01 mg/l, prior to the

occurrence of the acidic drainage, and increased very rapidly in the acidic effluent to peak

values in the range of ~  7000 - 9000 mg/l (column  average 6000 mg/l) during the fourth year

of the study.  The corresponding column average effluent iron loading rates were in the range of

20,000 - 25,000 µg Fe/kg waste rock/day.  The calculated total iron loading or cumulative iron

production/removal during the acidic drainage period monitored was ~ 4.6 g Fe/kg waste rock

or 31 % of total iron contained in the waste rock.  The iron mobilization and release were also

high for the waste rock.

Calcium and Magnesium:
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The leaching characteristics of calcium and magnesium are shown, respectively, in

Figures K-8 and K-9 for concentrations, in Figures 241 and 243 for effluent loading rates, and

in Figures 242 and 244 for cumulative metal removal profiles, respectively.

The effluent calcium concentrations for the high generating waste rock increased gradually

during the initial two and a half years period, from approximately 50 mg/l to 200 mg/l, then very

rapidly to peak calcium concentrations in the range of 800 - 900 mg/l (column average

approximately 750 mg/l) near the on-set of the acidic drainage.  At the end of the study period,

the column average calcium concentration had decreased to 400 mg/l.  The effluent calcium

concentration peaks were concurrent with transition to acidic pH's, and their occurrences

preceded those of iron and sulphate peaks by approximately six months.  The corresponding

column average effluent calcium loading rate increased from an initial range of 250 - 750  µg Ca

/kg waste rock/day to a peak value of 3200 µg Ca /kg waste rock/day.  During the entire study

period, the column average cumulative calcium production/removal (loading) was calculated as

approximately 1.59 g Ca/kg waste rock or 59 % of total calcium contained in the waste rock.

Most of the effluent calcium resulted from acid neutralization within the waste rock.

Prior to the on-set of acidic drainage (approximately June 1992), the effluent calcium drainage

resulted from complete neutralization of the acid produced and formation of gypsum.  At the

peak concentration, the effluent was saturated with respect to gypsum and calcium

concentration was controlled by gypsum dissolution.  Using the observed calcium loading rates,

the total limestone neutralization, prior to the occurrence of the acidic drainage from the waste

rock, was calculated as approximately 2 g CaCO3 (0.8 g Ca)/kg waste rock or 24 % of total

limestone alkalinity present in the waste rock.  Thus, similar to coarse tailings without and with

added limestone (coarse), the acidic drainage from the occurred before complete utilization of

the available alkalinity.

The effluent magnesium profiles were similar to those for sulphate and calcium, where Mg

concentrations increased slowly at the beginning from a range of ~ 1 - 5 mg/l, and then rapidly
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with the on-set of acidic drainage to peak values in the range of 70 - 80 mg/l (column average

70 mg/l).  Near the end of the study period, the column average magnesium concentration was

approximately 50 mg/l (Figure K-9).  It should be noted that magnesium concentration peaks

were concurrent with those of sulphate and iron, and were preceded calcium by approximately

six months.  The corresponding effluent magnesium loading rates were in the range of ~ 10 - 30

µg Mg/kg waste rock/day before acidic drainage, ~ 250 - 300 at the peak concentrations , and

160 - 200  µg Mg/kg waste rock/day near the end of the study.  The column average

cumulative magnesium production/removal (loading) during the study period was calculated as

approximately 0.08 g Mg/kg waste rock or 6.5 % of total magnesium contained in the waste

rock.  The reactivity of available magnesium alkalinity was less than that of calcium in the high

acid generating waste rock.  This result differed from that of coarse tailings mixed with coarse

limestone, where magnesium removal was higher.

Aluminum and Manganese:

The effluent aluminum and manganese profiles are shown in Figures K-10 and K-11 for

concentrations, in Figures 245 and 247 for effluent loading rates, and in Figures 246 and 248

for cumulative mass removal characteristics, respectively.

The effluent aluminum profiles were similar to those for iron, where aluminum concentrations

increased from below detection levels, <0.03 mg/l, to a peak range of ~ 350 - 400 mg/l with

the acidic drainage, and then decreased to approximately 200 mg/l near the end of the study

period.  The corresponding column average effluent loading rates were less than 0.5 µg Al/kg

waste rock/day at the beginning, 1600-1800 near the peak drainage and 600-800 µg Al/kg

waste rock/day near the end of the study.  During the acidic drainage period monitored, the

column average cumulative aluminum production/removal (loading) was calculated as

approximately 0.33 g Al/kg waste rock or 0.8 % of total aluminum contained in the waste rock.

Similar to coarse tailings, the mobilization of aluminum with the acidic drainage was also limited

in the waste rock.
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The effluent manganese profiles resembled those of calcium, where Mn concentrations

increased slowly at the beginning in the range of 0.1 - 0.5 mg/l, then rapidly to peak values of

approximately 40 - 50 mg/l at the on-set of acidic drainage, and decreased to 5 - 8 mg/l range

near the end of the study period.  The effluent loading rates, similarly, increased to column

average peak loading rate of approximately 150  µg Mn/kg waste rock/day and decreased

rapidly to 20 µg Mn/kg waste rock/day afterwards.  The corresponding column average

cumulative manganese production/removal (loading) during the study period was calculated as

approximately 64 mg Mn/kg waste rock or 69 % of total manganese contained in the waste

rock.  Similar to coarse tailings-coarse limestone, the cumulative manganese removal with the

acidic drainage was also high for the waste rock.

Uranium, Thorium and Lead:

The leaching characteristics of uranium, thorium and lead for the high acid generating waste rock

are shown, respectively, in Figures K-12 to K-14, for concentrations, in Figures 249, 251 and

253 for effluent loading rates, and in Figures 250, 252 and 254 for cumulative mass removal

profiles, respectively.

The effluent uranium and thorium leaching characteristics were very similar to those of iron and

aluminum, where all of them were significantly mobilized with the acidic drainage.  Uranium

concentrations in the effluents increased from below detection levels, <0.2 mg/l, at the beginning

of the experiment to 1 - 5 mg/l in the neutral effluents, to peak concentrations in the range of

150 - 200 mg/l (column average 150 mg/l) with the acidic drainage, and  then decreased to 10 -

20 mg/l range near the end of the experiment

(Figure K-12).  The corresponding column average effluent loading rates were, ~ 550 µg U/kg

waste rock/day near the peak drainage and approximately 50 µg U/kg waste rock/day near the

end of the study period.  During the entire study period, a column average cumulative

production/removal (loading) of  uranium was calculated as

 ~  0.10 g U/kg waste rock or approximately 88 % of total uranium contained in the waste

rock.  As mentioned in the analytical section, because of high uranium detection limit using the
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ICAP-AES, the mass balance for uranium was not very accurate.  Nonetheless, the mobility of

uranium was very high in the high acid generating waste rock with the occurrence of the acidic

drainage.

The thorium results were slightly different than those for uranium, where thorium mobility and

release were entirely associated with the acidic drainage.  Thorium concentrations in the effluent

increased with the acidity, from below detection levels, <0.05 mg/l, to peak levels in the range

of  200 - 300 mg/l and decreased to 5 - 10 mg/l near the end of the study period (Figure K-

13).  The corresponding column average effluent loading rates were, respectively, 1000 and

200 µg Th/kg waste rock/day at the peak drainage and afterwards.  During the acidic drainage

period monitored, the cumulative thorium production/removal (loading) was calculated as ~

0.18 g Th/kg waste rock or 83 % of total thorium contained in the waste rock.  Similar to

uranium, the thorium mobility and release were also high with the acidic drainage in the waste

rock.

Similarly, the effluent lead concentrations increased with the acidic drainage from below

detection levels, <0.06 mg/l, to peak concentrations in the range of ~ 2 - 3 mg/l and decreased

to 0.5 mg/l level near the end of the study period.  The effluent lead loading rates were,

correspondingly, 12 - 15 µg Pb/kg waste rock/day at the peak drainage and

~ 1 - 2 µg Pb/kg waste rock/day near the end of the study period.  With the acidic drainage, a

column average cumulative lead production/removal (loading) was calculated as 1.8 mg Pb/kg

waste rock or 1.8 % of total lead contained in the waste rock.  Similar to coarse tailings, the

lead mobility with the acidic drainage was low for the acid generating waste rock as well.

Other metals Ce, Cu, Ni and Zn:

The leaching characteristics of Ce, Cu, Ni and Zn for the high acidic generating waste rock are

given in Table K-1 and were similar to those of iron, aluminum and thorium where the metal

releases were entirely caused by the acidic drainage.  In the acidic effluents, the concentration

peaks for these metals were, respectively, 50 mg/l for Ce,
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12 mg/l for Cu, 10 mg/l for Ni and 10 mg/l for Zn.  Similar to coarse tailings, the mobilities of

these metals with the acidic drainage were significantly high.

Ra-226:

Ra-226 leaching characteristics for the high acid generating waste rock are shown in Figure K-

15 for concentrations (activities), and in Figures 255 and 256, respectively, for effluent loading

rates and cumulative Ra-226 removal profiles.

The leaching profiles for Ra-226 for the waste rock were different than those for coarse tailings

without or mixed with limestone, where for the high acid generating waste rock and in the

absence of gypsum, the effluent Ra-226 concentrations also increased with the acidic drainage.

In the neutral to slightly alkaline effluents, Ra-226 concentrations increased from an initial range

of ~ 100 - 300 mBq/l to approximately 500 mBq/l, which increased with the acidic drainage to

peak concentrations of 1000 - 2000 mBq/l (column average 1000 mBq/l) and then decreased

rapidly to 200 - 300 mBq/l range near the end of the study period (Figure K-15).  Similarly, the

effluent Ra-226 loading rates increased from a range of ~ 0.5 - 1.0 mBq/kg waste rock/day to

peak rates of ~ 4 - 8 mBq/kg waste rock/day.  The column average cumulative

production/removal (loading) of Ra-226 during the entire study period was calculated as

approximately 2200 mBq/kg waste rock or 0.08 % of the total Ra-226 contained in the high

acid generating waste rock.  Similar to medium acid generating waste rock and coarse tailings,

Ra-226 mobility and release in the present case were also very low.

3.3.3.1.3 Group - 4:  Un-oxidized Crushed Waste Rock with Low Acid Generation

Potential (NNP = +13.8 kg CaCO3/tonne, Columns #29 and 30)

The leaching results for the low acid generating waste rock (columns #29 and 30) are given in

Tables L-1 to L-3 (Appendix L).  The characteristics are shown in Figures L-1 to L-16 for

concentration profiles, and in Figures 258 - 278 for effluent loading rates, and cumulative mass

or activity (Ra-226) removal profiles.  The acid base accounting components of the low acid

generating waste rock were:  total sulphur (as S) 0.42 %, equivalent total acid generation
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potential (AP), 13.01 kg CaCO3/tonne, total neutralization potential (NP) equivalent, 26.82 kg

CaCO3/tonne and net neutralization potential (NNP) of +13.8 kg CaCO3/tonne (Table 18).

Similar to the medium acid generating waste rock, the low acid generating waste rock sub-

group did not produce any acidic drainage during the four year study period, and the parametric

profiles for the two waste rock sub-groups were quite similar.  The description of results and

discussions are thus limited to key features of this group.

pH, Eh and Ec:

The drainage effluents for the low acid generating waste rock were slightly alkaline with pH's in

the range 7.5 - 8 for the entire study period (Figure 258).  The Eh's increased from

approximately 300 mV at the beginning to 500 mV near the end of the study period (Figure

259).  During the same time, the electrical conductances, Ec's, increased first gradually and then

rapidly from approximately 250 to 500 µS/cm, then to peak conductances of 1500 - 2200

µS/cm in the second year, decreasing afterwards to 1000 µS/cm level (Figure 260) near the

end of the study period.  The effluent was mostly controlled by gypsum formation in the

limestone neutralization process and its subsequent dissolution.

Acidity and Alkalinity:

The effluent acidities were zero throughout the experimental period of four years

(Figure 261).  The alkalinities increased initially during the first year from a range of ~ 50 - 60

mg CaCO3/l to 120 - 150 mg CaCO3/l, then decreased to uniform alkalinity levels of 70 - 80

mg CaCO3/l.  Similar to medium acid generating waste rock (columns #25 and 26) and coarse

tailings mixed with limestone, the effluent alkalinities resulted from dissolution of carbonate

minerals contained in the waste rock (Figure 262).

Sulphate and Iron:

Similar to Ec, the effluent sulphate concentrations were controlled by gypsum formation and its

dissolution, and increased from a range of 100 - 200 mg/l during the first year to peak sulphate

drainage in the range of  700 - 1300 mg/l, decreasing afterwards to 400 - 600 mg/l level (Figure
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L-6).  The corresponding column average effluent sulphate loading rates were approximately

500 µg SO4
-2/kg waste rock/day at the beginning, 2500 - 4000 near the peak drainage and

approximately 1500 µg SO4
-2/kg waste rock/day at the end of the study period (Figure 263 and

264).  The column average cumulative sulphate production/removal (loading) during the study

period was calculated as 2.4 g SO4
-2/kg waste rock or 19 % of total sulphur contained in the

waste rock.  The cumulative sulphate loading of 2.4 g SO4
-2/kg  waste rock for the low acid

generating waste rock was comparable to that for medium acid generating waste rock, 2.9 g

SO4
-2/kg  waste rock, and indicated active oxidation, acid generation neutralization processes

within the two sub-groups.

The effluent iron concentrations were generally below detection levels, < 0.01 mg/l, except in

few instances where they were between 0.02 - 0.14 mg/l for one column (#29) at the beginning

of the leaching period (Figure L-7).  The corresponding effluent loading rates were insignificantly

small (Figure 265).

Calcium and Magnesium:

Similar to Ec and sulphate, the effluent calcium concentrations (Figure L-8) increased slowly

during the first year from 20 to 100 mg/l, then rapidly to peak calcium drainage range of  350 -

500 mg/l and decreased afterwards, in the third year, to 200 - 300 mg/l range.  The

corresponding column average calcium loading rates were, respectively, between 100 - 400 µg

Ca/kg waste rock/day at the beginning, 1200 - 1700 in the peak drainage region and 700 -

1000  µg Ca/kg waste rock/day near the end of the study period (Figure 266 and 267).  The

column average cumulative calcium production/removal (loading) was calculated as ~ 1.2 g

Ca/kg waste rock or approximately 11.6 % of total calcium contained in the waste rock.

Because of acid neutralization, gypsum formation and its dissolution, the effluent cumulative

calcium loadings for low and medium acid generating waste rock  comparable.

The effluent calcium profiles clearly indicated ongoing oxidation, acid generation and complete

neutralization processes within the waste rock.  The effluents were also not saturated with



1-106

respect to gypsum and most of calcium and sulphate resulted from limestone neutralization.  As

seen from alkalinity profiles, small amounts of calcium drainage, estimated to be approximately

0.6 g CaCO3 or 0.2 g Ca/kg waste rock, were produced by limestone dissolution.  The balance

of  calcium and total sulphate loadings were then in stoichiometric equivalent compositions

corresponding to gypsum dissolution.

Similar to the medium acid generating waste rock, the observed effluent calcium loading rates

were used to calculate the average acid generation and hence limestone neutralization rates,

which were obtained as 2250 µg CaCO3 or 900 µg Ca/kg waste rock/day.  Thus for low acid

generating waste rock, the total available alkalinity was theoretically sufficient for 33 years of

acid neutralization at 100 % limestone neutralization efficiency.  At the above calculated acid

generation rate, the total sulphur contained in the waste rock would be oxidized and mobilized

within the first twenty years at an estimated rate of 5 % total sulphur/year.  Thus the low acid

generating waste rock, at 100 % neutralization efficiency, should not produce any acidic

drainage.  At lower neutralization efficiencies, however, acidic drainage may occur at some time

in the future.  The observed limestone neutralization efficiencies for high acid producing waste

rock and tailings have seldom exceeded 25 % of the available alkalinity.  It remains to be seen if

the low acid generating waste rock would produce acidic drainage in the future, and further

monitoring of these columns may be necessary.

The effluent magnesium concentrations (Figure L-7) increased in the first year to peak drainages

of approximately 8 mg/l, then decreased to a range of ~ 2 - 3 mg/l, and increased again to

second drainage peaks, in the range of ~  5 - 8 mg/l, near the end of the second year.

Afterwards, the concentrations decreased gradually to a range of ~ 1 - 2 mg/l near the end of

the study period.  The effluent magnesium and calcium profiles were complimentary in indicating

active oxidation-neutralization processes.

The corresponding effluent magnesium loading rates were, respectively, at 30 and 20 µg Mg/kg

waste rock/day for the two peak regions and approximately 8 µg Mg/kg waste rock/day
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elsewhere.  The column average cumulative production/removal (loading) of  magnesium was

calculated as ~ 0.02 g Mg/kg waste rock or approximately 0.4 % of total magnesium contained

in the waste rock.  Similar to the medium acid generating waste rock, the cumulative removal of

magnesium was considerably lower than that of calcium (Figures 268 and 269).

Aluminum and Manganese:

For the low acid generating waste rock, a minor amount of aluminum drainage was observed,

although the effluent pH's were slightly alkaline (Figures L-10 and 270).  The effluent aluminum

concentrations were low and varied between 0.1 - 0.4 mg/l with corresponding loading rates in

the range of 0.5 - 1.0 µg Al/kg waste rock/day.

The effluent manganese concentrations and loadings were also low and were in the ranges 0.1 -

0.6 mg/l and 1 - 2  µg Mn/kg waste rock/day, respectively.  Similar to calcium and magnesium,

the manganese drainage substantiated ongoing oxidation-neutralization processes within the low

acid generating waste rock (Figures L-11 and 271).

Uranium, Thorium and Lead:

Similar to the medium acid generating waste rock, the effluent uranium concentrations (Figure L-

11) increased from the initial low levels of <0.2 mg/l to 4 - 5 mg/l peak drainage and then

decreased slowly to ~ 2 mg/l near the end of the study period.  Similarly, the column average

effluent loading rates increased from a very low drainage to 20 - 25 µg U/kg waste rock/day

near the peak region and between 8 - 10 µg U/kg waste rock/day afterwards.  In the alkaline

effluent, and with carbonate buffering, the column average effluent uranium loading or cumulative

uranium production/removal rock during the study period was calculated as ~ 16 mg U/kg

waste rock or 32 % of the total uranium contained in the waste.  Similar to the medium acid

generating waste rock, significant amount of uranium in the present case was mobilized, even

though in both cases acidic drainages were absent (Figures 272 and 273).
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For the low acid generating waste rock, no mobilization of thorium and lead was observed

during the study period, as seen from Figures L-13, L-14, 274 and 275.

Other Metals Ce, Cu, Ni and Zn:

The leaching characteristics of other metals, Ce, Cu, Ni and Zn are given, together with other

water quality results, in Tables L-1 and L-2 (Appendix L).  Similar to iron, aluminum, thorium

and lead, there was no mobilization of Ce, Cu, Ni and Zn, in the absence of acidic drainage

from the low acid generating waste rock.

Ra-226:

The leaching characteristics of Ra-226 for the low acid generating waste rock are shown in

Figure L-15 for concentrations (activities) and in Figures 276 and 277 for effluent loading rates

and cumulative Ra-226 removal profiles, respectively.

The column average effluent Ra-226 concentrations increased slightly from an initial range of ~

100 - 200 mBq/l to peak drainages between 300 - 450 mBq/l near the end of the first year, and

then decreased to a range of ~ 100 - 150 mBq/l range.  The corresponding effluent loading

rates were low and varied between 0.5 - 1.0 mBq/kg waste rock/day (Figures 276 and 277).

During the four year study period, the column average cumulative production/removal (loading)

of Ra-226 was calculated as approximately 1100 mBq/kg waste rock or ~  0.06 % of total Ra-

226 activity contained in the waste rock.  Thus, the mobilization and release of Ra-226 for the

low acid generating waste rock were also low.

4.  DISCUSSION

The column leaching experiments were conducted under climatically controlled laboratory

conditions of warm room temperature (22 °C) and cool fluorescent lighting, providing

favourable conditions for both bacterial and chemical oxidations of sulphide minerals.  Also, the
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columns were subjected to a constant leaching schedule, designed to promote oxidation and

drainage under unsaturated conditions and high porewater flow and oxygenation for submerged

tailings.  In the field, such conditions only exist during warm summer months where maximum

reactivity and release of oxidation reaction products takes place.  The laboratory test were thus

simulations of enhanced chemical activity and leaching conditions.

In actual field conditions there are seasonal and other factors that need to be considered.  For

example, for unsaturated and exposed tailings and waste rock, additional variables are:  diurnal

surface temperature cycling, solar heating and drying, wind desiccation, freeze-thaw cycling and

frost penetration, snow cover, and spring and fall recharge events, etc.  For submerged tailings

consideration should be given to wind/wave induced mixing and surface erosion, freezing of the

water cover and tailings surface, ice formation and break-up, and temperature dependence of

mineral solubilities etc.  The laboratory results should, therefore, be weighted appropriately

when comparing with those in the field under different conditions.  The most useful and directly

applicable leaching result for a given test sample is expressed in term of an effluent loading rate,

as µg/kg tailings (waste rock)/day, for various ionic species and mBq/kg tailings (waste

rock)/day for radionuclides.  This result could be converted easily to kg/hectare/year for metals

and sulphate and kBq/hectare/year for radionuclides by multiplying the corresponding column

loading rates, obtained in this study, by 3.165 and 3,165 respectively.  In converting these

results it was assumed that the oxidation rate was limited by the available oxygen and hence the

exposed surface area.  For other tailings and waste rock, having different sulphide and mineral

compositions, results normalized to unit elemental concentration should be used.

The laboratory experimental conditions of continuous weathering at warm temperature and

batch leaching, in comparison to those existing in the field on degree-days basis, provided a 3

fold scaled up leaching period.  Therefore, one year on the laboratory scale was approximately

equivalent to three years of activity in the field.  The unsaturated tailings and waste rock columns

were rinsed/flushed with 1 l of natural lake water every two weeks or 26 l/year of water was

applied to each column having a surface area of 0.0165 m2.  This corresponded to an equivalent
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annual precipitation of approximately 1600 mm.  The average porewater drainage and hence

infiltration per column was approximately 18.75 l or 1140 mm per year, and as there was no

surface drainage, the balance, 460 mm/yea, resulted in surface evaporation.  For a nominal

porosity or void volume of 33 % for the tailings, the annual infiltration depth corresponded to

3.4 m or approximately 3 times that of the average field value.  For both, the unsaturated tailings

and waste rock sub-groups, the temperature and drainage conditions in the laboratory thus

provided, on an actual time scale, accelerated weathering and leaching by factors of 3.

Similarly for submerged tailings, the accelerated weathering time factor of 3 applied equally, but

for gypsum leaching and flushing requirements, the effluent drainage rates were high.  In the

experimental columns, containing coarse tailings to a height of approximately 0.35 m, gypsum

was completely removed within the first fifty days with the application of 50 l of drainage water.

In the actual field scenario, gypsum removal time may vary between 50 - 300 years, depending

upon basin surface area, hydrology, tailings tonnage and their gypsum content, etc.  Thus for

submerged tailings, the Ra-226 mobilization results obtained in the laboratory would be

applicable only after complete removal of gypsum from underwater disposed and

decommissioned tailings.  Hence, appropriate judgment should be exercised when applying

laboratory results to field cases.

Although the detailed laboratory column leaching results have been discussed for each tailings

and waste rock sub-group previously, a brief overview of salient features is provided below

along with relevant discussion.

For unsaturated tailings, the coarse tailings without additional limestone (Control - 1) were most

amenable to oxidation and acidic drainage.  These tailings drained quickly, had a high hydraulic

conductivity of 4 x 10-3 cm/s and hence a high air entry value, and produced highly acidic

drainage within two months of the introduction of a batch leaching schedule.  During the acidic

drainage period, the effluent average pH, Eh and Ec were, respectively, 1.5, 700 mV and

40,000 µS/cm.  The effluent average loading rates for various species were:  approximately

70,000 µg CaCO3 equivalent acidity, 80,000 µg
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SO4
-2, 25,000 µg Fe, 690 µg Ca and 6.2 mBq Ra-226/kg tailings/day.  The cumulative

production/removal during the four year study period the above species were:  58.0 % of

acidity, 67.0 % of total sulphate, 68.7 % of total iron, 19.0 of total Ca and 0.17 % of total Ra-

226 contained in the coarse tailings.

The acidic drainage caused mobilization and release of other metals and radionuclides including

Al, Mn, Mg, U, Th, Pb, Ce, Cu, Ni, Zn and various isotopes of radium (Ra-223, Ra-224 and

Ra-228, etc.).  Although these tailings contained only small amounts of alkaline materials, the

acidic drainage started prior to full consumption of the available limestone alkalinity.  It was

estimated that at the time of acidic drainage, approximately 60 - 65 % alkalinity was still present

in the tailings.

Because the initial gypsum content of these tailings was small, most of the calcium drainage

occurred as a result of oxidation and limestone neutralization during the first one-and-one-half

year.  After that period, the calcium removal rate was small even under severe acidic conditions.

Based on yearly average production/removal rates of acidity, iron and sulphate, obtained near

the end of the study period as ~ 13.8 % of total acidity production/iron/sulphur contents of

coarse tailings, it was estimated that with the acidic drainage the Control-2  coarse tailings

(columns #16 and 17) would be completely oxidized and depleted of total iron and sulphur in an

additional 2.5 years (total 6.75 years) of acid generation.  For Ra-226, the corresponding

complete removal time was calculated as 5,000 years.  This result was based on the observed

cumulative Ra-226 removal rate during the acidic drainage period, which was very small (0.02

% per year).  It is believed that this removal time for Ra-226 has been severely over-estimated

as the Ra-226 removal rate post acidic drainage and pyrite depletion periods was unknown.

Additional monitoring of Control-2 tailings would offer further insight in the leaching of Ra-226

and other radium isotopes as pyrite depletes and acidic drainage ceases.
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At the on-set of the acidic drainage and because of mobilization and release of thorium isotopes

(Th-232, Th-230 and Th-229), there were corresponding mobilization and drainage of thorium

progeny including Ra-228, Ra-226, Ra-224 and Ra-223.  At the peak acidic drainage period,

the activities of other radium isotopes because of their shorter half lives, were considerably

higher than that of Ra-226.  The results for coarse tailings further showed that with the

continued acidic drainage, and in the absence of gypsum, Ra-226 leachability decreased with

the increased acidity and sulphate concentration.

The results substantiated the well known fact that exposure of coarse tailings leads to rapid

acidic generation problem.  For coarse tailings covered with a shallow water cover, the loss of

water cover and exposure of the tailings for a prolonged period of time may result in some

surface oxidation and acidification impacting the surface water quality.  Additionally, there exits

the potential of ferric ions introduction to the submerged tailings  and oxidation of pyrite in the

absence of oxygen underwater.  Thus, the exposure of coarse tailings to air for an extended

period should be avoided, otherwise consideration should be given to providing an additional

oxygen consuming or a barrier layer at the surface of the underwater deposited tailings.

The unsaturated coarse tailings containing additional 7.5 % (w/w) coarse limestone of screen

size - 6.3 mm, also oxidized and produced highly acidic drainage.  The on-set of the acidic

drainage was, however, delayed by approximately one year in comparison to coarse tailings

without additional limestone (Control-2), where it occurred within two months of the

implementation of the batch leaching schedule.

During the acidic drainage period, the leaching characteristics of coarse tailings - coarse

limestone sub-group were similar to those of Control-2 coarse tailings, where the effluent

average pH, Eh and Ec were, respectively, 2.5, 700 mV and 6,000 µS/cm.  The effluent

average loading rates were:  25,000 µg CaCO3 equivalent acidity, 28,000 µg SO4
-2, 8,000 µg

Fe, 3,800 µg Ca and 7 mBq Ra-226/kg tailings/day.  The cumulative productions/removals

during the four year study period for the major species were: 17% of total acidity, 25 % of total
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sulphur, 17 % of total iron, 12 % of total calcium and 0.29 % of total Ra-226 contained in the

coarse tailings- coarse limestone mixture.  The acidic drainage also caused mobilization and

release of other constituents including Al, Ce, Cu, Mg, Mn, Ni, Pb, Th, U, Zn and various

isotopes of radium.

The results clearly indicated that for coarse tailings mixed with coarse limestone, only less than

10 % of the available alkalinity was utilized before the occurrence of the acidic drainage.  Thus,

the neutralization efficiency of the coarse limestone was very low.  During the acidic drainage

period, some acid neutralization was still occurring but at a reduced rate caused most probably

by decreased surface area of limestone particles and low contact time with the effluent.  The

effect of gypsum and other metal hydroxides, armouring the coarse limestone particles was not

investigated in this study.

The unsaturated coarse tailings mixed with wet ground and pulverized limestone did not produce

any acidic drainage during the four year study period.  The results indicated that oxidation was

also taking place in this coarse tailings limestone mixture, but the acid so produced was

completely neutralized by the finely ground limestone in combination with the increased retention

time resulting from slightly decreased hydraulic conductivity for this sub-group.  The effluent was

nearly neutral to slightly alkaline during the entire study period with pH of approximately 8, Eh

approximately 480 mV, and Ec 2200 µS/cm.  It also contained appreciable amounts of

dissolved sulphate, calcium and magnesium, resulting from acid neutralization and gypsum

dissolution, and Ra-226.  The effluent was also saturated with respect to gypsum.  The

mobilization of other oxidation related reaction products, e.g. acidity, Fe, Al, Ce, Cu, Ni, Pb,

Th, U and Zn was absent or present only in trace amounts, except Mn which was present in low

concentration in the neutral effluent.

During the entire study period the cumulative productions/removals of major species in the

drainage effluent, in relation to their solid phase compositions, were:  7 % of total sulphur, 8.8 %

of total calcium and 0.16 % of total Ra-226 contained in the tailings.
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From the experimentally acid generation/neutralization rates, it was also estimated that during the

entire study period approximately 13 % of total limestone alkalinity present in the tailings

limestone mixture was consumed.  The balance 87 % available alkalinity would provide further

acid neutralization for an additional 29 years, assuming a 100 % (full) limestone neutralization

efficiency.  The data did not permit evaluation of the efficiency factor, and hence, it was not

possible to predict the occurrence of acidic drainage from coarse tailings mixed with wet ground

limestone in stoichiometrically equivalent proportion to their total acid generation potential. It is,

however, clear that the benefits of such limestone additions are for limited time only.

The unsaturated total mill tailings (Control-1) without additional limestone also produced acidic

drainage, but it was moderate and less severe in comparison to Control-2, coarse tailings.

These tailings had a low hydraulic conductivity of 8.7 x 10-6 cm/s and retained appreciable

amounts of moisture, causing reduced acid generation as well as mobilization and release of

oxidation reaction products.  During the acidic drainage period, the effluent average pH, Eh and

Ec were, respectively, 3.0, 780 mV and 2500 µS/cm.  The effluent average loading rates were:

approximately 2100 µg CaCO3 equivalent acidity, 6000 µg SO4
-2, 100 µg Fe, 1500 µg Ca and

4 mBq Ra-226/kg tailings/day.  The corresponding cumulative productions/removals during the

study period were:  3 % of total acidity, 8 % of total sulphur, only 0.33 % of total iron, 13.6 %

of total calcium and 0.08 % of total

Ra-226 contained in the total tailings.  The acid generation rate for these tailings was

approximately 30 - 35 times less than that for Control - 2 coarse tailings.

Similar to Control - 2 coarse tailings, the acidic drainage also caused mobilization and release of

other metals and radionuclides:  Al, Ce, Cu, Mg, Mn, Ni, Pb, Th, U, Zn, Ra-226 and other

isotopes of radium, but in reduced amounts.

Theoretically, Control - 1 tailings columns, containing tailings to a height of 0.35 m, would

continue to produce acidic drainage for another 85 years or so but at a decreased rate.
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Disposal of tailings as a homogenous mixture without segregation of their constituent particle

sizes, i.e. paste like, would offer many advantages over the conventional end spill slurry

discharge method.  Some of these are:

• Low hydraulic conductivity resulting into decreased water infiltration and porewater flow,

and hence, increased surface drainage,

• Increased water retention contributing to a high phreatic surface or water table, high

capillary fringe and a shallow unsaturated zone amenable to oxidation,

 

• Low acid generation and metal mobilization rates contributing to decreased effluent

loadings, and hence, lower treatment costs.  For example, in comparison to coarse tailings,

the acid neutralization cost alone would be reduced by a factor of 30,

 

• A possible decommissioning option of covering the reactive tailings above the phreatic

surface with non reactive tailings or geological materials or de-suphurized tailings mixed with

additional limestone, if required, for  controlling acidic drainage,

• Increased storage capacity of the tailings basin without raising the height of impoundment

dams.

The total mill tailings mixed with 7.5 % (w/w) limestone of various screen sizes, from coarse (-

6.3 mm) to wet ground and pulverized, columns #4 - 15, did not produce any acidic drainage

during the entire study period.  The results indicated that oxidation and the acid generation

processes were also active in these columns, but at low rates, and complete acid neutralization

was taking place (as seen from effluent Mg and Mn drainage profiles).  The reactivity of the

tailings-limestone mixture decreased with the decrease in particle size of the mixed limestone

from coarse to wet ground and pulverized.  The low rate of acid generation in combination with

increased effluent retention time contributed to complete acid neutralization for tailings containing

coarse limestone.
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For all columns, the effluents were saturated with respect to gypsum and the column average

pH, Eh and Ec were, respectively, ~ 7.5, 550 mV and 2200 µS/cm.  After two years, all

columns were producing alkaline effluents with alkalinity production rates of approximately 200

µg CaCO3/kg tailings/day.  During the study period, the average effluent loadings were:  5000

µg SO4
-2, 1800 µg Ca and 3 mBq Ra-226/kg tailings/day.  The corresponding cumulative

productions/removals were:  8.6 % of total sulphur, 5.7 % of total calcium, 22 % of initial total

gypsum and 0.06 % of r total Ra-226 contained in the tailings limestone mixture.  Similar to

coarse tailings mixed with wet ground limestone, the mobilization of other oxidation related

reaction products, e.g. acidity, Fe, Al, Ce, Cu, Ni, Pb, Th, U and Zn was absent or present in

trace amounts, except Mn, which was present in small quantities in the neutral to alkaline

effluents.

Because of gypsum saturation, the drainage effluent characteristics did not permit estimation of

the rates of acid generation and limestone neutralization taking place in these tailings limestone

mixtures.  Assuming the rates to be the same as those for total mill tailings without additional

limestone, approximately 2100 µg CaCO3 equivalent acidity/kg tailings/day, the added

limestone to these tailings was sufficient for approximately 100 years of acid neutralization at

100 % limestone neutralization efficiency, and for a shorter time at decreased efficiency.  It is

also believed that, because of neutral to alkaline pH's, the actual acid generation rates in the

these tailings-limestone mixtures were lower than that for total tailing without limestone

amendment.

In the laboratory testing over a four year period, and based on the effluent quality results for all

tailings, tailings and limestone mixtures and those with a shallow water cover, the total mill

tailings mixed with pulverized and finely ground limestone were judged, in the short term, as the

best performer in preventing acid mine drainage.  Disposal of limestone amended total mill

tailings above the phreatic surface offers another latitude to mine waste management but the

long-term limestone neutralization potential in such a scenario remains to be investigated further.
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For the submerged coarse tailings, there was no acidic drainage during the first three years of

the study.  After the removal of gypsum and other soluble minerals, within first three months with

a high porewater flow, the drainage effluents were nearly neutral having pH, Eh and Ec in ranges

of 6.5 - 7.5, 400 - 450 mV and 70 - 100 µS/cm, respectively.  During that period, there was

no mobilization of oxidation reaction products most notably Fe, Al, Mn and Th, and the tailings

produced slightly alkaline effluent with alkalinity in the range of 10 - 40 mg CaCO3/l.

In the fourth year, however, the submerged columns started to produce slightly acidic effluents

with pH's, total acidities, iron and Ra-226 concentrations in ranges of 5.5 - 7.0, 10 - 20 mg/l, 1

- 20 mg/l and 5000 - 25,000 mBq/l, respectively.  The results indicated

on-set of a slow oxidation and development of slight acidic conditions at the surface of the

tailings, causing 10 to 30 fold increases in Ra-226 mobilization and release to the porewater,

which were associated with iron oxidation and accompanied by its increased drainage.  After

the removal of gypsum and other soluble minerals, the effluent average loading rates were:  180

µg CaCO3 equivalent acidity, 300 µg SO4
-2, 20 µg Fe, 200 µg Ca and 150 mBq Ra-226/kg

tailings/day.  The corresponding cumulative productions/removals were:  0.2 % of total acidity,

0.3 % of total sulphur, 0.7 % of total iron, 6 % of calcium and 5.5 % of total Ra-226 contained

in the submerged coarse tailings.

In comparison to unsaturated coarse tailings (Control-2) and total mill tailings

(Control-1), the shallow water on coarse tailings reduced total acidity production by factors of

295 and 10, total sulphate production by 200 and 20, and total iron production by 950 and 3,

respectively.  For total mill tailings mixed with 7.5 % limestone of various screen sizes, the

corresponding decrease in total acidity production was by factors of 1900, 50 and 7 when

compared with those for unsaturated coarse tailings, total mill tailings and submerged coarse

tailings, respectively.  The combination of total mill tailings and limestone was more effective in

preventing acid drainage than water cover on coarse tailings during the short laboratory testing

period.  However, the efficiency of water cover in preventing acidic drainage from total mill

tailings remains to be evaluated.
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For the submerged coarse tailings, the Ra-226 mobility was initially controlled by gypsum

dissolution and decreased with the depletion of gypsum.  During the gypsum removal period, the

Ra-226 leaching rates for submerged and unsaturated coarse tailings were similar. In the

absence of gypsum and without oxidation, there was no corresponding increase in Ra-226

drainage although the effluent sulphate concentrations were very low.  With the on-set of a slow

oxidation, the mobility of Ra-226 increased significantly, up to 30 times its pre-oxidation value,

and correlated with the corresponding slow increase in iron mobilization and perhaps Th-230 as

well.  The effluent sulphate loading also increased at the same time, but it  was statistically not

significant.

The cumulative Ra-226 removal from submerged coarse tailings during the study period was

approximately 30 to 50 times greater than those for unsaturated coarse and total mill tailings

without or mixed with limestone.  This increased Ra-226 drainage was 3 to 6 times greater than

the corresponding increase in cumulative effluent volumes for the two cases.  Perhaps in the

absence of gypsum and/or that of a moderate to severe acidification in the submerged case, the

sulphate concentration was too low to adversely effect or suppress radium solubility.  The

dynamics of Ra-226 leaching under various conditions of oxidation, reduction and gypsum

depletion etc., need to be further investigated.

In the water columns above the tailings surface and in the absence of gypsum, there was very

little upward diffusion of dissolved metals and oxidation reaction products except Ra-226,

whose the concentration varied between 30 - 140 mBq/l.  Because of high porewater flow, the

surface water quality resembled that of the distilled water inflow, with pH in the range of 5 - 5.7,

Eh 500 - 600 mV, Ec 10 - 15 µS/cm, acidity and alkalinity in the range of  3 - 6 mg CaCO3/l,

SO4
-2 ~ 3 - 8 mg/l, Fe ~ 0.01 - 0.05 mg/l, Ca ~ 0.1 - 1.0 mg/l and Mg ~ 0.08 - 0.1 mg/l.  For

other conditions of low porewater flow, natural lake water cover and other oxygen consuming

barriers placed on the submerged tailings, there may be a further improvements/changes in both

surface as well as porewater qualities, which need to be established.
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The unsaturated and crushed waste rock with high acid generation potential (NNP = -17.8 kg

CaCO3/tonne) also oxidized and produced highly acidic drainage in the fourth year of the study.

The leaching characteristics resembled those of coarse tailings with 7.5 % coarse limestone,

where delayed acidic drainage occurred.  In the acid effluent, the average pH, Eh and Ec were,

respectively, 2.2, 780 mV and 7000 µS/cm.  The effluent average loading rates were:  38,000

µg CaCO3 equivalent acidity, 42,000 µg SO4
-2, 12,500 µg Fe, 2000 µg Ca and 3.0 mBq Ra-

226/kg waste rock/day.  The cumulative productions/removals during the four year study period

for major species were:  53 % of total acidity, 60 % of total sulphur, 31 % of total iron, 59 % of

total calcium and 0.08 % of total Ra-226 contained in the waste rock.  The reactivity of the

crushed waste rock was higher than that of coarse tailings, and most of the leaching occurred

during the last year of the study period.  Similar to coarse tailings, the acidic drainage also

caused significant mobilization and release of other constituents including Al, Ce, Cu, Mg, Mn,

Ni, Pb, Th, U, Zn and various isotopes of radium.

Prior to acidic drainage, the average acid generation/limestone neutralization for this waste rock

was estimated as 1800 µg CaCO3/kg waste rock/day.  Also similar to coarse without or mixed

with coarse limestone, the acidic drainage from the high acid generating waste rock occurred

with 75 % of the equivalent limestone alkalinity still remaining in the waster rock.  The waste

rock was crushed to a particle size of -2.0 mm, and the results established a acid neutralization

efficiency of approximately 25 % for the size and type of the waste.  Since the acidic drainage

related species peaks occurred during the last year of the study period, the data did not permit

extrapolations and computations of oxidation related steady state reaction rates for calculating

total period of acidic drainage and metal mobilities, etc.

The unsaturated and crushed waste rock with medium acid generation potential (NNP = -10.7

kg CaCO3/tonne) did not produce any acidic drainage during the study period.  The results

indicated that oxidation, acid generation and neutralization were active processes within the

waste rock, but the acid neutralization was complete in preventing acidic drainage and release of
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oxidation reaction products.  During the study period, the effluent was nearly neutral to slightly

alkaline with pH ~ 7.5, Eh ~ 400 mV and Ec ~ 1000 µS/cm.  The effluent contained mostly

dissolved gypsum, resulting from acid neutralization, and Ra-226.  The cumulative effluent

loadings/removals were, respectively:  11.9 % of total sulphur, 30 % of  total calcium and 0.04

% of for total Ra-226 contained in the waste rock.  Some limestone dissolution contributed to

alkalinity and additional calcium in the effluents.

The average acid generation or limestone neutralization rate for this waste rock was

approximately 2100 µg CaCO3/kg waste rock/day, which was comparable to that of high acid

generating waste rock, and by the end of the study period approximately 20 % of the total

limestone alkalinity had also been consumed in preventing acidic drainage.  From the calculated

acid generation/neutralization rates, it was estimated that acidic drainage from this waste rock

would occur after approximately 12 additional years of leaching, assuming a limestone

neutralization efficiency of 100 %, and sooner at lower efficiencies.

The unsaturated and crushed waste rock with low acid generation potential (NNP = +13.8 kg

CaCO3/tonne) also did not produce any acidic drainage during the study period.  Similar to the

medium acid generating waste rock, oxidation, acid generation and neutralization processes

were also actively taking place in this waste rock, but the neutralization was complete and acidic

drainage and concomitant mobilization of oxidation reaction products were prevented.  The

effluents were slightly alkaline during the entire study period with pH ~ 8.0, Eh ~ 450 mV and

Ec ~ 1000 µS/cm.  The drainages were mostly gypsum derived and contained appreciable

amounts of calcium and sulphate, resulting from complete acid neutralization, and Ra-226.

The cumulative effluent loadings/removals were, respectively:  19 % of total sulphur, 11.6 % of

total calcium and 0.06 % of total Ra-226 contained in the waste rock.  The average acid

production or limestone neutralization rate for this waste rock was 2250 µg CaCO3/kg waste

rock/day and, during the study period, approximately 2.5 g CaCO3/kg waste rock or 9 % of

total limestone alkalinity present in the waste rock was consumed in complete acid
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neutralization.  Stoichiometrically, at 100 % limestone neutralization efficiency and the

experimentally determined acid generation/neutralization rates, this waste rock should not

produce any acidic drainage.  However, at lower neutralization efficiencies, acidic drainage may

occur in the next twenty years or so, the estimated time for complete oxidation of pyrite in test

samples of the low acid generating waste rock.

Prior to acidic drainage, the calculated acid generation and limestone neutralization rates for the

three waste rock types were comparable,  but acidic drainage occurred only in the high acid

generating waste rock. Perhaps, in this waster rock, the low total neutralization potential of 8.5

kg CaCO3/tonne and the distribution and particle size of the alkali minerals in relation to

sulphides were contributing factors in the early occurrence of acidic drainage.  For the other

two, low and medium acid generating waste rock, the total neutralization potentials were,

respectively, 26.82 and 15.06 kg CaCO3/tonne.

5.  SUMMARY AND CONCLUSIONS

Column leaching studies were conducted for evaluating the oxidation and leaching

characteristics of pyritic uranium tailings and waste rock under unsaturated conditions, coarse

tailings with a shallow water cover, and limestone neutralization characteristics of tailings mixed

with 7.5 % (w/w) limestone of various screen sizes.  The results are summarized as follows:

• The unsaturated coarse tailings without additional limestone (Control - 2) oxidized readily

and produced highly acidic drainage with a pH of ~ 1.2.  The acidic drainage caused

significant mobilization and release of all oxidation reaction products including:  Al, Ca, Ce,

Cu, Fe, Mg, Mn, Ni, Pb, Th, U, Zn, SO4
-2 and various isotopes of radium (Ra-223, Ra-

224, Ra-226 and Ra-228).
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• The acidic drainage in coarse tailings started prior to full consumption of the total available

alkalinity, and, at the time of its occurrence, approximately 60 - 65 % of the available

alkalinity was still present in the tailings.

• The Ra-226 leachability was controlled by gypsum solubility, and decreased with increased

acidity and sulphate concentration in the absence of gypsum.  The acidic drainage also

resulted in an increased mobility and release of thorium and other radium isotopes.

• Prolonged exposure of coarse tailings to air would contribute toward significant acid

generation and water quality problems.  For submerged coarse tailings, it is important to

maintain a minimum depth of water cover to prevent acid production and minimize Ra-226

mobility. This may require additional alkalinity in the incoming water or incorporation of an

oxygen consuming cover or barrier layer at the surface of the underwater deposited tailings

for permanently controlling their surface oxidation and development of acidic conditions.

 

• The unsaturated coarse tailings containing an additional 7.5 % (w/w) coarse limestone of

screen size -6.3 mm, also oxidized and produced severe acidic drainage with a pH of

approximately 2.5.  The onset of the acidic drainage was delayed by approximately one

year from its occurrence in the Control - 2 coarse tailings.

 

• The acidic drainage in coarse tailings-coarse limestone sub-group occurred with 90 % of

the total available alkalinity still remaining.  Addition of coarse limestone to coarse tailings

was considered unsuitable for prevention of the acidic drainage.

 

• The unsaturated and coarse tailings mixed with 7.5 % (w/w) wet ground and pulverized

limestone did not produce any acidic drainage.  Oxidation and acid generation were also

taking place in these tailings, but the finely ground limestone provided complete acid

neutralization preventing acidic drainage and release of oxidation reaction products.
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• During the four year study period, approximately 13 % of total available limestone alkalinity

was consumed in acid neutralization in the coarse tailings - wet ground limestone sub-group.

It was estimated that the remaining alkalinity would provide additional acid neutralization for

another 29 years.

 

• The unsaturated total mill tailings without additional limestone (Control - 1) also produced

acidic drainage, but it was moderate at a pH of ~ 3.0 and less severe than for Control - 2

coarse tailings.  These tailings had a low hydraulic conductivity and retained high moisture,

which reduced oxidation and acid generation rates and controlled the release of oxidation

reaction products.

 

• The acid generation rate for Control - 1 total tailings was approximately 30 - 35 times less

than that for Control - 2 coarse tailings, which would result in much lower treatment and

sludge handling costs.

• The unsaturated and total mill tailings mixed with 7.5 % (w/w) limestone of various screen

sizes, from coarse (-6.3 mm) to wet ground and pulverized, did not produce any acidic

drainage during the entire study period.  Both oxidation and acid generation processes were

also active in these tailings - limestone sub-groups, but the acid neutralization was complete

for all limestone sizes and acidic drainage was prevented.

• It was estimated that the added limestone alkalinity to total mill tailings would be sufficient

for acid neutralization for approximately 100 years.  At 100 % limestone neutralization

efficiency, these tailings in the laboratory test columns would not produce any acidic

drainage.

• The total mill tailings mixed with pulverized and wet ground limestone were judged very

effective in preventing acidic drainage during the short laboratory testing period. For pyritic

uranium tailings, there was an additional advantage of the containment of associated

radioactivity in a gypsum controlled system.
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• The submerged coarse tailings did not produce any acidic drainage and release of oxidation

reaction products during the first three years.  In the fourth year, the submerged coarse

tailings started to produce slightly acidic effluents with pH’s of

~ 5.5.  There was an onset of a slow oxidation process at the surface of the tailings resulting

in 10 to 30 fold increases in Ra-226 mobilization and release to the porewater associated

with iron oxidation and its increased drainage.  The presence of an organic substrate or

additional alkalinity in the water column would be beneficial in controlling acid generation.

 

• The water cover on coarse tailings reduced acid generation by factors of 295 and 10, total

sulphate production by 200 and 20, and total iron production by 950 and 3, in comparison

to unsaturated coarse (Control - 2) and total mill tailings (Control - 1), respectively.

• The Ra-226 leachability in submerged tailings was very high with the onset of slow oxidation

and development of acidic conditions in the absence of gypsum.

 

• In the water cover above the tailings surface and in the absence of gypsum, there was very

little upward diffusion of dissolved metals and other oxidation reaction products except Ra-

226, whose concentration was slightly elevated.

• The unsaturated and crushed waste rock with a high acid generation potential, oxidized and

produced highly acid drainage (pH approximately 2.2) in the fourth year of the study period.

The acidic drainage also caused significant mobilization and release of all oxidation reaction

products.

• The acidic drainage in the high acid generating waste rock occurred with 75 % of the

available limestone alkalinity still remaining in the waste rock.

• The unsaturated and crushed waste rock with a medium acid generation potential did not

produce any acidic drainage or released oxidation reaction products during the study
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period.  Oxidation, acid generation and neutralization were active processes within the

waste rock, but the acid neutralization was complete and acidic drainage absent.

• During the study period, approximately 20 % of the total available limestone alkalinity was

consumed for acid neutralization in the medium acid generating waste rock.  At  100 %

limestone neutralization efficiency, it was estimated that acidic drainage from this waste rock

would occur in approximately 16 years, and somewhat sooner if the efficiency was reduced.

 

• The unsaturated and crushed waste rock with a low acid generation potential also did not

produce any acidic drainage or released oxidation reaction products during the study

period.  Oxidation, acid generation and complete acid neutralization processes were active

in this waste rock as well.

• During the entire study period, approximately 9 % of the total available limestone alkalinity

was consumed for complete acid neutralization in the low acid generating waste rock.  At

100 % limestone neutralization efficiency, this waste rock should not produce any acidic

drainage, but if the efficiency was reduced acidic drainage may occur in the next twenty

years or so.

In conclusion, the usefulness of column leaching tests has been well demonstrated in

understanding the oxidation and leaching kinetics of reactive tailings and waste rock, and for

evaluating various decommissioning options.

 

A shallow water cover on pyritic uranium tailings is very effective in controlling/limiting their

oxidation and acid generation to very low rates, but lacked in complete prevention. The tests

have also shown that radium mobility increases, in the absence of gypsum, when acidic

conditions develop at the surface of underwater deposited tailings. Limestone amendments to

tailings , in some cases, provided short-term controls on acidic drainage.
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-Uranium Tailings 

Fig. 1 Generalized location of uranium mine tailings sites in Elliot Lake, Ontario, Canada. 
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Fig. 2 General plan of submersion of tailings underwater at the Quirke Mine waste management area. 
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Fig. 3 Schematic profile of submersion tailings underwater at the Quirke Mine waste management area. 
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Fig. 5 Experimental arrangement of the column leaching lysimeter for leaching under unsaturated 
conditions. 
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Fig. 6 Experimental arrangement of the column leaching lysimeter for leaching under 
submerged conditions. 
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Fig. 7 Leaching profiles of total mil1 tailings without additional limestone and under unsaturated conditions (Control - 1, 
columqs #l-3), variation of pH with time. 
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Fig. 8 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of Eh with time. 
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Fig. 9 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of EC with time. 
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Fig. 10 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of total acidity loading rate with time. 
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Fig. 11 Leaching profiles of total milJ tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), cumulative acidity production with time. 
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Fig. 12 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of total alkalinity loading rate with time. 
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Fig. 13 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved SOam loading rate with time. 
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Fig. 14 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), cumulative SOdq2 removal (as % total S) with time. 
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Fig. 15 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved total Fe loading rate with time. 
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Fig. 16 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), cumulative total Fe removal with time. 
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Fig. 17 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved Ca loading rate with time. 
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Fig. 18 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), cumulative Ca removal with time. 
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Fig. 19 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved Mg loading rate with time. 
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Fig. 20 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #I -3), cumulative Mg removal with time. 
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Fig. 21 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved Al loading rate with time. 
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Fig. 22 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), cumulative Al removal with time. 



Homogenized Total Mill Tailings (Control-l ) 
Manganese Loading vs. Time 

20 

10 

1989 1990 1991 1992 

Time (Calendar Year) 

- COI l_Mn ---u- COI 2-Mn - COI 3-Mn ---+--- Average Mn 

Fig. 23 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved Mn loading rate with time. 
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Fig. 24 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), cumulative Mn removal with time. 
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Fig. 25 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved U loading rate with time. 
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Fig. 26 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved Th loading rate with time. 
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Fig. 27 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 
columns # l-3), cumulative Th removal with time. 
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Fig. 28 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved Pb loading rate with time. 
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Fig. 29 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), variation of dissolved Ra-226 loading rate with time. 
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Fig. 30 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), cumulative Ra-226 removal with time. 
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Fig. 31 Leaching profiles of total mill tailings without additional limestone and under unsaturated conditions (Control - 1, 
columns #l-3), average cumulative drainage volume collected with time. 
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Fig. 32 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), variation of pH with time. 
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Fig. 33 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #4-6), variation of Eh with time. 
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Fig. 34 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #I-6), variation of Ec with time. 
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Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), variation of total acidity loading rate with time. 
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Fig. 36 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), variation of total alkalinity loading rate with time. 



Homogenized Total Mill Tailings, Coarse Limestone 
Sulphate Loading vs. Time 

50000 - 

z 40000 

3 
3 30000 
3 

as 
z 20000 
E 
S 
s 10000 

I I 

1991 1992 

Time (Calendar Year) 

I I I 

1993 1994 

- COI 4-so4 - COI 5-so4 - COI 6-SO4 - Average SO4 

Fig. 37 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), variation of dissolved Sod-* loading rate with time. 
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Fig. 38 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), cumulative SOd-2removal (as % total S) with time. 
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Fig. 39 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #4-6), variation of dissolved total Fe loading rate with time. 
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Fig. 40 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), variation of dissolved Ca loading rate with time. 
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Fig. 41 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #H-6), cumulative Ca removal with time. 
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Fig. 42 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns ##4-6), variation of dissolved Mg loading rate with time. 
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Fig. 43 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns ##4-6), cumulative Mg removal with time. 
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Fig. 44 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #4-6), variation of dissolved Al loading rate with time. 
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Fig. 45 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns ##I-6), variation of dissolved Mn loading rate with time. 
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Fig. 46 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #4-6), variation of dissolved U loading rate with time. 
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Fig. 47 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), variation of dissolved Th loading rate with time. 
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Fig. 48 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #4-6), variation of dissolved Pb loading rate with time. 
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Fig. 49 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #H-6), variation of dissolved Ra-226 loading rate with time. 
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Fig. 50 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), cumulative Ra-226 removal with time. 
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Fig. 51 Leaching profiles of total mill tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #M-6), average cumulative drainage volume collected with time. 
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Fig. 52 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-g), variation of pH with time. 
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Fig. 53 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of Eh with time. 
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Fig. 54 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-g), variation of EC with time. 
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Fig. 55 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of total acidity loading rate with time. 
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Fig. 56 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-g), variation of total alkalinity loading rate with time. 
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Fig. 57 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size l$nestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved SO, loading rate with time. 
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Fig. 58 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #U-9), cumulative SO40 removal (as % total S) with time. 
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Fig. 59 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved total Fe loading rate with time. 



Homogenized Total Mill Tailings, Medium Size Limestone 
Calcium Loading vs. Time 

50000 

40000 

30000 

20000 

1990 1991 1992 

Time (Calendar Year) 

1993 1994 

I - COI 7-h - COI 8-Ca -+-- Cot 9-Ca - Average Ca 

Fig. 60 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved Ca loading rate with time. 
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Fig. 61 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), cumulative Ca removal with time. 
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Fig. 62 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved Mg loading rate with time. 
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Fig. 63 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-g), cumulative Mg removal with time. 
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Fig. 64 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved Al loading rate with time. 
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Fig. 65 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved Mn loading rate with time. 
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Fig. 66 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved U loading rate with time. 
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Fig. 67 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved Th loading rate with time. 
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Fig. 68 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved Pb loading rate with time. 
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Fig. 69 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), variation of dissolved Ra-226 loading rate with time. 
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Fig. 70 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), cumulative Ra-226 removal with time. 
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Fig. 7 1 Leaching profiles of total mill tailings mixed with 7.5% (w/w) medium size limestone (screen size -2.4 mm, -8 mesh) 
and under unsaturated conditions (columns #7-9), average cumulative drainage volume collected with time. 
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Fig. 72 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of pH with time. 
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Fig. 73 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of Eh with time. 



5000 

4000 

G 3000 

3 

Y 2000 

1000 

0 l- 

Homogenized Total Mill Tailings, Fine Limestone 
Electrical Conductivity vs. Time 

I  I  

1989 1990 1991 1992 

Time (Calendar Year) 

1993 

- COI 1 O-EC - COI ll_Ec - COI 1 ~-EC - Average EC 

Fig. 74 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo- 12), variation of EC with time. 



500 

400 

300 

200 

100 

0 

Homogenized Total Mill Tailings, Fine Limestone 
Acidity Loading vs. Time 

k 
1989 1990 1991 1992 

Time (Calendar Year) 

1993 

M COI lo-Acidity v COI 1 l-Acidity b COI 12-Acidity - Average Acidity 

Fig. 75 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fme size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo- 12), variation of total acidity loading rate with time. 
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Fig. 76 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of total alkalinity loading rate with time. 
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Fig. 77 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo- 12), variation of dissolved SOdo2 loading rate with time. 
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Fig. 78 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo- 12), cumulative Sod-* removal (as % total S) with time. 



Homogenized Total Mill Tailings, Fine Limestone 
Total Iron Loading vs. Time 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
1969 1991 1992 

Time (Calendar Year) 

---m-- COI IO-Fe v COI ll_Fe _f_ COI 12-Fe - Average Fe 

Fig. 79 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved total Fe loading rate with time. 
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Fig. 80 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved Ca loading rate with time. 
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Fig. 81 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), cumulative Ca removal with time. 
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Fig. 82 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved Mg loading rate with time. 
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Fig. 83 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fme size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), cumulative Mg removal with time. 
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Fig. 84 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved Al loading rate with time. 
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Fig. 85 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved Mn loading rate with time. 
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Fig. 86 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved U loading rate with time. 
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Fig. 87 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved Th loading rate with time. 
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Fig. 88 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved Pb loading rate with time. 
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Fig. 89 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), variation of dissolved Ra-226 loading rate with time. 
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Fig. 90 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), cumulative Ra-226 removal with time. 
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Fig. 91 Leaching profiles of total mill tailings mixed with 7.5% (w/w) fine size limestone (screen size -0.84 mm, -20 mesh) 
and under unsaturated conditions (columns #lo-12), average cumulative drainage volume collected with time. 
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Fig. 92 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of pH with time. 



Homogenized Total Mill Tailings, Wet Ground Limestone 
Eh(NHE) vs. Time 

1000 

900 -’ 

800 

2 7oo 
600 

ti Fz 

5 

400 500 

300 

200 

100 

0 ! I I I I 

1989 1990 1991 1992 

Time (Calendar Year) 

1993 

- COI 13-Eh - COI 14-Eh - COI 15-Eh --c+-- Average Eh 1 

1994 

Fig. 93 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of Eh with time. 
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Fig. 94 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of Ec with time. 
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Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-S), variation of total acidity loading rate with time. 
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Fig. 96 Leaching profdes of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of total alkalinity loading rate with time. 
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Fig. 97 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved Sod-’ loading rate with time. 
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Fig. 98 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), cumulative SO,” removal (as % total S) with time. 
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Fig. 99 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved total Fe loading rate with time. 
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Fig. 100 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved Ca loading rate with time. 
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Fig. 101 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), cumulative Ca removal with time. 
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Fig. 102 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved Mg loading rate with time. 
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Fig. 103 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverised) limestone under unsaturated 
conditions (columns #13-15), cumulative Mg removal with time. 
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Fig. 104 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved Al loading rate with time. 
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Fig. 105 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved Mn loading rate with time. 
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Fig. 106 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved U loading rate with time. 
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Fig. 107 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved Th loading rate with time. 
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Fig. 108 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved Pb loading rate with time. 
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Fig. 109 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), variation of dissolved Ra-226 loading rate with time. 
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Fig. 110 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), cumulative Ra-226 removal with time. 
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Fig. 111 Leaching profiles of total mill tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #13-15), average cumulative drainage volume collected with time. 
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Fig. 112 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 

columns #16 and 17), variation of pH with time. 
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Fig. 113 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of Eh with time. 
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Fig. 114 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of Ec with time. 
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Fig. 115 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of total acidity loading rate with time. 
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Fig. 116 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative acidity production with time. 
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Fig. 117 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of total alkalinity loading rate with time. 
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Fig. 118 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved S04” loading rate with time. 
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Fig. 119 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative SO,” removal (as % total S) with time. 
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Fig. 120 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved total Fe loading rate with time. 
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Fig. 121 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative total Fe removal with time. 
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Fig. 122 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved Ca loading rate with time. 
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Fig. 123 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative Ca removal with time. 
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Fig. 124 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved Mg loading rate with time. 
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Fig. 125 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative Mg removal with time. 
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Fig. 126 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved Al loading rate with time. 
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Fig. 127 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative Al removal with time. 
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Fig. 128 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 

columns #16 and 17), variation of dissolved Mn loading rate with time. 
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Fig. 129 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative Mn removal with time. 
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Fig. 130 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved U loading rate with time. 
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Fig. 131 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved Th loading rate with time. 
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Fig. 132 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control 
columns #16 and 17), cumulative Th removal with time. 
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Fig. 133 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved Pb loading rate with time. 
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Fig. 134 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative Pb removal with time. 
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Fig. 135 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), variation of dissolved Ra-226 loading rate with time. 
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Fig. 136 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), cumulative Ra-226 removal with time. 
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Fig. 137 Leaching profiles of coarse tailings without additional limestone under unsaturated conditions (Control - 2, 
columns #16 and 17), average cumulative drainage volume collected with time. 
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Fig. 138 Alpha energy spectrum obtained for coarse tailings (column #17) during peak acidic drainage period (Oct. 3, 1990). 
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Fig. 139 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of pH with time. 
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Fig. 140 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of Eh with time. 
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Fig. 141 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of EC with time. 
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Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of total acidity loading rate with time. 
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Fig. 143 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), cumulative acidity production with time. 
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Fig. 144 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of total alkalinity loading rate with time. 
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Fig. 145 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved SO43 loading rate with time. 
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Fig. 146 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), cumulative S04-’ removal (as % total S) with time. 
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Fig. 147 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under: unsaturated conditions (columns #18 and 19), variation of dissolved total Fe loading rate with time. 
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Fig. 148 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #I18 and 19), cumulative total Fe removal with time. 



10000 

9000 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 

Segregated Coarse Tailings, Coarse Limestone 
Calcium Loading vs. Time 

1989 1990 1991 1992 1993 

Time (Calendar Year) 

- COI 18-Ca - COI 19-Ca ----+-- Average Ca 

1994 

Fig. 149 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved Ca loading rate with time. 
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Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), cumulative Ca removal with time. 
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Fig. 151 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved Mg loading rate with time. 
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Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), cumulative Mg removal with time. 
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Fig. 153 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved Al loading rate with time. 
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Fig. 154 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 

under unsaturated conditions (columns #18 and 19), cumulative Al removal with time. 
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Fig. 155 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved Mn loading rate with time. 
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156 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), cumulative Mn removal with time. 
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Fig. 157 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved U loading rate with time. 
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Fig. 158 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved Th loading rate with time. 
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Fig. 159 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), cumulative Th removal with time. 
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Fig. 160 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved Pb loading rate with time. 
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Fig. 161 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), cumulative Pb removal with time. 
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Fig. 162 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), variation of dissolved Ra-226 loading rate with time. 
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Fig. 163 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), cumulative Ra-226 removal with time. 
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Fig. 164 Leaching profiles of coarse tailings mixed with 7.5% (w/w) coarse limestone (screen size -6.3 mm, -4 mesh) and 
under unsaturated conditions (columns #18 and 19), average cumulative drainage volume collected with time. 
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Fig. 165 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns ##20 and 21), variation of pH with time. 
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Fig. 166 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of Eh with time. 
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Fig. 167 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of EC with time. 
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Fig. 168 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of total acidity loading rate with time. 
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Fig. 169 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of total alkalinity loading rate with time. 
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Fig. 170 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved S04-* loading rate with time. 
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Fig. 171 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), cumulative SOdW2 removal (as % total S) with time. 
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Fig. 172 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved total Fe loading rate with time. 
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Fig. 173 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved Ca loading rate with time. 
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Fig. 174 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), cumulative Ca removal with time. 
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Fig. 175 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved Mg loading rate with time. 
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176 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), cumulative Mg removal with time. 
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Fig. 177 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved Al loading rate with time. 



Segregated Coarse Tailings, Wet Ground Limestone 
Manganese Loading vs. Time 

10 

8 

6 

4 

2 

0 

1989 1991 1992 

Time (Calendar Year) 

---+-- COI 20-Mn - COI 21-Mn --+--- Average Mn 

Fig. 178 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved Mn loading rate with time. 
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Fig. 179 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), cumulative Mn removal with time. 
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Fig. 180 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved U loading rate with time. 
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Fig. 181 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #I20 and 21), variation of dissolved Th loading rate with time. 
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Fig. 182 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved Pb loading rate with time. 
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Fig. 183 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), variation of dissolved Ra-226 loading rate with time. 
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Fig. 184 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), cumulative Ra-226 removal with time. 
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Fig. 185 Leaching profiles of coarse tailings mixed with 7.5% (w/w) wet ground (pulverized) limestone under unsaturated 
conditions (columns #20 and 21), average cumulative drainage volume collected with time. 
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Fig. 186 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of pH with time. 
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Fig. 187 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of Eh with time. 
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Fig. 188 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of EC with time. 
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Fig. 189 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of total acidity loading rate with time. 
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Fig. 190 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
cumulative acidity production with time. 
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Fig. 191 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of total alkalinity loading rate with time. 
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Fig. 192 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved SO,” loading rate with time. 
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Fig. 193 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
cumulative SOdm2 removal (as % total S) with time. 
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Fig. 194 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved total Fe loading rate with time. 
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Fig. 195 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 

cumulative total Fe removal with time. 
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Fig. 196 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved Ca loading rate with time. 
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Fig. 197 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
cumulative Ca removal with time. 
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Fig. 198 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved Mg loading rate with time. 
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Fig. 199 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
cumulative Mg removal with time. 
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Fig. 200 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved Al loading rate with time. 
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Fig. 201 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
cumulative Al removal with time. 



Submerged Coarse Tailings 
Manganese Loading vs. Time 

50 - 

e 3 40 

3 
2 30 

5 

2 
2 20 

8 

s 
E 

10 

0 

1989 1990 1991 1992 1993 1994 

Time (Calendar Year) 

- COI 22-Mn --c-- COI 23-Mn --+-- COI 24-Mn - Average Mn 

Fig. 202 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved Mn loading rate with time. 
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Fig. 203 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
cumulative Mn removal with time. 
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Fig. 204 Leaching profiles of coarse tailings without additional limestone under submerged conditions 
variation of dissolved U loading rate with time. 
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Fig. 205 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved Th loading rate with time. 
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Fig. 206 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved Pb loading rate with time. 
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Fig. 207 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
variation of dissolved Ra-226 loading rate with time. 
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Fig. 208 Leaching profiles of coarse tailings without additional limestone under submerged conditions (columns #22-24), 
cumulative Ra-226 removal with time. 
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Fig. 210 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaC03 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of pH with time. 



Medium Acid Generating Crushed Waste Rock 
Eh(NHE) vs.Time 

1000 
900 

800 
700 

600 

500 

400 

300 
- 

200 - 

100 - 

0 
1989 1990 1991 1992 1993 1994 

Time (Calendar Year) 

- COI 25-Eh - COI 26-Eh --+-- Average Eh 

Fig. 211 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of Eh with time. 
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Fig. 212 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of Ec with time. 
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Fig. 213 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of total acidity loading rate with time. 
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Fig. 214 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaC03 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of total alkalinity loading rate with time. 
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Fig. 215 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved SO,-* loading rate with time. 
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Fig. 216 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), cumulative S04-*removal (as % total S) with time. 
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Fig. 217 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved total Fe loading rate with time. 
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Fig. 218 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved Ca loading rate with time. 
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Fig. 219 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), cumulative Ca removal with time. 
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Fig. 220 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved Mg loading rate with time. 
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Fig. 221 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), cumulative Mg removal with time. 
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Fig. 222 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved Al loading rate with time. 



Medium Acid Generating Crushed Waste Rock 
Manganese Loading vs.Time 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
1989 1990 1991 1992 

Time (Calendar Year) 

1993 1994 

- COI 25-Mn --c-- COI 26-Mn ----+-- Average Mn 

Fig. 223 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaC03 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved Mn loading rate with time. 
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Fig. 224 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved U loading rate with time. 
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Fig. 225 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaC03 / tonne) 
and under unsaturated conditions (columns #25 and 26), cumulative U removal with time. 
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Fig. 226 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved Th loading rate with time. 



Medium Acid Generating Crushed Waste Rock 
Lead Loading vs.Time 

1 .oo 

0.80 

S 
5 
x 0.60 
3l 
-3 
+ 0.40 

ti 
J 

0.20 

1991 1992 

Time (Calendar Year) 

- COI 25-Pb - COI 26-Pb - Average Pb 

Fig. 227 Leaching profiles of crushed waste rock having medium acid generation. potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved Pb loading rate with time. 



10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

Medium Acid Generating Crushed Waste Rock 
Ra-226 Loading vs.Time 

1989 1990 1991 1992 

Time (Calendar Year) 

1993 

- Col25-Ra-226 --c-- Col26-Ra-226 ---+--- Average Ra-226 

Fig. 228 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), variation of dissolved Ra-226 loading rate with time. 
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Fig. 229 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns #25 and 26), cumulative Ra-226 removal with time. 
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Fig. 230 Leaching profiles of crushed waste rock having medium acid generation potential (NNP = -10.7 Kg CaCO3 / tonne) 
and under unsaturated conditions (columns ##25 and 26), average cumulative drainage volume collected with time. 
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Fig. 231 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of pH with time. 
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Fig. 232 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of Eh with time. 
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Fig. 233 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of EC with time. 
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Fig. 234 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of total acidity loading rate with time. 
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Fig. 235 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 289, cumulative acidity production with time. 
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Fig. 236 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 29, variation of total alkalinity loading rate with time. 
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Fig. 237 Leaching profiles of crushed waste rock having high acid generation potential (NNP = - 17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved SOde2 loading rate with time. 
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Fig. 238 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative S04-* removal (as % total S) with time. 
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Fig. 239 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved total Fe loading rate with time. 
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Fig. 240 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative total Fe removal with time. 
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Fig. 241 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved Ca loading rate with time. 
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Fig. 242 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative Ca removal with time. 
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Fig. 243 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved Mg loading rate with time. 
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Fig. 244 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative Mg removal with time. 
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Fig. 245 Leaching profiles of crushed waste rock having high acid generation potential (NNP = - 17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved Al loading rate with time. 
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Fig. 246 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative Al removal with time. 
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Fig. 247 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved Mn loading rate with time. 
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Fig. 248 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative Mn removal with time. 
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Fig. 249 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved U loading rate with time. 
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Fig. 250 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative U removal with time. 
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Fig. 251 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved Th loading rate with time. 
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Fig. 252 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative Th removal with time. 
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Fig. 253 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved Pb loading rate with time. 
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Fig 254 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative Pb removal with time. 
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Fig. 255 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), variation of dissolved Ra-226 loading rate with time. 
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Fig. 256 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #27 and 28), cumulative Ra-226 removal with time. 
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Fig. 257 Leaching profiles of crushed waste rock having high acid generation potential (NNP = -17.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #I27 and 28), average cumulative drainage volume collected with time. 
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Fig. 258 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of pH with time. 
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13.8 Kg CaCO3 / tonne) and Fig. 259 Leaching profiles of crushed waste rock having low acid generation potential (NNP = + 
under unsaturated conditions (columns #29 and 30), variation of Eh with time. 
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Fig. 260 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of EC with time. 
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Fig. 261 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of total acidity loading rate with time. 



Low Acid Generating Crushed Waste Rock 
Alkalinity Loading vs. Time 

1000 

900 I I I I 

800 

700 

600 

500 

400 

300 

200 

Time (Calendar Year) 

- COI 29-Alk - COI 30-Alk - Average Alk 

Fig. 262 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of total alkalinity loading rate with time. 
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Fig. 263 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved S04-* loading rate with time. 
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Fig. 264 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), cumulative SO,“ removal (as % total S) with time. 



1.00 

2 ~ 
fi 0.80 

3 0.60 

Low Acid Generating Crushed Waste Rock 
Total Iron Loading vs. Time 

L 

E 0.40 

7 
s )- 0.20 

0.00 

1989 1990 1991 1992 1993 1994 

Time (Calendar Year) 

- COI 29-Fe - COI 30-Fe - Average Fe 

Fig. 265 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved total Fe loading rate with time. 
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Fig. 266 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved Ca loading rate with time. 
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Fig. 267 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), cumulative Ca removal with time. 
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Fig. 268 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved Mg loading rate with time. 
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Fig. 269 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), cumulative Mg removal with time. 
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Fig. 270 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved Al loading rate with time. 
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Fig. 27 1 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved Mn loading rate with time. 
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Fig. 272 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved U loading rate with time. 
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Fig. 273 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), cumulative U removal with time. 
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Fig. 274 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved Th loading rate with time. 
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Fig. 275 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaC03 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved Pb loading rate with time. 
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Fig. 276 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), variation of dissolved Ra-226 loading rate with time. 
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Fig. 277 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), cumulative Ra-226 removal with time. 
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Fig. 278 Leaching profiles of crushed waste rock having low acid generation potential (NNP = +13.8 Kg CaCO3 / tonne) and 
under unsaturated conditions (columns #29 and 30), average cumulative drainage volume collected with time. 
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Table 2 - Minimum detection limits for various elements and Ra-226 using Inductively 
Coupled Argon Plasma Spectrophotometer and Radiochemical methods. 

Element/Ra-226 Method 

Al ICAP-AES 

Ba ICAP-AES 

Ca ICAP-AES 

Ce ICAP-AES 

cu ICAP-AES 

Fe ICAP-AES 

K ICAP-AES 

Mg ICAP-AES 

Mn ICAP-AES 

Na ICAP-AEZS 

Ni ICAP-AES 

P ICAP-AFLS 

Pb ICAP-AES 

Si ICAP-AES 

Ti ICAP-AES 

Th ICAP-AES 

U ICAP-AES 

Z ICAP-AES 

S Radiochemical 

S ICAP-AES 

Ra-226 Radiochemical 

Lowest Limit of 
Detection (LLD), mg/l 

0.3 

0.001 

0.002 

0.06 

0.04 

0.008 

1.2 

0.001 

0.005 

0.08 

0.02 

0.02 

0.06 

0.1 

0.006 

0.05 

0.2 

0.005 

0.3 

0.05 

4 &q/l 
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Table 3 - Comparison of analytical results for QA/QC Program: Measured and 
certified dissolved metal concentrations of Certified Reference 
Materials: Digested (Dissolved) River Sediment (CRM-RS-A) and Soil 
(CRM-Soil-B) Samples. 

Element 

Al 

Ca 

Fe 

m 

Mn 

Ni 

Pb 

zn 

Ba* 

al* 

P* 

Pb” 

V* 

Measured Value Certified Reference 
mgfl Material Value, mgh 

255 225 

305 300 

1211 1200 

71.5 75 

7.7 8.0 

0.43 0.5 

5.7 7 

15.0 15 

6.5 7.0 

2.98 3.0 

9.92 10.0 

59.5 60.0 

0.71 0.8 

*Certified Reference Standard CRM-Soil-B solution samples. 
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Table 4 - Comparison of analytical results for QA/QC Program: Measured and certified 
dissolved metal concentrations of a Certified Reference Material: Trace Metal 
Drinking Water Sample (CRM-TMDW). 

Element 

Al 

Ca 

Fe 

m 

Mn 

Ni 

Pb 

zn 

Ba 

cu 

K 

V 

Measured Value Reference Material 
PM Certified Value, pg/l 

112 115 

35380 35000 

101 100 

8700 go00 

34 35 

60 60 

37 35 

68 70 

47 50 

20 20 

2431 2500 

33 30 



Table 5 - Results for an inter laboratory comparison study for QA/QC Program at the Elliot Lake Laboratory: Analytical results for 
Certified Reference Materials, Uranium Ore Standard (Soil A, BL-5) and Soil Standard (Soil B, SO-2), Vegetation Standards 
(CLV- 1) and (CLV-2). 

ELRFS (Soil A)’ ELRFS and CANMET (Soil B)2 
Parameters Unit Approximate ELRFS~ L.U? CANMET Certified ELRFS L.U. CANMET 

Composition Value 

Aluminum (Al) % 6.00 6.30 6.09 5.99 8.07 8.41 8.01 7.93 
Barium (Ba) % Unknown n/a 0.0190 0.0244 Unknown n/a 0.1090 0.0978 
Calcium (Ca) % 4.00 4.36 3.83 3.97 1.96 2.31 1.95 1.98 
Copper (Cu) % Unknown 0.019 0.0135 0.0292 0.0007 co.ooo4 0.0012 0.0005 

Iron (Fe) % 5.90 5.27 5.66 6.20 5.56 4.74 5.64 5.62 
Lead (Pb) % 1.50 1.12 0.87 1.5309 3.0021 0.3060 0.0016 <0.0140 

Magnesium (Mg) % 1.50 1.13 1.23 0.82 0.54. 0.48 0.50 0.52 
Manganese (Mn) % 0.05 0.048 0.045 0.046 0.072 0.066 0.074 0.065 

Nickel (Ni) % Unknown 0.007 0.0149 <0.0045 0.0008 0.0010 0.0007 co.0045 
Potassium (K) % 0.40 0.35 0.37 0.43 2.45 2.29 2.41 2.44 
Sodium (Na) % 3.60 3.25 3.50 3.59 1.90 1.72 1.74 2.03 

Zinc (Zn) % Unknown 0.010 0.0916 0.009 1 0.0124 0.0120 0.0104 0.0124 
LO1 % n/a 7.743 n/a Unknown n/a 14.521 n/a 

Ra-226 mm/g 700+30 689.+70 38&12 44.5+18 
(CLV- 1) (CLV-2) 

‘ELRFS (Soil - A) - Canadian Certified Reference Material (BL-5) for Uranium, Ra-226 and Pb-210, Chemical compositions of others 
elements are taken from (CCRMP 90-1E) and are reported to be approximate. 
2ELRFS and CANMET (Soil - B) - Canadian Certified Reference Material (SO-2). 
3CANMET, Elliot Lake Laboratory, 4Elliot Lake Research Field Station, Elliot Lake, ‘Laurentian University, Sudbury, Ontario. 

Y 
P 
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Table 6 - Column permeability (saturated hydraulic conductivity) results for Group 1 - Unclassified 
Total Mill Tailings obtained from the Quirke mill, Columns #l-15. 

Column 
# 

Material 
Total Mill 
Tailings 

Control - 1 
Control - 1 
Control - 1 
Control - 1 
Control - 1 
Control - 1 

Depth 

3rzl 
34.0 
35.0 
35.0 
35.0 
35.0 

Volume 
ml 

811.9 
396.8 
739.8 
360.5 
225.3 
462.9 

Permeak 
Time 

S 

172800 
86400 
172800 
86400 
86400 
172800 

ity Test 
Permeability 

cmls 
1 DIE-05 
l.O2E-05 
9.78E-06 
9.53E-06 
5.96E-06 
6.12E-06 

4 T + L, -6.3mm 36.0 719.8 172800 9.79E-06 
4 T + L, -6.3mm 36.0 354.6 86400 9&E-06 
5 T + L, -6.3mm 34.5 238.8 86400 6.22E-06 
5 T + L, -6.3mm 34.5 485.1 172800 6.32E-06 
6 T + L, -6.3mm 36.0 253.1 86400 6.88E-06 
6 T + L, -6.3mm 36.0 522.4 172800 7.1OE-06 

7 T + L, -2.4mm 34.5 249.4 86400 6.5OE-06 
7 T + L, -2.4mm 34.5 468.8 172800 6.1 lE-06 
8 T + L, -2.4mm 34.0 451.6 172800 5.8OE-06 
8 T + L, -2.4mm 34.0 196.5 86400 5.05E-06 
9 T + L, -2.4mm 34.5 268.2 86400 6.99E-06 
9 T + L, -2.4mm 34.5 541.4 172800 7.05E-06 

10 
10 
11 
11 
12 
12 

13 
13 
14 
14 
15 
15 

T + L, -0.85mm 35.0 430.5 172800 5.69E-06 
T + L, -0.85mm 35.0 203.9 86400 5.39E-06 
T + L, -0.85mm 36.0 583.2 172800 7.93E-06 
T + L, -0.85mm 36.0 287.8 86400 7.83E-06 
T + L, -0.85mm 35.0 522.1 172800 6.9OE-06 
T + L, -0.85mm 35.0 250.2 86400 6.61E-06 

T+WGL 37.0 195.9 86400 
T+WGL 37.0 432.9 172800 
T+ WGL 37.0 402.5 172800 
T+WGL 37.0 189.2 86400 
T+WGL 38.0 222.5 86400 
T+WGL 38.0 437.6 172800 

5.47E-06 
6.05E-06 
5.62E-06 
5.29E-06 
6.39E-06 
6.28E-06 

-^ 
Overall Mean: 7.03E-06 f 22.5% 

Average Standard 
Clth Error 

8.67E-06 21.71 

7.66E-06 19.38% 

6.25E-06 11.18% 

6.73E-06 

5.85E-06 

14.31% 

7.05% 

T = Tailings 
L = Limestone, Screen Size 
WGL = Wet Ground Limestone 



3-6 

Table 7 - Column permeability (saturated hydraulic conductivity) results for Group 2- 
Coarse Tailings obtained from the Quirke Waste Management Area, West Arm 
Tailings Basin, Columns #16-2 1. 

column 
# 

16 control - 2 62.0 5270.6 5220 4.09E-03 
16 Control - 2 62.0 1845.9 1920 3.89E-03 
16 Control - 2 62.0 3513.2 3720 3.82E-03 
17 Control - 2 59.9 3481.7 3060 4.45E-03 
17 Control - 2 59.9 5294.2 4560 4.54E-03 
17 Control - 2 59.9 1723.4 1500 4.49E-03 

18 T + L, -6.3mm 60.7 1809.3 2160 3.32E-03 
18 T + L, -6.3mm 60.7 5522.7 6540 3.35E-03 
18 T + L, -6.3mm 60.7 3674.0 4320 3.37E-03 
19 T + L, -6.3mm 58.5 3499.4 4560 2.93E-03 
19 T + L, -6.3mm 58.5 1720.7 2280 2.88E-03 
19 T f L, -6.3mm 58.5 5295.4 6960 2.9OE-03 

20 T+WGL 61.2 3449.5 5160 2.67E-03 
20 T+WGL 61.2 1763.2 2400 2.93E-03 
20 T+WGL 61.2 5174.3 7620 2.7 lE-03 
21 T+WGL 69.1 1740.9 2400 3.27E-03 
21 T+WGL 69.1 3447.8 5100 3.05E-03 
21 T+WGL 69.1 5196.8 7740 3.03E-03 

Material 
COarSe 
Tailings 

-r 
voium? 

ml 

Permeability Test 
Time Permeability Average 

S C&S ClXllS 

4.21E-03 6.94% 

3.12E-03 7.05% 

2.94E-03 6.99% 

Standard 
Error 

Overall Mean 3.43E-03 +17.3% 

T = Tailings 
L = Limestone, Screen Size 
WGL = Wet Ground (Fulverized) Limestone 

1 
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Table 8 - Column permeability (saturated hydraulic conductivity) results for Group 3- 
Submerged Coarse Tailings, obtained from the Quirke Waste Management Area 
West Arm Tailings Basin, Columns #22-24. 

Column Condition Permeability Test 
# coarse kPh Volume Time Permeability Average Standard 

Tailings cm ml S cm/S cm./s Error 
22 Submerged 55.5 3317.5 2520 4.77E-03 
22 Submerged 55.5 3309.7 2700 4&E-03 
22 Submerged 55.5 1576.1 1200 4.76E-03 
22 Submerged 55.5 5414.7 4620 4.25E-03 
22 Submerged 55.5 1692.5 1320 4.64E-03 4.55E-03 4.75% 

22 Submerged 55.5 5383.5 4080 4.78E-03 
22 Submerged 55.5 1706.8 1440 4.29E-03 

22 Submerged 55.5 4875.9 3720 4.75E-03 
22 Submerged 55.5 3566.9 3000 4.3 lE-03 

23 Submerged 55.0 3586.5 2940 4.38E-03 

23 Submerged 55.0 1820.9 1440 4.54E-03 
23 Submerged 55.0 5366.2 4380 4.4OE-03 
23 Submerged 55.0 1685.0 1440 4.2OE-03 
23 Submerged 55.0 3280.4 2100 5.61E-03 4.7OE-03 10.79% 

23 Submerged 55.0 1603.5 1200 4.8OE-03 
23 Submerged 55.0 3364.7 2880 4.19E-03 
23 Submerged 55.0 5023.5 3240 5.57E-03 
23 Submerged 55.0 5636.3 4380 4,62E-03 

24 Submerged 55.0 3248.4 2880 4.05E-03 

24 Submerged 55.0 5081.5 4620 3.95E-03 
24 Submerged 55.0 1601.1 1080 5.32E-03 

24 Submerged 55.0 1656.9 1500 3.96E-03 
24 Submerged 55.0 1675.8 1500 4.01E-03 4.3OE-03 10.88% 

24 Submerged 55.0 5063.7 4440 4.09E-03 
24 Submerged 55.0 3304.8 2520 4.7 lE-03 
24 Submerged 55.0 3374.4 3120 3.88E-03 
24 Submerged 55.0 4870.1 3720 4.7OE-03 

Overall Mean 4.52E-03 f 10% 
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Table 9 - Column permeability (saturated hydraulic conductivity) results for Group 4 - Crushed 
Waste Rock (screen size -2.0 mm, -10 mesh) obtained from the Quirke Waste 
Management Area, West Arm Tailings Basin (Internal Dyke Cell #14), Columns # 2530. 

column Material Permeability Test 

# Waste %Pfi Volume Time Permeability Average Standard 
Rock cm ml S CdS ClTdS Error 

Medium Acid Producing 

25 QWR-A 50.0 
25 QWR-A 50.0 

25 QWR-A 50.0 

26 QWR-A 53.6 

26 QWFCA 53.6 

26 QWR-A 53.6 

1752.0 3ooo 1.91E-03 

3496.0 5640 2.02E-03 

5574.0 8520 2.13E-03 

1782.0 1260 4.95E-03 

3556.0 2820 4.41E-03 

5334.0 4020 4&E-03 

3.34E-03 39.88% 

High Acid Producing 

27 QWR-B 

27 QWR-B 

27 QWR-B 

28 QWR-B 

50.2 

50.2 

50.2 

55.5 

1918.0 2820 2.23E-03 

3744.9 5460 2.25E-03 

5798.7 8220 2.3 lE-03 

1692.5 1320 4.64E-03 

Low Acid Producing 

2.83E-03 36.11% 

29 
29 
29 
30 

30 

30 

QWR-C 55.0 1361.5 5460 8.95E-04 

QWR-C 55.0 2688.1 10800 8.93E-04 

QWR-C 55.0 4130.4 16680 8.89E-04 

QWR-C 55.0 1064.8 5460 7.OOE-04 

QWR-C 55.0 2482.7 12660 7.04E-04 

QWR-C 55.0 3842.5 19680 7.01E-04 

7.97E-04 11.98% 

Overall Mean 2.27E-03 zk 66.4% 



Table 10 - Analysis of variance of column permeability results between control tailings and limed tailings sets for total mill 
tailings (Group 1) and coarse tailings (Group 2). 

F - Ratio Comparison at 5% Level of Significance 

Control Limed Calculated Tabulated Significant 
Column # Column # F - Test df(1) df(2) F - Ratio Difference at 

Value 5% Level 
Group - 1 
Total Mill 1 to3 4to 15 10.25 1 28 4.2 Yes 
Tailings 

Group - 2 
Coarse Tailings 16 to 17 18 to21 76.84 1 16 4.49 Yes 

F - Ratio Comparison at 10% Level of Significance 

Control Limed Calculated Tabulated Significant 
Column # Column # F - Test df(1) df(2) F - Ratio Difference at 

Value 10% Level 
Group - 1 
Total Mill 1 to 3 4to 15 10.25 1 28 7.64 Marginal 
Tailings 

Group - 2 
Coarse Tailings 

I 
16 to 17 

I 
18 to 21 

I 
76.84 

, 
1 

, 
16 

, 
8.53 

, 
Yes 

I 

df = degree of freedom 



Table 11 - Analysis of variance of cohunn permeability results within columns of the same group for submerged 
coarse tailings (Group 3) and crushed waste rock (Group 4). 

F - Ratio Comparison at 5% Level of Significance 

Group # 
Material 

Column # 
Calculated Tabulated Significant 

F - Test df( 1) df(2) F - Ratio Difference at 
Value 5% Level 

Group - 3 
Submerged 

Coarse Tailings 
Group 4 

Crushed Waste Rock 

22 to 24 1.91 2 24 3.40 No 

25 to 30 9.25 2 13 3.81 Yes 

F - Ratio Comparison at 10% Level of Significance 

Group # 
Material 

Column ## 
Calculated 

F - Test 
Value 

Tabulated 
df( 1) df(2) F - Ratio 

Group 4 
Crushed Waste Rock 25 to 30 9.25 2 13 6.70 

Significant 
Difference at 
10% Level 

Marginal 

df = degree of freedom 
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Table 12 - Solid phase compositions of total mill tailings without additional 
limestone, Control - 1, (columns #l - 3). All values are in (%), unless 
noted otherwise. 

Element / Parameter Measured Standard 
Concentration Deviation 

Al 2.89 0.03 
As, Wg> 40 
Ba 0.103 .0008 
Ca 1.71 0.01 
Ce 0.08 0.001 
cu9 (Pm 59 5 
Fe 2.49 0.03 
K 2.03 0.07 
m 0.085 0.001 
Mn, Wg> 24 0.6 
Na 0.075 0.003 
Ni, Wg> 40 
p, km <30 
Pb 0.035 0.001 
Sk Wg> <30 
Si 34.82 
Th 0.031 0.006 
Ti 0.23 0.004 
U <0.003 
zn him 32 1.0 
S - Soluble, (%) 1.31 
S - Total, (%) 3.48 
S - sulphide, (%) 2.17 

Ra-226, (mBq/g) 7506 150 

Total Acid Generation 67.81 
Potential, kg CaCOJtonne 

Total Neutralization 6.40 
Potential, kg CaCOJtonne 

Net Neutralization - 61.41 
Potential, kg CaCOJtonne 
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Table 13 - Solid phase compositions of total mill tailings mixed with 7.5% (w/w) 
limestone, columns #I-15. All values are in (%), unless noted otherwise. 

Element/Parameter 

Al 
As, (pg/g> 
Ba 
Ca 
Ce 
cu, wg> 
Fe 
K 
Mg 
Mn, Wg> 
Na 
Ni Wg> 
p, (pg/g> 
Pb 
Sk M.k> 
Si 
Th 
Ti 
U 
Zn, (&ii9 
S - Soluble, (%) 
S - Total, (%) 
S - Total Sulphide, (%) 

Measured Standard 
Concentration Deviation 

2.89 0.1 
315 26 

0.095 0.004 
4.91 0.3 

0.082 0.001 
45 3 

2.46 0.1 
2.24 0.18 

0.113 0.006 
25 2 

0.07 0.01 
26 11 

464 40 
0.024 0.001 

32.51 
0.05 
0.21 

<0.004 
29 

1.02 
3.0 
2.0 

1.0 
0.003 
0.01 

Ra-226, (&q/g) 7577 326 

Total Acid Generation 
Potential, kg CaCOJtonne 

61.9 

Total Neutralization 
Potential, kg CaCO&onne 

82.32 

Net Neutralization 
Potential, kg CaCO&onne 

+20.44 
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Table 14 - Solid phase compositions of coarse tailings without limestone, Control - 1 
(columns #16 and 17), and submerged coarse tailings (columns #22-24). 
All values are in (%), unless noted otherwise. 

Element/Parameter 

Al 
As 
Ba 
Ca 
Ce 
cu, ((pg/g>> 
Fe 
K 
m 
Mn, Wg) 
Na 
Ni, Wg> 
p, am 
Pb 
Sk (Ms> 
Si 
Th 
Ti 
U 
zn 
S - Soluble (%) 
S - Total (%) 
S - Total Sulphide (%) 

Ra-226, (mBq/g) 

Total Acid Generation 
Potential, kg CaCO&onne 

Measured 
Concentration 

2.60 

0.078 
0.4 

0.076 
27 

3.99 
1.8 

0.06 
29 

0.078 
28 

0.021 

36.6 
0.02 
0.24 

<0.004 
21 

0.14 
4.36 
4.22 

3899 

131.9 

Standard 
Deviation 

0.2 

0.000 1 
0.03 

0.002 
2 

0.08 
0.007 
0.001 

2 
0.001 

5 

0.0004 

0.0006 
0.007 

m 
2 

260 

Total Neutralization 
Potential, kg CaCO&onne 

2.7 

Net Neutralization 
Potential, kg CaCO&onne 

-129.2 
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Table 15 - Solid phase compositions of coarse tailings mixed with 7.5% (w/w) 
limestone (columns #18-21). All values are in (%), unless noted 
otherwise. 

Element/Parameter Measured Standard 
Concentration Deviation 

Al 2.59 0.2 
As 
Ba 0.076 0.0001 
Ca 3.50 0.03 
Ce 0.074 0.002 
cu, (P&i9 25 1 
Fe 3.99 0.08 
K 1.58 0.007 
m 0.064 0.0007 
Mn, (s-k> 9.3 0.7 
Na 0.074 0.0008 
Ni, Wg> 29 5 
p9 ak> 
Pb 0.025 0.0002 
Sk @g/g> 
Si 35.08 1.3 
Th 0.019 0.0006 
Ti 0.219 0.007 
U co.004 m 

Zn, Wg> 16 2 
S - Soluble, (%) 0.117 
S - Total, (%) 3.92 
S - Total Sulphide, (%) 3.80 

Ra-226, (mBq/g) 3693 200 

Total Acid Generation 118.75 
Potential, kg CaCOJtonne 

Total Neutralization 75.9 
Potential, kg CaCOJtonne 

Net Neutralization - 42.8 
Potential, kg CaCO&onne 
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Table 16 - Solid phase composition of Quirke Mine waste rock (QWR-A), medium 
acid generation potential, (columns #25 and 26). All values are in (%), 
unless noted otherwise. 

Element/Parameter 

Al 
As, (pg/g> 
Ba 
Ca 
Ce 
CUT wg> 
Fe 
K 
m 
Mn, Wg> 
Na 
N Wg> 
p, Wg) 
Pb 
Sk (pdg> 
Si 
Th 
Ti 
U 
a hk> 
S - Soluble, (%) 
S - Total, (%) 
S - Total Sulphide, (%) 

Ra,-226 (mBq/g) 

Total Acid Generation 
Potential, kg CaCOJtonne 

Total Neutralization 
Potential, kg CaCOJtonne 

Net Neutralization 
Potential, kg CaCO&onne 

Measured Standard 
Concentration Deviation 

4.12 0.04 

0.175 0.003 
0.47 0.01 

0.039 0.001 
23 6 

1.91 0.03 

0.166 
152 

0.22 

0.002 
1.5 

0.005 

0.008 0.0006 

38.03 
0.025 
0.267 
0.008 

27 
0.02 
0.82 
0.80 

0.01 
0.003 
0.003 

1.0 

0.23 

2758 

25.17 

128 

15.06 

-10.7 
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Table 17 - Solid phase composition of Quirke Mine waste rock (QWEt - B), high 
acid generation potential (columns #27 and 28). All values are in (%), 
unless noted otherwise. 

Element/Parameter 

Al 
As, Wg> 
Ba 
Ca 
Ce 
a hm 
Fe 
K 
m 
Mn, (p&9 
Na 
Ni Wg> 
p, (Pm 
Pb 
Sk tpg/g) 
Si 
Th 
Ti 
U 
Zn, txk> 
S - Soluble, (%) 
S - Total, (%) 
S - Total Sulphide, (%) 

Ra-226, (&q/g) 

Total Acid Generation 
Potential, kg CaCO&onne 

Total Neutralization 
Potential, kg CaCO&onne 

Net Neutralization 
Potential, kg CaCOJtonne 

Measured Standard 
Concentration Deviation 

3.94 0.1 

0.207 0.01 
0.265 0.0005 
0.037 0.001 
18.7 1.5 
1.46 0.07 
2.62 0.15 

0.123 0.004 
92.0 3 

0.133 0.003 

0.01 0.001 

38.41 
0.022 
0.161 
0.0113 

18 
0.02 
0.86 
0.84 

0.006 
0.004 

0.0008 
0.3 

0.07 

2769 

26.34 

123 

8.5 

-17.8 
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Table 18 - Solid phase composition of Quirke Mine waste rock (QWR-C), low acid 
generation potential, (columns #29-30). All values are in (%), unless noted 
otherwise. 

Element/Parameter 

Al 
As, tMg> 
Ba 
Ca 
Ce 
cu, tl%m 
Fe 
K 
w3 
Mn, t&g> 
Na 
Ni @g/g> 
p, tMh9 
Pb 
Sk txk) 
Si 
Th 
Ti 
U 
Zn, tpg/g> 
S - Soluble, (%) 
S - Total, (%) 
S - Total Sulphide, (%) 

Ra-226, (mBq/g) 

Total Acid Generation 
Potential, kg CaCO&onne 

Measured 
Concentration 

5.04 

0.159 
1.035 

0.0282 
45.0 
3.80 
2.39 
0.505 
489 
0.70 

0.006 

34.32 
0.01 
0.425 
0.005 
94.5 
0.01 
0.42 
0.41 

1750 

13.01 

Standard 
Deviation 

0.04 

0.003 
0.02 
-002 
0.1 
0.02 
0.05 
0.001 

5 
0.002 

0.0006 

0.0001 
0.004 
0.001 

2 

0.16 

110 

Total Neutmlization 
Potential, kg CaCO&onne 

26.82 

Net Neutralization 
Potential, kg CaCO&onne 

+13.81 
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