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Foreword

This report on Monitoring Acid Mine Drainage prompted much discussion and debate
within the Monitoring Subcommittee. It contains concepts and suggestions for
improving the way we do environmental monitoring in the mining industry. Any
document that calls for new directions will inevitably spark debate.

In the end, it was decided that the report was too important not to be released. This
decision was made with the full knowledge that many readers will have useful reactions,
comments and questions about its contents. I would ask that these be directed to the
Task Force, and not the author, since the project contract is over, and she has already
donated well beyond a reasonable limit of free time.

The Monitoring Subcommittee has resolved that the concepts and suggestions made in
this report need to be illustrated in demonstration projects at actual mine sites. The
planning for these is now underway, and should form part of the workplan for 1991-
1 9 9 2 .

Brian Wilkes, R.P. Bio.
Chairman, Monitoring Subcommittee,
B.C. Acid Mine Drainage Task Force



This report has been prepared in response to the Acid Mine Drainage Task Force’s
request for a review of the effectiveness of the monitoring programs at existing mines,
and the design of optimum monitoring programs for the B.C. context. Although
conceived as a statistical exercise using existing data sets, the exercise immediately
foundered due to the inadequacy of the available data. This report documents our
conclusion that the existing fixed-frequency data sets are suited only for the description
of very long-term trends; accurate estimates of mean concentrations, loads and peak
values require different sampling methods. Having very little data to work with and an
obvious need for education regarding monitoring design, the emphasis of the project
shifted to writing a mini-text on monitoring design for ARD sites.

Section 1 begins with an examination of the monitoring methods currently used in Waste
Management permits for mines with acid drainage potential. The unreplicated fixed-
frequency samples are shown to be inaccurate in estimating mean concentrations and
completely inadequate to indicate peak values and short-term fluctuations. Alternate
methods of monitoring are reviewed from the monitoring and statistical literature, each
with its own advantages and disadvantages. Different monitoring goals (e.g. detecting
long-term trends, accurately measuring excursions) are discussed with reference  to the
different monitoring methods available. The point is made that no monitoring program
can be optimized statistically without clearly stated goals: a program that efficiently
measures monthly means would not also efficiently catch peak values. Rather than
burden industry with monitoring programs that attempt to measure all possible variations
for all possible contingencies, it is recommended that the Acid Mine Drainage Task
Force engage in an ‘Environmental Audit’ process to determine the specific goals of
monitoring for each site. This discussion leads to the first and most important
recommendation in the report: to critically examine the information needed for
management at each mine: accuracy, threshold concentrations, time lags, cost constraints
and risks for each ARD component. Monitoring results should be ‘defensible’, both in
the scientific and enforcement senses.

Chapter 2 is a review of basic sampling statistics as they are applied to water quality
data. The problems of dealing with rapidly fluctuating values are emphasized. The
technique of performing a preliminary sampling study of a site is described. Preliminary
studies determine the variances in different components of a site, and thus permit the
calculation of predicted accuracies of different sample sizes, selection of optimum strata,
and the allocation of future samples to optimize sampling efficiency. The lack of proper
preliminary  sampling at any of the B.C. mines examined in this study made it impossible
to perform one of the initial goals of this project, which was to design optimum
monitoring methods for specific sites. Sampling design requires measures of variance,
which are lacking in unreplicated fixed-frequency data.

Understanding the process of the generation and release of ARD helps to focus a
monitoring program on critical time periods. Chapter 3 illustrates how the process



affects water quality sampling, with an emphasis on seasonal and flow-related effects.
The critical importance of good flow data at AKD sites is emphasized.

Chapter 4 is an exploration of the best monitoring data set available; a year’s worth of
almost daily data from a coastal mine. Day-to-day variations in concentration are high
and greatly exceed the analytical error of the mine’s environmental lab; i.e. the speed
with which a sample can be analyzed many be more important for getting an accurate
reading than the usual ‘quality assurance’ concerns of laboratory technique. Daily data
are compared with the monthly official monitoring record to illustrate the short-comings
of monthly sampling in a rapidly fluctuating system. Three different monitoring
schedules are designed for this mine to suit three different monitoring goals: peak
values, mean values and loads. For example, the error of the estimated annual zinc load
could be decreased by more than 60%  by taking 6 additional samples (18 instead of 12).
This improvement is accomplished by allocating the samples according to the observed
seasonal variance pattern instead of fixed monthly intervals.

Chapters 5 and 6 contain general guidelines for the monitoring of untreated mine water
and monitoring in the receiving environment. This discussion was limited to generalities
because there were no data sets available that supported proper monitoring design or
even a rigorous determination of general confidence intervals or accuracy. The use of
experimental design to ensure that proposed field studies (both regular monitoring and
special studies) are more likely to have conclusive and useful results is very strongly
recommended. Section 6.6.3 illustrates what can happen when more effort is put into
trying to sample ‘everything’ rather than carefully identifying the information goals of the
monitoring program.

A brief discussion of biological monitoring as an alternative to water quality monitoring
is the main topic of Section 7. Biological samples integrate water quality over time, and
thus contain much more information than an accurate measure of an ephemeral quantity
such as dissolved concentrations. Any discussion of optimum water quality monitoring
would be incomplete if it did not point out the value of biological monitoring.

The theme of this document is that improved statistical meihodology  for monitoring rests
on defining the information needed for good management. Too much emphasis has
been put on laboratory analysis techniques and on trying to apply statistics to squeeze
something out of existing data sets; not enough emphasis has gone into answering hard
questions about how defensible the monitoring data is. What degree of certainty is
needed on estimates? Does the data alert us when an environmental risk threshold has
been breached? Is it available in time to permit useful management responses? What
could we do better if we had the information? These are not statistical questions, but
they are of the greatest priority in optimizing ARD monitoring.
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1.0 INTRODUCTION
This report was prepared at the request of the  Acid Mine Drainage Task Force who
recognized  the need for improved water quality monitoring methods in order to better
address environmental concerns and to support good regulatory supervision.

&id rock  drainage (ARD) is caused by the natural oxidation of sulphide minerals
contained in rock that is exposed to air and water. The source of most new acid
generating rock is ore and waste rock exposed by mining; ARD caused by mining is also
called acid mine  drainage (AMD). There are at least 6 active and 5 abandoned mines in
British Columbia currently generating ARD (Steffen Robertson & Kirsten, 1989).

The sampling methods used to monitor ARD at active mines are the same as those used
to monitor other liquid mining effluent: single samples are taken quarterly or monthly,
and are used to represent the average values for that time period. These unreplicated
samples are used as estimatesO of average concentration, they are compared to other
unreplicated data sets for impact assessment, and they are scanned over time to look for
trends. Many important sources of variation+’ and error’@  in single samples have been
ignored or assumed to cancel out over time (Oguss & Erlebach, 1976).

As our understanding of ARD has increased, it has become clear that it is characterized
by high frequency variations and seasonal effects. As the analysis of data in this report
demonstrates, quarterly or monthly single samples may provide very inaccurate estimates
of true9 mean concentrations for the time period, especially in streams and rivers.
Furthermore, instead of focusing on mean concentrations, it may be the range9 or
frequency of changes in concentration of ARD components that are the most relevant to
impacts on aquatic organisms. These variations are not monitored at a11 by the sampling
regime in current permits.

Through cooperation and good communication between industry and government
agencies, additional (extra to the permit) sampling has become the rule at many mines,
with ‘gentlemen’s agreements’ governing the sampling, analysis and sharing of informa-
tion. Thus good management of affected water resources has generally been accom-
plished, though by somewhat irregular means.

1.1 Clarifvinr!  the Pumoses  of Monitoring
Improvements in monitoring usually focus on increasing accuracy’ or precisior?,  without
concern for whether the information being collected is optimally useful. No increase in
accuracy or precision is valuable if the wrong phenomenon or quantity is being measured.

* Words designated by this symbol are defined in the Glossary of Statistical Terms, Appendix I.
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The permits currently written for ARD mines accept very rough estimates of monthly or
quarterly means (Le. single grab samples) as the most relevant measure of water quality.
This reduces all the variations, the peak values and sudden changes that may have
occurred in the month to a single parameter, the mean. Unfortunately, even an
accurate9 monthly mean, by itself, is not a good predictor of environmental impact
except at grossly polluted levels. Therefore to focus on more accurately estimating
monthly means is to risk missing a more relevant measure, i.e. one that would detect
short-term, subtle or incipient changes in the environment. The first principle of
designing*  a monitoring program is to be sure that the most useful types of information
will be collected.

1 .l .I Demonstrating Compliance
Of course, the purpose of monitoring is to demonstrate compliance to a permit...but what
is the purpose, exactZy,  of the permit? The permit officially states the means by which
government managers shall protect public interests: by ensuring drinking water quality,
fisheries resources and general environmental protection. In Systems Operations
language, the permit defines the feedback and control mechanisms by which the manager
makes management decisions. The permits issued by the Waste Management Branch set
out concentrations, the ‘objectives’, for each ARD component which the observed
samples shall not exceed. Both statistically and in Systems Operations terms, this is a
very poorly defined regulatory mechanism.

The first problem is the inaccuracy of the monitoring samples. Analytical accuracy is not
the issue here, since compliance monitoring samples are analyzed by independent labs
with more than adequate accuracy. The accuracy in question is the accuracy with which
each sample represents the true mean for the location and time period in which it was
taken. Variation is the key to sampling design [see Section 2.11.  Without an estimate of
variation, it is impossible to say how accurate or inaccurate a single sample is. The
variation can only be established by taking multiple samples (over time &/or space) and
examining their frequency distributiorP.  (This is the purpose of a preliminary study, to
identify the variance@  in the system against which future samples can be compared.)
Thus a single sample’s accuracy is unknown (Oguss & Erlebach, 1976).

Therefore, the certainty with which the manager can be sure that concentrations are
compliant is as wide as the range of the true values, and is unknown. Furthermore,
when a noncompliant sample is observed, it is left to the manager’s ‘judgement call’ to
determine how serious (frequent, long lasting, high risk, etc.) the excursion was.

[Monthly or quarterly single samples collected over many years may eventually demon-
strate that there is little or no variation in a given parameter”, or that all the variation
occurs well below the ‘alarm’ Ievel.  In these cases sampling can probably continue
unchanged, using the accumulated old data as the reference for accuracy. However, for
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all parameters whose record shows substantial variation or whose values approach the
‘alarm’ level, the accuracy of single samples  must bc assumed to be poor (Section 2)].

The second problem with the ‘control mechanism’ defined in permits is the difference
between the objective concentration and the  lowest known toxicity or impact concentra-
tion. The gap between the two values represents a safety zone, the width of which is not
a standard or rigorously determined distance. The objectives are based on considerations
of background levels, interactions with other possible pollutants, best practicable
technology, etc. The degree to which a model of risk helps to define this safety zone is
not clear: do risks increase linearly from the objective to the toxic concentration? or in
steps with thresholds? logarithmicly? While the exact relationship may be unknown, the
assumptions made should be clearly stated, because the manager’s response should be
based on them.

These two problems compound each other when compliant observations are drawn from
a site where the range of real values exceeds the objective some small proportion of the
time: the excursions are undetected and the associated risk is unknown.

The current wording used in permits has us ‘shooting’ at an arbitrary ‘target’ (the
objective) with a very inaccurate ‘gun’ (the fixed-frequency single sample). In order to
get useful information, the managers are routinely put in a position of having to
supplement the compliance data with additional sampling.

It is clear that monitoring to demonstrate compliance to a permit is a thankless task if
the permit does not directly link the information collection process to clearly defined
assessments of risk to water resources. Ward, et al (1986) have called this the ‘Data
Rich but Information Poor’ syndrome in water quality monitoring, and say that it typifies
the great majority of monitoring programs currently in operation in North America.

1.1.2 Serving Management Goals
At a conference of the Ecological Society of America entitled, ‘New Approaches of
Monitoring Aquatic Ecosystems’ (Boyle, T.P. 1987),  the following comment was made
regarding environmental data and information:

“Water quality monitoring has concentrated on data collection efforts while
largely neglecting information issues. Information is extracted from data
when trends are quantified or correlations through time or space are vali-
dated. Simply collecting more and more data with little regard to its infor-
mation content wastes valuable resources. To assure management or regula-
tory success, more attention must be paid  to methods for precisely specifying
the information required from a data set before the data are collected- I f
this is done well, sufficient funds may be saved to support environmental
rehabilitation and resource conservation.” (Perry, et al., 1987)
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We know that ARD is characterized  by seasonal variation and fluctuating values, not by
steady-state values. Before we can design a trend detection program with the right level
of sensitivity’, or an early warning system that allows us to respond fast enough to a
short-term problem, it is necessary to consider what is at risk, what sorts of chronic and
acute impacts are possible, the likely time-frame of the impact, and the manager’s
response  strategies. While this may seem like a major digression from the statistics of
designing monitoring programs, it is in fact central.

Is the mean concentration the most important determinant of response in aquatic
organisms? Perhaps the range, the peak values, the variance, the rate of change, or the
load are more important determinants. Are there different vulnerabilities in the system
at different times of the year ? Are there concurrent stresses on this system from other
sources (natural or man-made) that might influence their impact?

Monitoring programs cannot be optimized unless the objectives of the program are
clearly spelled out in terms of meaningful chronic and acute thresholds, the accuracy
needed and the response time (Lettenmaier, et al, 1978, and Ward, et al, 1986). This is a
clear contrast to the retrospective ‘What do these data tell us?’ approach. Once the
goals are clearly stated, it is a straight forward task to design a program that efficiently
and economically produces the required data.

Government agencies and academics throughout the industrialized world have been
developing methods for improving their ability to accurately anticipate impacts and to
flag important trends. It is widely accepted that the design of monitoring programs
needs to be an interactive multi-stage process.

Whitfield (1988)  recommends a 5 step process for each site-specific design: 1) establish-
ment of a monitoring goal; 2) selection of a sampling strategy to meet the goal; 3)
periodic review of adequacy of sampling including quality control studies; 4) optimization
of sampling related to the goal over time; and 5) review of adequacy of monitoring goal.

Mar, et al. (1986) recommend a 4 step process: 1) identification the environmental
changes of interest and the effects that would most likely manifest these changes; 2)
selection of variables and sampling techniques, formulation of cause and effect hypoth-
eses, and search for alternate or proxy variables; 3) design, in particular exploring the
tradeoffs between improved discrimination and added cost; and 4) integration of the
monitoring program into the overall management goal. Mar emphasises cost factors as a
primary element in the design process, because the exploration of-  the tradeoffs helps to
focus the investigation on the necessary level of accuracy needed for good management.

These approaches are convergent with Holling’s ‘Adaptive Environmental Assessment
and Management’ (Holling, 1978) techniques which focus on 3 issues: 1) determining the
best strategy to sample the quantity of interest; 2) determining the statistical basis for the
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sampling design (i.e. the preliminary investigation); and 3) estimating the cost of such
observations.

The interactive planning process that appears to be best suited  to the ARD situation is
called the ‘Environmental Audit’, developed by Perry,  Schaeffer  and Herricks  (1987).
They emphasize the distinction between surveillance (trend monitoring) and management
monitoring. Trends can be detected within historical data records and within fixed-
frequency data records that span many years, without benefit of a priori’  hypothesesP  or
design. In contrast, regulatory monitoring is only valid when it is planned to produce
information for decision making. The Environmental Audit process begins by translating
‘management questions’ into formal, quantifiable statements called ‘Audit Objectives’.
Management questions are generally concerned with perceived damage, criteria for
exceedances, and consequences of taking action. From these concerns the Audit
Objectives are derived: quantifiable statements of what will be measured in order to
support management decisions. This process requires decisions on the resolutionv
needed for detecting changes or exceedances. Perry et al suggest that cost concerns and
the limitations of resources for monitoring should be considered a separate issue from
information needs, in order to avoid confusing the two. Once the information needs are
listed along with the necessary sampling design for each component, management can
allocate resources based on their perception of the risks. Almost inevitably this process
identifies ‘tension points’ where an exhaustive data set would be too expensive, and
precision must be sacrificed for economy. The advantage of the process is that such
tradeoffs have been identified clearly and that the choices made are defensible in
comparison to the alternatives.

Incorporating an Environmental Audit, or similar planning process, into’ existing ARD
monitoring programs would require preliminary intensive studies of the variance patterns
at each site, decisions regarding the resolution needed for each variable, design of the
optimum sampling schedule to achieve this level of resolution, and rewriting the permit to
include these information goals or ‘Audit Objectives’ (not specific sampling methods
which may quickly become obsolete). This guarantees that the information required for
good management will be available, and also makes the rationale and priorities behind
the sampling methods clear to all interested parties.

1.1.3 The Goal  of ‘Defensible’ Numbers
If monitoring is to provide management with reliable information on which to base
important decisions, the rigour with which the numbers are collected and evaluated is of
utmost importance. A truly optimum monitoring program will produce numbers (e.g.
concentrations) that are ‘defensible’ in three ways:



b Defensible observations, in the sense of being true and accurate representations
of the values that really occurred. There should always be a calculated confidence
interval’ associated with each estimated value (e.g. means) showing the reliability of the
estimate.

b Defensible criteria for judgement, i.e. the thresholds and limits enforced should
be ones which represent valid criteria of risk or environmental response.

b Defensible source, in the sense of accurately identifying the mine as the cause
of the problem (as opposed to background, other sources, or random environmental
changes).

Of all the data sets offered for examination in this study, including ‘official’ and internal
monitoring programs, not one was producing defensible numbers in any of these senses.

1.2 What is Wrong With Side.  Fixed-Freuuencv &mules?
Before reviewing the alternate methods of monitoring, it is valuable to examine the
limitations of the existing data that have been collected as fixed-frequency single
samples.

Data of this type are ideally suited for only one type of analysis: trend monitoring over
long periods of time. Using time-series analysisO  (e.g. Whitfield and Woods, 19&I),  it is
possible to detect very small trends in water quality, or to measure small impacts due to
upstream changes, despite seasonal changes and annual cycles. For example, using
monthly data for 13 years from the Kootenay River, Whitfield and Woods were able to
give rigorous estimates of the nature and magnitude of changes in water quality resulting
from the construction and operation of the Libby Dam, even though each month’s data
was affected in a sightly different manner. Unfortunately, the number of years of data
required by time-series methods (generally at least 10 years for monthly data) makes this
type of analysis a poor management tool.

For short-term comparisons, the fixed-frequency single samples have very severe
limitations. They are: inaccurate in representing the time interval, non-random*, and
drawn from heterogeneousO  and heteroscedastic-  time strata. To simplify this dis-
cussion, we will use monthly data as an example, with the understanding that the same
problems apply to annual, quarterly, or weekly data.
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1.2.1  Inaccuracy of the Single Sample
A single monthly sample is taken to represent the average concentration during the
entire month. How well it does this depends on how variable the concentration was
during the month. The greater the variation in concentrations, the less is the likelihood
that the single sample ‘caught’ a value close to the true mean.

When many samples are taken in the month, it is possible to statistically calculate a
mean and to calculate the ‘confidence’ of that estimate: we can say, for example, that
the mean concentration was 26mg/l  with a 95% confidence interval of *4mg/l.  If we
want to compare this to a different location’s data, we now know how different they
have to be in order to be confident that the difference is real. For instance, if the
upstream mean was 24mg/l  f 3mg./l,  we see that these values overlap and there is no real
difference; the higher downstream mean is not significantly higher. In a different
situation we might want to compare one mean of 26.00 +0.04  with another of 23.00
kO.03;  these are very significantly’ different.

Without replicate samples, there can be no calculated mean with its calculated confi-
dence interval [see Section 1.3.11.

Note that there are three ‘dimensions’ to natural variation within each month: instan-
taneousV,  temporal” and spatial*. Instantaneous variation is the observable differences
between samples taken at the same t&me; e.g. if you filled 6 bottles simultaneously, the
differences between them would be a measure of the instantaneous variation. Temporal
variation refers to the day to day or moment to moment changes during the month.
Spatial variation refers to the observable differences between sampling locations.

A good preliminary study estimates each of these components of variation within the
month, because differences ‘between’ can only be demonstrated by comparison to
differences ‘within’ (Green, 1979). Once each component of variation has been exam-
ined, a good monitoring design will allocate replicates so as to most efficiently improve
the accuracy of the estimate’. For instance, in well-mixed flowing water, there may be
virtually no instantaneous or spatial variation, but very high temporal variation; therefore
single samples could be taken in one location, with the number of replicates per month
being determined by the resolution needed by management.

Unfortunately, years’ worth of monthly single samples taken without any measure of
variation cannot be used to make valid comparisons between sites or between years
because the variances of the underlying populations+’ are unknown. There is no way to

’ What we have referred to as ‘accuracy’ is technically ‘precision: the reproducability  of  observations.  Unless
there is bias in the measuring method, precision will lead to accuracy. The accuracy of laboratory analysis of water
samples is  a possible source of bias in AMD data,  but i t  is  very small  compared to sampling error.  Therefore we have
used the terms ‘accuracy’ and ‘precision’ synonymously.
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be certain that apparent differences are not due to chance alone; there is no way to
distinguish between barely significant differences and highly significant differences.

1.2.2 Heterogeneity Between Samples.
Given good monthly data, we might want to calculate annual averages and use them to
compare sites, using simple statistical methods such as t-test9.  ParametriC  methods
assume homogeneity+‘, i.e. they assume that each sample is taken randomly’+’ from a well-
mixed population. Seasonal changes in water quality create heterogeneity? the means
and variances of some months will be different from those of other months. When this
pattern of changes is overlooked and unlike samples are grouped together, the result is
to greatly increase the variance of the annual samples, which in turn means that differ-
ences between two such samples would have to be much greater in order to be distin-
guished using t-tests or analysis of variance’ (ANOVA). (The appropriate analysis
would be a non-parametric Paired Comparisons Test.) In many cases the few high
samples that may be taken in the year will bias the annual mean.

1.2.3 Different Variances Between Samples.
Equality of sample variances is another basic requirement of most parametric tests. The
unreplicated data available from most ARD sites provide no measure of the variances
from which each was taken, but it is very likely that the variances associated with high
values are greater than those associated with low values. The precision of samples drawn
from high variability months is much less than the precision of samples from low
variability months. As with non-homogeneity, heteroscedasticity’  tends to obscure
distinctions that might otherwise be made. This has important consequences for
inferences drawn from old ARD data sets. For instance, a comparison between a
contaminated site and an uncontaminated site is made less powerful“ when different
variances obscure the differences between the means.

ANOVA  and t-tests are parametric analyses that assume homogeneity and homo-
scedasticiw of each sampled population, as well as normaP distributions (see Section 2)
within each subdivision of the design (e.g. within years or within sites). The unreplicated
single samples that constitute the main record at ARD sites probably violate all of these
assumptions.

In practical terms, t-tests and ANOVA  are fairly robust when applied to data that fails
to meet the strict assumptions under which the tests were derived and tested. The
results obtained by using these tests on single monthly grab samples may not be seriously
misleading. But the significance testsP  applied to the results will be incorrect, and there
is no direct method of calculating exact significances.  Therefore the analysis of single
monthly samples should be restricted to non-parametric methods.
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12.4  Fixed Intervals of Sampling
Fixed-frequency samples are obviously not randomO with respect to time. This lack of
randomness might bias the data if there is any source of variation that is also on a fixed
monthly schedule, e.g. equipment maintenance. Ideally all possible sources of variation
in mine operations and water treatment should be identified so that sampling can be
randomized with respect to their schedules.

Another problem with fixed interval sampling is that it misses shorter term changes and
events completely, or over-represents the importance of brief occurances. For example,
if data are collected in fixed quarterly intervals, shorter-term seasonal events are easily
missed. For monthly data sets this risk is reduced but still present.

Finally, there is the problem that a fixed-frequency data set cannot be used to estimate
lag effects shorter than the sampling interval. Therefore many years of such data
contain no information about the duration of excursions or other phenomenon that last a
shorter time than the sampling interval. In contrast, a long (e.g. 10 year) randomly
sampled monthly data set would probably contain useful information on the autocor-
relation+’ in the system, since many time intervals would be well represented.

When single samples are taken within set time intervals (e.g. monthly) they should be
taken at random times within each time interval.

1.2.5  Composite Samples Aren’t Much Better
Some permits require the collection of composite samples in an attempt to better
represent the true mean value; e.g. ‘weekly composite of daily samples, 2 per day, 7 days
per week.’ When samples are taken more than once a month, individual samples are
allowed to exceed the permit limits as long as the arithmetic monthly mean is compliant.
The Metal Mining Liquid Effluent Regulations and Guidelines give different values for
maximum authorized monthly concentrations depending on whether these are based on
single grab samples (e.g. the maximum for copper is 0.6 mg/l),  composite samples (0.45
mg/l), or arithmetic mean of several samples (0.3 mg/l)  [see MMLERG Schedule 1, part
1: Authorized Levels of Substances]. This schedule acknowledges the variation that is
present in the data. A single grab sample truly represents only the instantaneous
concentration at the moment it was taken; the composite sample blends together the
concentrations of several moments so that information about their variation is lost. Only
the mean of several samples can be accepted as an estimate of the true mean, because
the information about the differences within the sample are preserved and can be used
to calculate confidence limits for the estimated mean.



1.3 Imuroved  Monitoriw  Methods
Since the shortcomings of fixed-frequency single samples have been known for a long
time, there have been many publications in recent years devoted to improving the quality
and efficiency of sampling while reducing the risks of undersampling. Following a
preliminary intensive study (essential to determine variances), there are many choices of
sampling methods, each suited to a monitoring goal and particular type of variation
(Whitfield, 1988; Liebetrau, 1979). The methods most relevant to sampling mining waste
water are briefly reviewed below.

1.3.1 Replicated Sampling
Keplication  is the process of taking a pre-determined number of samples which then
jointly represent the ‘population’ (e.g. time interval) from which they were drawn. When
the variance has been determined by preliminary study, the desired precision for an
estimated mean period can be achieved by taking replicate samples. The number of
samples needed is a function of the precision needed in the resulting estimate of the
mean, and constitutes an important element of the monitoring design. The samples
should be taken randomly from the ‘population’ they represent. Replicate sampling is
useful when variances are predictable and the mean (rather than peak values) is the
focus of the monitoring. Replicated data are ideal for use with parametric statistical
methods. (Green, 1979)

1.3.2 Sequential Sampling
Sequential sampling is a highly efficient method of estimating a mean value to a pre-
determined level of precision, and it is especially valuable in cases where the variance is
not known in advance. This method requires that the sampler keep taking additional
single samples until the desired level of precision (of the estimate of the mean) has been
reached. Unnecessary and redundant sampling are avoided, which is especially valuable
in cases where individual sample costs are very high. The method is inappropriate if
there is a long time lag between sample collection and the availability of the laboratory
readings; it is also inappropriate if the mean or variance of the water being sampled is
changing during the process and therefore instable. Data sets collected in sequential
sampling episodes can be compared using parametric statistical methods if the samples
are normally distributed and their variances are comparable. (Wald, 1947)

1.3.3 Exceedance Driven Sampling
This is a modified form of fixed-frequency sampling in which the frequency can be
increased when observed levels exceed predetermined thresholds; it is intended to
enhance the surveillance capability of a monitoring program. The monitoring method
outlined in the Metal Mining Liquid Effluent Regulations and Guidelines (MMLERG) is
an exceedance driven formula. The strength of the method is its improved tracking of
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rising values, and therefore increased likelihood of flagging non-compliant values. The
efficiency with which exceedance-driven sampling can ‘catch’ peaks and avoid oversamp-
ling during stable periods is determined by the flexibility and feedback time built into the
exceedance driven schedule. For instance, the schedule in the MMLERG is based on
the running 6 month average, and can only increase sampling to a weekly schedule. This
particular design is very ineffective in flagging short-term peak values, and very slow to
return to infrequent sampling after a high value has been ‘caught’. However, an
exceedance driven program could be devised that was more efficient in rapidly fluctuat-
ing situations. (Valiela and Whitfield, 1989)

This method has most of the disadvantages of the fixed-frequency method (unreplicated
non-random samples), and is especially inappropriate for estimating means because the
sampling frequency increases as the observed values increase, creating significant bias.
The data are unsuitable for parametric analyses.

1.3.4 Markovian Sampling
Markovian sampling also is a method of sampling more frequently when the observations
rise above threshold levels; both the sample size and time interval are adjustable based
on ‘alert levels’ (e.g. complying, marginal, warning and alert) determined by the previous
set of samples. In highly variable or episodic systems, Markovian sampling responds
more quickly than the equivalent exceedance driven program. The process of defining
the alert levels with their corresponding sample intervals and levels of replication is a
valuable exercise for clarifying management strategies. Markovian sampling cannot
guarantee a predetermined level of precision in estimating peak values and, like
exceedance driven programs, it produces biased estimates of mean values. (Arnold,
1970; Smeach and Jernigan, 1977)

1.3.5 Stratified Sampling
Stratifying* the ‘population’ into units of homogeneous’g  variance is a major improve-
ment over unstratified sampling when there are areas or time units within the population
that have different variances. It allows greatly increased sampling efficiency because
sampling effort can be distributed according to the variance within each strata’. For
instance, if variance is correlated* with flow conditions, the year could be divided into
time units representing flow conditions (rather than calendar months), and the means
within each flow stratum could be very efficiently estimated with equal accuracy.
Stratified sampling must, of course, be based on a preliminary study to determine the
strata. When there are significantly different strata in the water body being monitored,
this method is the most economical way to produce accurate estimates of mean values.
The resulting data can be used in parametric statistical tests which allow unequal sample
sizes. Stratified sampling is not suitable for tracking peak values. (Green, 1979)
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1.3.6 Continuous Monitoring
Some ARD components, such as pH and conductivity, can be measured continuously
with probes, and the result digitally recorded in intervals as short as fractions of a
second. Computerized data loggers designed for this purpose can provide a complete
record of changing values, and can telemetrically alert people if preset thresholds are
exceeded. Data of this sort is no longer a sample in the usual sense, but a complete
record. It provides the most accurate calculated means and the most accurate tracking
of peak and minimum values. It also provides valuable information regarding the
frequency of changes and the duration of peak values, both of which may have import-
ant biological effects. Continuous monitoring is the only method which does not require
a preliminary study; in fact, it is the best method of doing the intensive preliminary
study. The disadvantages of continuous monitoring are high initial costs for equipment
and calibration, and the lack of suitability for monitoring many ARD components such
as dissolved metals.

1.3.7 Continuous Proxy Monitoring
Observed concentrations of many ARD components are correlated with variables that
can be monitored continuously. When these correlations are strong, the record of the
continuously monitored variable can be used as a proxy for the correlated variable,
accepting a measurable error of the estimate. When the error of estimating from the
proxy is unacceptably high, the correlation relationship can be used for prompting direct
sampling of a target variable when the continuously monitored proxy variable exceeds
preset threshold levels. For instance, dissolved heavy metal concentrations are likely to
be negatively correlated with pH; the data logger can monitor pH continuously and can
‘call’ a technician to take samples for metals when the pH falls below a certain value. A
preliminary study is needed to determine the correlations, the number of replicates
needed to estimate peak values, and the appropriate threshold values. If properly
designed, such a system can give both accurate mean values and good tracking of peak
values.

1.4 Desiening  New Monitoriw  Promams
The variety of monitoring methods.listed  above makes it clear that there are good
methods available to suit a wide variety of situations. But substantive improvements in
ARD monitoring will not come just from substituting one of these methods for the fixed-
frequency single samples. The design of new programs should include the following
steps for each mine:
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. Preliminary study of variances and seasonal patterns. [Section 2.61
b Interactive planning to clarify  monitoring objectives, to determine the

necessary resolution of the data and the response times needed, and to make
choices regarding cost vs. precision trade-offs.

b Selection of appropriate monitoring methods.
w Rewriting of the permit to incorporate new methods.
F Periodic review.

Of these tasks, only the first and third require statistical input. The major challenge of
optimizing monitoring programs remains the problem of anticipating what sort of ‘news’
from the site would prompt someone to take some action.
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2.0 SOME BASIC SAMPLING STATISTICS

This chapter is a brief primer of some of the theory behind sampling design, as it relates
to ARD monitoring. It is offered for the convenience of the reader and is not intended
as a substitute for a good textbook. Readers wishing more detailed explanations arc
referred to any of the following: Sokal and Rohlf, 1969; Steele and Torrie, 1960,
Cochran, 1963; Green, 1979.

The basic model of impact assessment is the comparison of before and after impact
samples, or impact vs. control samples, or both. The ideal situation is one in which the
baseline data (‘before’) provides a permanent record for future comparisons and a well-
chosen control provides an ongoing comparison to account for independent effects such
as acid rain, increasing recreational uses, logging, etc. Statistically this model leads to a
two-way factorial design:

Imoact Control

Before (Baseline)

After

Each square or ‘cell’ of this model represents a set of samples for one variable, such as
dissolved zinc concentrations. The most powerful statistical method for analyzing this
sort of design is Analysis of Variance*, or ANOVA,  with which the interaction between
the two-way differences can be evaluated. Thus if both the control stream and the
impacted stream are affected by, let’s say, a road nearby, the comparison between before
and after conditions can still be made, and the conclusions are much more valid than
either l-way comparison would be. In the ANOVA results, the F-test of the Interaction
SS (‘sum of squares’) is the primary measure of significance of an impact. This basic
model can be expanded to incorporate covarying factors (making it an Analysis of
Covariance, ANCOVA) or to deal with multiple variables simultaneously (Multiple
Analysis of Variance, MANOVA),  each suited to special applications.

The number of samples in each cell of the design determines the degrees of freedom
that will be available for significance testing, and this fact deserves attention in all
baseline and on-going monitoring programs. The more samples in each cell, the more
accurately the within-cell variances are known, and therefore the stronger the test.
While samples sizes can vary, the overall strength of the test is largely determined by the
smallest cell, ie. the one with the fewest samples. No amount of extra sampling in the
impacted zone can compensate for inadequate sampling of the baseline or control. The
actual number of samples needed in each cell can be determined during preliminary
sampling (in fact, this is the primary purpose of preliminary sampling): it is influenced by
the amount of variation present and also by the resolution needed, ie. how small a
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difference or change should be detectable? This resolution should always be chosen with
great care, since the cost of achieving higher resolutions increases very rapidly.

The basic ANOVA design has some statistical assumptions that should be considered
carefully for application to water quality data. ANOVA assumes that the within-cell
data represent homogeneous and normally distributed ‘populations’. Water quality data
is rarely normally distributed and there are often time or flow related factors causing
non-homogeneity; these are discussed in the following subsections.

2.1 Freauencv Distributions of Water Oualitv  Data
Water quality is a phenomenon that exists in real time, changing perhaps from moment
to moment. The spatial and instantaneous components of variation (Le. differences from
place to place in a lake, or differences between simultaneous samples taken from poorly
mixed water) correspond to the classic types of data (e.g. ‘weights of newborn babies’ or
‘bushels of grain per acre’) that are used to illustrate basic statistical applications. You
can think of these data as numbers waiting to be randomly sampled in the same way that
you might sample needle lengths within a stand of trees. However the changes in water
quality over time constitute a different sort of ‘population’ for sampling.

If we could see a continuous record of the concentration of one variable measured at
one spot over a period of, let us say, a month, it would show periods of no change,
periods of increasing concentration and periods of decreasing concentration. The
‘population’ is the infinite number of instantaneous values that occurred during the
month. This population has a true maximum and minimum, a true range, and a true
mean value.

For practical purposes we reduce this population to a sequence of samples; each one is a
‘snip’ out of the continuous record. For instance, the continuous record for a month
could be represented by 744 hourly samples. These data could be used to calculate an
estimated mean, standard deviation*, etc., and to draft a frequency distribution, which
would indicate the relative frequency of occurrence of concentrations within the range
observed during the month. The frequency distribution tells us whether the scatter of
the data is symmetrical around the mean, whether the data ‘fit’ a standard parametric
distribution (e.g. a normal distribution), and identifies irregularities that may have
importance in sampling design. The variance that can be calculated from the samples is
a descriptive statistic indicating how widely scattered the data are. [Note that we are
ignoring the fact that the samples occurred in a specific sequence and are therefore not
random samples -- more on this below.]

Figure 1 illustrates some types of continuous records that might occur in a stream, and
the frequency distributions that would be produced by an intensive sampling program.
Groundwater or effluent from a closely controlled process might be constant over long
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Figure 1: Types of Continuous Records and Their Frequency Distributions.
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periods of time. A normal distribution might  be found for a variable like hourly surface
temperature measurements. Concentration data is likely to show a distribution that is
skewed to the right, and may be censored’ by a detection limit. Another pattern that we
frequently see in water quality data is the bimodal*  or multi-modal’ distribution,
indicating that data from time periods with different distributions have been grouped
together.

The sample variance and the shape of the frequency distribution are of primary concern
to a sampling design exercise, because they determine the number of samples needed in
order to reach a predetermined confidence level for estimates of the mean and peak
values. The smallest sample sizes are needed when the variance is small (relative to the
desired confidence) and when the frequency distribution is normal. Normal distributions
are not common in water quality data; right-skewed distributions are typical.

2.2 Co&g  with Non-Normal Distributions
Many sampling programs are designed using the assumption that the distribution is
normal, without ever checking to see whether it actually is. When data are normally
distributed, the well-described properties of the normal curve can be used to calculate
estimated means, ranges and confidence limits from a very small number of samples.
Unfortunately these calculations give biased estimates when small samples are drawn
from a population that is not normal. Calculating a mean, for instance, gives equal
weight to all samples because the distribution is assumed to be symmetrical around the
mean, and therefore the samples are equally likely to lie on either side of the true mean.
But if the distribution is asymmetrical, then the samples are more likely’to  have come
from one side than the other, and the mean calculated from a small sample is likely to
be biased.

2.2.1 Transformation
Often the data from a skewed population distribution can be mathematically trans-
formed” to a set of numbers that has a normal distribution. The population parameters
estimated this way are unbiased and can be back-transformed to the original units.
Lognormal distributions are often found in water quality data and respond very well to
this treatment (Niku, et.al. 1981; Shaarawi and Kwiatkowski, 1986). Transformed data
can be used in any parametric statistical procedure that requires normally distributed
data (e.g. t-tests, ANOVA),  and is therefore the most easily analyzed and understood
method of dealing with non-normal data.
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2.2.2 Monte Carlo Techniques
Skewed and irregular populations that do not lend themselves to transformation can be
dealt with by using modelling techniques. One modelling method, called Monte Carlo
simulationP,  uses a selected set of baseline data to describe an observed frequency
distribution, and then assumes that any future data will be drawn from populations with
the same distribution. This has the advantage of requiring no parametric assumptions 9
about the shape of the distribution, but it is only ‘good’ for as long as the baseline data
truly represent the current population. The preliminary investigation must check for
different distributions in different strata in order to be sure that the appropriate
distribution is used in future applications. Although Monte Carlo techniques are often
used when baseline data are ‘thin’, the actual data requirements to reach the same power
as an equivalent parametric test are higher.

2.2.3 Adjusting for Detection Limit Effects
Often the only irregular feature of the distribution is caused by the effect of detection
limit censoring. Using data from a good preliminary study, it is possible to estimate the
frequency distribution of the missing left tail’ of the curve, and thus to accurately adjust
future samples in order to calculate unbiased means, etc. (Gleit, 1985).

All of these techniques require an initial study that collects enough samples to adequate-
ly characterize  the underlying frequency distribution.

2.3 Stratification
Frequency distributions are very likely to be different in different locations and time
periods. Exploring the water body for locations that have different means and/or
variances is a well-understood basic principle of sampling. These areas are called strata,
and they must be sampled separately. If data from different strata are lumped together,
the effect on the overall frequency distribution is to greatly increase the variance. In
some cases, a bimodal or multimodal frequency distribution will result. Leaving the data
lumped would greatly increase the uncertainty associated with each sample, and there-
fore greatly increase monitoring sample requirements.

Different frequency distributions can occur over time strata as well as locations. For
example, there may be seasonal effects such as lake turn-over or spring run-off that
create distinctly different variances and frequency distributions during different times of
the year. These also need to be sampled separately in order to optimize a monitoring
program. Redistributing sampling effort so that all time strata are sampled with equal
efficiency will result in equal confidence intervals for all strata, and an economical
design.
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2.4 Autocorrelation: the l&g  Effect
No matter how accurately we can characterize  the frequency distribution of water quality
data, it is necessary to account for the fact that the  data do not occur randomly but in a
sequence over time. Each observation is in part a reflection of the concentration or
value that could have been observed in earlier time intervals. There are important lag
effects ‘built in’ to the body of water, that are determined by the mixing and flushing
rates, and sometimes by physical or chemical interactions (e.g. buffering). Because each
observation is partially dependent on it’s own prior values, statisticians refer  to it as
‘serially dependent’ or ‘autocorrelated’.

Autocorrelation is an important factor in determining optimum sampling frequencies,
especially when an accurate mean is the goal of the monitoring program. When there  is
a high level of autocorrelation, as in groundwater or a well-mixed lake, concentration
values are slow to change, and the optimum frequency of sampling is low. These
systems are very economical to sample because each sample remains a good indicator for
a long time. Conversely, when there is very little autocorrelation, such as in a small
stream draining a watershed with low retention, the optimum sampling frequency is
higher.

To estimate a mean using the fewest samples, the sampling frequency should be long
enough so that each sample is independent of the previous one. When the lag effects
are very short, the sampling frequency does not have to be very high; it only needs to be
high enough to collect enough samples to achieve the desired confidence limits of the
mean.

A good preliminary study should determine the autocorrelation in each water body to be
monitored. In addition to permitting the most economical design for monitoring mean
values, this also will indicate the duration of peak or minimum values, which may be an
important aspect of environmental impact. The lag effects can only be measured by
sampling more frequently than the duration of the lags; thus a preliminary study should
include some intensive temporal sampling in each strata.

2.5 The Interpretation of Small Samples

2.5.1 The Mean
Each sample taken from a body of water is like a ‘snip’ out of the continuous record of
all values that occurred. How useful is it as an indicator of the mean value? The
situation is analogous to taking one sample from any population: the sample is likely to
be a good indicator if the population variance is low, and a poor indicator if the variance
is high.
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Water monitoring programs that rely on infrequent single samples are assuming that the
variance is low (compared to the desired confidence limits) and that autocorrelation is
high.

If a proper preliminary study has been done, the value of a single sample or small set  of
samples can be determined statistically (e.g. Oguss and Erlebach, 1976). For instance, if
the data are normally distributed (or can be transformed to such), the variance of the
initial data can be used to calculate the upper and lower bounds of a 95% confidence
limit for a new estimated mean based on a single new sample. The Z-score’  of a new
observation can be calculated to indicate the likelihood that the new observation comes
from the previously described population or represents a changed population (e.g. a
rising or declining mean). This presentation of the results provides much more certainty
about the quality of the new information, and the distinctions that can or cannot be
made with it.

Unfortunately the confidence limits of single samples are often very wide in comparison
to the certainty needed for management decisions. If the frequency distribution is
normal, a very small number of replicates will usually ‘tighten’ the confidence interval to
an acceptable level of certainty. Non-normal, irregular distributions have a higher data
requirement to reach the same levels of confidence as a normal distribution. The worst
scenario is the situation where the distribution has not been studied in advance; in this
case the confidence limits of a single sample cannot be determined.

There are two important factors to note:
b The confidence intervals of old data cannot be calculated without frequency

distribution and autocorrelation information from an intensive study.
c The target confidence interval should be based on the certainty needed for

decision making, not on a convenient sample size or standard procedure.

2.5.2 The Range
When several samples are taken from a large population, it is safe to assume that none
of them is the true maximum or minimum of the population. How, then, do we estimate
important peak values if they were not directly sampled? One of the advantages of the
normal distribution is the ease with which the tails of the curve can be estimated. Given
normally distributed data and an estimated mean and variance, we can use Z-scores to
calculate a probability of a certain value (let us say, the maximum permit value)
occurring in that population. As an illustration, a manager could use Z-scores to
calculate the odds of values zO.lmg/l  occurring during a sampled period. In another
situation, a manager might receive sample data which is all below the permit value, but
indicating by its variance and the Z-score of the permit value that exceedences probably
diii  occur during the time period.
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When the frequency distribution is not normal and cannot be made normal via trans-
formation, the preliminary study data can be used  to generate  a model of the tails of the
distribution, and this can be used to estimate the probabilities of exceeding specified
values in subsequent monitoring data.

2.6 Preliminarv  Sanding:  A Prereuuisite
The importance of preliminary sampling is probably the most underemphasized principle
of field studies. There is no substitute for it; decades of archived data cannot be
analyzed to estimate the necessary parameters.

The following sequence of steps is appropriate to situations in which ARD contamination
is actively occurring or suspected.

2.6.1 Preliminary Stratification
A preliminary study begins with the identification of all factors that might influence the
mean or variance of ARD variables. Sampling sites should be established at all locations
where there is any rationale for different values. Time dependent variables such as
seasonal effects, flow relationships, etc. should be anticipated. When the delimiters of
the strata aren’t known in advance (e.g. the flow rate at which there are substantial
changes in variance), it is wise to use smaller/shorter strata in the preliminary study.
Some of these space and time strata may be grouped together in the final design, but
they need to be explored separately first.

2.6.2 Cofactors
Any independent factors, such as flow rate or temperature, that may influence the mean
or variance of the data, should always be measured during the preliminary study. These
‘cofactors’ may be found to account for a substantial amount of the variation in the
ARD variables, and tracking them may permit a substantial reduction in water sampling
in the final monitoring design.

2.6.3 Instantaneous Variation
Within each combination of location and time strata, 4 to 6 replicate samples should be
taken to determine instantaneous variation. The results will allow an exact determina-
tion of the number of replicates needed for future sampling. Instantaneous variation
includes ‘real’ variation as well as analytical error and field or processing errors (Quality
Assurance). If instantaneous variation is overlooked, it becomes a hidden part of short-
term temporal variation, and might lead to a design where sampling has to be done more
frequently, thus raising monitoring costs. The data from this part of the preliminary
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study may also be useful for determining correlations between ARD variables, which
may allow important economies in the final design.

2.6.4 Autocorrelation
Short-term temporal variation is explored by taking many samples within each time
strata. First, an intensive study is needed to determine the time-lag between independent
samples within each strata. Monitoring several key variables, such as pH  and conductiv-
ity, with a continuous probe would give the most exact measure of autocorrelation within
each stratum. This should then be corroborated for the other ARD variables by
collecting sets of samples at shorter time intervals.

The smallest unit of time such that subsequent samples are independent becomes the
minimum sampling interval for future random sampling.

The data collected in this segment of the preliminary study may also be used to charac-
terize hysteresis relationships between flow and concentration (see Section 3.2.5).

2.65  Frequency Distribution & Variance
Having determined the time interval between independent samples, a set of at least 30
samples should be taken randomly during each time stratum to determine the frequency
distribution of the data. Thirty samples is usually adequate to demonstrate. that a normal
distribution is normal; more will be needed to adequately characterize  an irregular
distribution. In the interest of speed, it would be acceptable to sample the first 30
independent intervals and then examine the data to determine if more samples are
needed. To be entirely correct, however, random sampling over the entire time stratum
is recommended. This may be especially important if independent cofactors influence
the mean or variance.

If seasonal or flow influences are not understood well enough in advance to establish
strata before the preliminary sampling, it is wise to sample key variables daily (or at the
minimum independent sample frequency if it is greater than daily), for a year to
establish these strata. The designer can use regressiorP  methods to select strata based
on continuous cofactors, such as flow, and can fit seasonal strata more accurately.

2.6.6 Design for Future Monitoring
With the complete set of preliminary data and clearly stated control criteria (e.g.
confidence limits, threshold values) the designer can optimize the monitoring program.
One of the most important tasks is to reexamine the strata used in preliminary sampling:
the final stratification should be- reduced to only those strata that have different means,
variances and/or frequency distributions. Sampling effort can be allocated to strata so as
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to equalize  efficiency. Economies in sampling can be gained by making use of vari-
able/variable correlations and/or relationships with cofactors. The autocorrelation in the
system determines the frequency of sampling to be used in accurately tracking peak
values and also the minimum frequency between independent samples. If variable
sampling frequencies are to be ‘built in’ to the monitoring program (e.g. exceedance-
driven or markovian sampling), these can be set up with suitable feedback times,
sampling frequencies and replication. If the data are not normally distributed, the
designer can choose the appropriate transformation, or can select appropriate non-
parametric methods for analyzing and reporting incoming monitoring data.

A monitoring design should always include an outline of suitable statistical analysis
methods for the resulting data, and an explanation of the limitations of the data.

2.6.7 Reanalysing Old Data
Data collected before the preliminary sampling program was done can sometimes be
reanalysed using the results of the preliminary sampling program. For example, the
confidence limits of single samples can usually be estimated. Unfortunately, in most
cases very little can be gained with retrospective analysis because the data are too
incomplete, lacking proper time stratification and frequency, replication, and measure-
ment of cofactors.

2.6.8 Preliminary Studies at Uncontaminated Sites
For preliminary studies prior to active ARD generation, the aims of monitoring are
different, and the preliminary study is much less elaborate. An uncontaminated water
body cannot show the patterns of variance that will occur with ARD contamination. The
baseline study should identify strata and cofactors, and complete an instantaneous and a
short-term temporal study in each strata and at a range of values of each cofactor. This
will provide information on the autocorrelation in the system, the natural ranges and
frequency distributions of ARD component variables, and the correlations between them.
With this information a low-intensity monitoring program can be designed to optimize
the flagging of changes that may be due to ARD contamination.

The cost of doing a thorough preliminary study is small compared to the cost in the
future of having inadequate baseline data. It guarentees that questions regarding change
and impact can be answered efficiently and with good certainty. A proper preliminary
study should be a requirement for all new mining developments with ARD potential.
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3.0 ARD DISCHARGES: WEATHER AND FLOW RELATIONSHIPS

An understanding of the generation and release of ARD, as it occurs in B.C. mines, is
essential for designing optimum sampling methods. This section contains descriptions of
the patterns of variance and correlations between ARD components, how the climate at
the mine site affects the seasonal pattern of concentration, and some considerations for
the resulting impacts on different receiving environments.

3.1 Generation and Release of ARD
The most complete source of information regarding acid rock drainage in B.C. is the
Draft Acid Rock Drainage Technical Guide (Steffen Robertson & Kirsten, 1989); the
following comments are taken from this source.

ARD is produced by natural oxidation of sulphide minerals when rock bearing these
minerals is exposed to air and water. Mining is not the only source of ARD, but the
tonnes of porphyry and massive sulphide ores that are brought to the surface by metal
mining constitute the major increment in ARD. There is a time lag between exposure of
the sulphur bearing rock and the release of ARD which depends upon pH, temperature,
oxygen availability, degree of saturation with water, surface area exposed, the presence
of acid neutralizing minerals, and the presence of bacteria (Thiobacillus  ferro-oxidans
and others).

The acid produced by oxidation mobilizes heavy metals and other soluble constituents
contained in the rock. The acid may subsequently be buffered or neutralized by the
receiving waters, but the high metal loadings remain in solution and may seriously harm
aquatic organisms. Components of ARD include sulphate, acid, iron, manganese,
copper, aluminum, lead, cadmium, zinc, arsenic and nickel.

Each ore produces a unique mix of acid and heavy metal leachate, and because these
components have different mobilities, ARD does not have a constant composition. The
site-to-site differences and variabilities within each site are demonstrated in Table 1.
Table la compares the coefficients of variation’P (CV) of ARD components from
different sources. [The coefficient of variation, being the ratio of the standard deviation
over the mean, expressed as a percent, is a measure of relative variation that allows us to
make a simple comparison between sites having very different means, or when different
units of measurement were used. A CV of 100% indicates that the standard deviation
and the mean are equal. The lower the CV, the more narrow is the observed variation
relative to the mean value.]

Table lb compares correlations between ARD components within three sites. Note that
most of the relationships are weak (-.7 c r < .7), and that they vary from site to site.
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Table la: Coefficients of Variation at Several ARD Sites,

Equity Westmin Island Mt. Wash-
Silver Myra Copper ington Kindrat

PH 10.8 5.9 19.1 6.9 6.1
so4 72.1 81.0 70.1 82.3
As 108.3 159.1 68.5
c u 483.0 90.0 80.5 28.5 12.5
Fe 372.7 99.1 262.3 54.6 50.0
Zn 229.9 130.4 54.0 42.6 46.9
Al 464.8 68.3 39.7 28.6
Cd 94.1 207.7 56.2

Table lb: Correlations Between ARD Components at Three Sites.

Euuitv  Silver: Bessemer Creek at Siltcheck Dam n=396
PH so4 As CU Fe Zn

so4 0.1229
As -0.0312 -0.2268
c u -0.4286 -0.03 13 0.0098
Fe -0.3311 -0.1537 0.1686 0.8523
Zn -0.5065 -0.0244 -0.0013 0.9179 0.6772
Al -0.4081 -0.08 11 0.0298 0.9649 0.9449 0.8391

Island CoDPer:  North Drainage Ditch n=55
PH so4 Fe Cd cu Zn

so4 -0.6770
Fe -0.0183 -0.1541
Cd 0.0057 0.0730 -0.0918
c u 0.0677 -0.0957 -0.0365 0.6547
Zn -0.0321 0.0614 -0.0838 0.9278 0.6338
Mn -0.2667 0.3204 0.0204 0.7807 0.3029 0.7095

Westmin: Old Tailings Line Road Seepages n= 11
PH so4 Al c u Fe m

so4 -0.4553
Al -0.3990 0.9886
c u -0.3815 0.9830 0.9955
Fe -0.5585 0.7332 0.6316 0.6294
m -0.3851 0.9889 0.9962 0.9958 0.6357
Zn -0.3919 0.9754 0.9966 0.9951 0.5838 0.9926
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ARD is found in underground mine workings, open pit drainage, and in waste rock piles,
tailings and ore stockpiles which are exposed to precipitation, runoff and seepage. When
ARD  problems are identified, mines are required to collect runoff from contaminated
areas (usually the entire mine site) and treat it to neutralize the acidity and remove
heavy metals.

3.2 Seasonal Patterns of ARD Release
Most ARD sites have a seasonal pattern in the concentrations of ARD components in
the drainage water. Exceptions are found in the constant concentrations of adit  waters,
where ARD is released under relatively constant conditions of flow (B. Godin,  pers.
comm.).  More commonly, the acid and metal salts generated in the ARD process will
accumulate as long as there is enough water to support the oxidation process and not
enough to wash them out of the rock. Therefore during dry periods, frozen conditions
or light precipitation, there may be very little evidence of ARD contamination in surface
waters. The first rain (or snow melt) that is heavy enough to wash through the rock will
carry a very high concentration of acid and heavy metals. Subsequent rains may wash
out equal or even higher concentrations if the first rain left many salts behind, or may
carry lower concentrations if earlier washings were relatively thorough. Thus the basic
‘model’ of ARD release is that it is proportional to water flow through the rock and to
the quantity of accumulated salts remaining to be washed out.

Noting a seasonal pattern is important in monitoring design because it permits the
seperation of the data into seasonal strata; without stratification the data are often
multimodal. Both examples below have bimodal patterns in the unstratified data.

3.2.1 Coastal (no snowpack) Mines.
When there is no snowpack, the fall rams following a dry summer are the time of
greatest ARD release. Figure 2 illustrates this phenomenon by comparing a surface flow
hydrograph with dissolved copper and zinc concentrations in untreated water that has
been collected from a waste rock dump. This is 1989 data from Mine ‘A’ which is in a
mild coastal climate and receives little snow or freezing temperatures.

3.2.2  High Elevation or Interior (heavy snow) Mines.
When there is a significant snow pack or prolonged period of freezing temperatures, as
would occur in high elevations along the coast or in interior locations, the spring
snowmelt  period is the time of greatest ARD release into runoff waters. This pattern is
illustrated in Figure 3 with data from Mine ‘B’ which receives significant snow 7 months
of the year. Fall freshet concentrations are marginally higher, but the load is clearly
greatest in the spring.
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Figure 2 Seasonal Pattern of Flow and Metal  Concentrations at a Coastal Mine.
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Figure 3 Seasonal Pattern of Flow and Metal Concentrations at an Interior Mine.
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A mine site could show an intermediate pattern, where either fall rains or spring
rain/melt produces the highest peak of ARD contaminants, depending on the amount of
water washing through the rock and the amount of salts that have accumulated since the
last thorough rinsing. The pattern of seasonal variation must be determined for each
site.

3.23 Background  and Baseline Monitoring Sites.
Many mines are in watersheds that contain other low-grade ore bodies and/or abandoned
mines which may produce significant background ARD contamination. Weathering of
naturally exposed rock usually produces relatively low amounts of ARD because the
surfaces have been heavily oxidized and the process has slowed down to a very low rate.
However, rock slides and road building can produce new actively generating ARD sites.
Old mine sites may actively generate ARD for hundreds of years. Therefore the
monitoring for background and baseline studies should include the possibility that ARD
is present in the watershed from sources other than the active or proposed mine in
question.

Background and baseline studies are often pursued with quarterly sampling or one or
two intensive short-term programs. Given the seasonal patterns of ARD release that we
observe from mine sites, it is very likely that quarterly or semi-annual sampling of
background and baseline sites would miss the presence of significant ARD.

For example:
c The baseline water quality investigation for a mine located on the North Coast

region of B.C. used water samples collected on August 9, 1987 (Godin,  ‘1988) and again
on August 9, 1988 (Godin  and Chamberlain, 1990). Such limited sampling during the
same season in both years reduced the liklihood of revealing natural contamination.

b The pre-operational study for a silver mine in the Nechaco region used samples
taken on July 14 and October 13, 1973 and July 26, 1974. These sampling dates miss the
snowmelt  period that would be expected to carry the highest concentrations of ARD.

b For many years a mine on Vancouver Island monitored the baseline water
quality in an upstream creek 4 times a year: March, June, September and December. In
1989 they switched to monthly monitoring and found elevated metal concentrations in
October. (See Figure 4.)

The importance of timing the investigation to the seasonal pattern of ARD release has
been recognized  by several researchers who have adapted their programs accordingly
(e.g. the Mount Washington investigations by B. Godin).  But there are numerous other
examples of Stage 1 and 2 site investigations, research on abandoned mine sites, and
background monitoring schedules that were timed in a way that would have missed the
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Figure 4 Monthly Background Metal Concentrations in a Vancouver Island Creek.

peak ARD release if .it  occurred. The method for preliminary studies outlined in Section
2.6.8 would prevent these problems.

Background monitoring should also anticipate seasonal patterns of variation. Although
the impact of natural ARD is likely to be very small compared to that of a mine, it is
wise to be able to separate the mine’s impact from other sources. For instance, road
building for forestry development in the same watershed could conceivably expose acid
generating rock and produce substantial ARD over time. Natural sources and various
man-made sources should be distinguished accurately for optimum management. A
preliminary study identifies the optimum times for monitoring background concentrations
and/or loads.

3.2.4 Groundwater
ARD contaminated surface water may seep into subsurface drainage before it can be
collected for treatment, and may eventually find its way into the water table:
consequently there is concern that treatment of surface ARD will not prevent the
contamination of groundwater and the transport of ARD to other areas and/or times. In
addition, the adit waters (underground tunnel drainage) in sulphur bearing rock are often
highly contaminated, and there is concern that some of this water may elude the
pumping system and seep back into the groundwater.

Although several mines sample groundwater once or twice a year, there have been no
groundwater data sets available with which to explore different monitoring strategies.
Presumably the surface water recharging the groundwater will show seasonal ARD
patterns of contamination, although the process is complicated by lag effects and
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chemical reactions within the ground. Semi-annual or quarterly sampling could easily
miss evidence of contamination. Since groundwater contamination could cause serious
problems persisting long after a mine is closed, a higher priority should be given to
determining whether or not this is a problem at each mine. A preliminary study of
variance in groundwater would be simple because there are no cofactors or alternate
sampling locations to explore, and short-term variability is likely to be very low.

32.5 The Hysteresis Effect
Despite the observation that acidity and metal concentrations are released in a seasonal
pattern that corresponds to the rainfall and surface discharge pattern, there is only a
weak correlation between instantaneous concentrations and instantaneous flow. For
example, Erickson and Deniseger (1987) found apparently constant copper concentra-
tions at different flows in weekly samples during spring snowmelt  at the Mt. Washington
site, and concluded that snowmelt  did not significantly dilute ARD. Table 2 shows some
correlations between daily flow and ARD components at two different mines; these low
r values indicate
that the relation-
ship between flow

Table 2: Correlations of ARD Components with Daily Flow.

and concentration Mine ‘A’ Mine ‘C
is not linear. P H -.1813 -.2146

The cause of
Copper .3564 .3163
Zinc .2821 .3155

these weak corre- Cadmium .2860 n/a
lations between
flow and concen-
tration is that
there are different relationships with rising vs. stable or falling flows. Hysteresisv
describes the cyclic relationship of concentration with flow. The acids and dissolved
metals that are generated during low precipitation periods (summer dry months and
winter frozen periods) accumulate on the surfaces of the rocks as salts. The small
amount of water percolating through the rock pile will be bound to rock surfaces and
will be evaporated off rapidly due to the heat of the oxidation process. Thus little water
reaches the toe of the pile, and ambient surface drainage will show little impact of ARD.
The first rains or melt waters to flow out the toe of the pile carry very heavy loads of
these salts. As more water flushes through the rock, more rock surfaces will be washed
more thoroughly, and concentrations will increase. If flows are stable for a while,
concentrations may remain stable or may begin to decrease as reserves of salts decline.
Eventually concentrations begin to decline with steady or rising flows because of
declining reserves. At the end of the hysteresis cycle the rock is well rinsed; continued
flushing will only carry the ARD being generated at the time. Data from Mine ‘A’
shows (Figure 5a) a single hysteresis loop during the first week of fall freshet in a
coastal mine’s drainage ditch; note that the peak concentration occurs before the peak
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Flow  -> Flow  ->

‘igure  5. Hysteresis: a) a single loop: one week of dissolved copper data from the first fa:
rain at Mine ‘A’; b) several diminishing loops: one month of total zinc data from Mine ‘C’.

flow and that the concentration did not return to the starting value when flows dropped.
A more complex pattern of diminishing loops seen in one month’s data from Mine ‘C’ is
typical of the flow vs. concentration relationship in ARD data, and illustrates why the
linear correlations calculated from such data are often insignificant.

Hysteresis makes it difficult to ‘catch’ peak concentrations of ARD, because their timing
is determined by the history of recent weather conditions as well as immediate rainfall
and flow conditions.

3.2.6 Conclusions
The main loads of ARD contaminants should be expected to wash out during moderate
to high flows that follow low flow periods. The seasonal pattern of ARD release is
therefore generally predictable for any particular site. A good monitoring program must
incorporate this seasonal pattern, and some understanding of hysteresis, in order to
detect an ARD problem or background load, and to adequately record the peak releases.

3.3 Seasonal Patterns of ARD Impact on Receiving Waters.

Water quality monitoring cannot be optimized without assessing risks to the receiving
environment. Since we know that the release of ARD is likely to be seasonal, and the
vulnerabilities of the receiving environment are also seasonal, it is important to anticipate
specific impact events that are likely to occur at each site due to these seasonal patterns.
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If there are different levels of risk during different seasons, which is probable, then it is
important to ‘fine tune’ the monitoring progam  so that the information feedback time
and the level of confidence in the monitoring results are appropriate to the risks.

For example, a migratory fish might be present in the receiving environment for a short
but critical period of its lifecycle  each year, during which sudden changes in water
chemistry might cause sublethal impacts. It is appropriate to monitor differently during
this seasonal event because the information needs are different; higher confidence levels
and faster feedback are needed for good regulatory supervison.

The best monitoring program for an AKD site should include annual information goals
(e.g. tracking trends in means and loads) as well as seasonal information goals that have
direct bearing on specific environmental risks. It is worth repeating that a good permit
should specify the information goals of the monitoring program (Section 1.1.2), which
should be based on an assessment of site-specific risks, some of which may be seasonal.

The following discussion of seasonal impacts in different receiving waters is offered to
illustrate the points above and to prompt the reader to consider the wide range of
possible ARD impacts in the context of seasonal timing.

3.3.1 Streams and Rivers
Streams and rivers are highly vulnerable to sudden high releases of ARD contamination,
especially when they have relatively little dilution or buffering capacity; resident organ-
isms have no way to escape exposure. If organisms are stressed due to chronically
elevated heavy metal levels, the impact may be compounded by the high and fluctuating
concentrations that occur during the peak release season. Streams and ‘even rivers can
be depopulated by a single acute toxicity event, and it may take a long time for fish and
their key food species to recolonize  the stream.

In cases where the main ARD release comes with snow melt, and when the minesite
melts before or after the rest of the watershed, the impact is exacerbated by lack of
dilution. This occurs in Murex  Creek and the Tsolum River where.the  abandoned Mt.
Washington minesite  melts relatively quickly after lower elevations are free of snow,
causing copper concentrations downstream to rise sharply (Erickson and Deniseger,
1987). The site of Mine ‘B’ melts sooner than the surrounding watershed due to
disturbance from operations and heat generated by the oxidation process in the waste
rock; the creek receives this runoff while the rest of its watershed is in winter low flow
conditions (Patterson, 1989). In both cases the lack of dilution during peak ARD release
probably amplifies the environmental stress caused by the contaminant load.

One special concern with ARD in streams and rivers frequented by fish is that the
seasonal releases of ARD may coincide with crucial salmonid  life stages. Upstream
migration of spawning adults during fall freshet might be affected by a change in acidity
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or metals concentrations. Fry emerging from gravel during spring freshet may also be
very vulnerable.

3.3.2 Lakes

Lakes dilute, buffer and damp the seasonal input from contaminated streams, but then
different seasonal patterns affecting the contaminant load may arise due to physical and
biological events in the lake. Basic limnology must be considered in determining the
validity of comparisons between sites in lakes or between lakes. Thermal stratification,
turnover events and flushing rates should be expected to affect the concentrations and
distribution of ARD contamination in the water column. ARD components measured in
the water column may be of less consequence than the contamination taken up by
aquatic organisms during different stages of their lives. Seasonal cycles of plant and
animal growth and tissue breakdown can be important factors in the uptake, release and
recycling of contaminants. The different chemical species (i.e. dissolved, extractable and
total) of each contaminant are not equally involved in the biological cycles of the lake,
and should therefore be monitored separately in the case of high risk contaminants.

Any water quality data from a lake must be taken to represent only a small piece of a
very complex total picture, in which seasonal changes contribute one dimension of
change. Water quality comparisons between lakes, a problematic task at best, should be
limited to data taken in the same season.

3.3.3 Marine Water
ARD contamination in saltwater is so overwhelmingly diluted and buffered that it is
extremely unlikely that seasonal changes in marine water chemistry due to ARD would
be observed outside the immediate zone of influence. Ion concentrations too low or
variable to be monitored reliably through water quality sampling may still be sufficient to
cause impacts on plants and animals. (Although submersion in seawater is considered to
be the most successful means of halting acid generation in tailings and waste rock, metal
ions mobilized in freshwater may remain biologically active in seawater.) Biological
monitoring, which is inherently seasonal, is a more efficient means of observing ARD
impact in marine water than water sampling.
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4.0 MONITORING TREATED EFFLUENT

From a statistical point of view, the monitoring of treated ARD water should be much
like the monitoring of any industrial effluent. The variations that occur are determined
primarily by the water treatment process and not by natural forces. When the treatment
is closely controlled and operating smoothly, effluent water can have metal levels even
lower than the water in background streams. But the treatment is not always consistent,
and the quality of effluent water may be highly variable.

Permits issued under the Waste Management Act require effluent water to be sampled
at fixed intervals, usually monthly, to demonstrate compliance to the levels of acid and
metals specified. As discussed above, monthly monitoring assumes that the quantities
monitored are accurately represented by a single sample (i.e. little instantaneous or short-
term temporal variation), change only slowly (i.e. are highly autocorrelated over time),
and are not affected by seasonal influences. In other words, they should behave like
other industrial effluents. Two factors may interfere with consistent performance of the
treatment system: high variations in flow, and variations in the concentrations of acid and
metal in the incoming water. If the treatment is not adjusted to accommodate these
variations, the effluent water quality will reflect them. How well does monthly monitor-
ing detect such problems when they occur?

The following exercise is an illustration of ways in which existing data can be explored
statistically to evaluate monitoring programs. The data set used was the best available,
having almost daily records for several variables. Much more could be done with a
proper preliminary data set. Unfortunately there were no other data sets from B.C.
mines with sufficient data to permit additional examples.

4.1 An ExamDIe  -- Mine ‘C’.
Mine ‘C’ collects pit dewatering flows and surface drainage from waste dumps, an
abandoned open pit, and the entire active area of the mine site. This water is gravity fed
to a treatment facility where it is mixed with highly alkaline processing water. At most
times of year the processing water dominates, and there is a problem with high pH in the
effluent. Their permit requires the pH to be between 6.0 and 11.0. Metal sulphates and
carbonates are precipitated as a sludge from the mixed waters; the sludge is disposed of
with tailings. Monthly monitoring has shown that the resulting water is generally of very
good quality, for effluent; the mine passes quarterly LC, bioassays regularly, acknowl-
edging a bit of a problem keeping the pH below 11.0.

1 The data used to evaluate this monitoring program (Appendix 2) consisted of almost
1 daily samples (weekends often missing) taken by the mine and analyzed in their environ-
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mental lab (pH, dissolved and total zinc and copper), and the almost daily outflow
record. Data from the single monthly grab samples, taken for official monitoring and
analyzed by an independent laboratory, were compared to the daily data set. The dates
of monthly sampling were not randomized but were not fixed either, generally falling in
the middle of the month. The daily data for dissolved metals was often below the
environmental labs’ detection limit, and therefore very incomplete. For total metals the
data record for 1988 was the most complete.

4.1.1 Flow Record
The flow record consisted of calculations based on a flow counter that was read daily 5
days a week: weekends or holiday periods were assigned the average flow based on the
accumulated count. Figure 6 shows the daily flows as recorded: note the runs of
identical flow on days that were assigned average values. The volume of discharge
clearly reflects a typical seasonal pattern, with high and variable flows in the fall and
winter, and less variation and lower flows in the spring and summer.
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Figure 6 Daily Treated Effluent Volumes Kecorded  at Mme  ‘c’.

Since relationships with flow are crucial to understanding AKD data, the first question to
be asked concerned the importance of the information missing from the days with
averaged (instead of measured) values for flow. Selecting only days with measured flow
and previous day’s measured flow (n=217),  the daily differences between flows were
examined (Figure 7). The mean difference of 145 m3/day is very small compared to the
range, and the distribution of daily differences is very symmetrical and acceptably
normal. The standard deviation of 7688 m3/day is high, The range of observed differ-
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ences (-38310 to 23480) shows clearly that
day to day differences in flow are com-
mon and may be very large. Therefore
the use of averaged values does not bias
the data, but much information is lost. If
loads are to be calculated from the con-
centrations observed in this effluent, and
if concentrations vary from day to day,
then daily flow data is necessary for accu-
rate estimates. -35 -25 -15 -5 !5 25

8 Flow, m3 *
5103

Figure 7 Day-to-Day Flow Changes, Mine ‘C’.

4.1.2 pH Values
The pH data is summarized in Table 3. For this variable there is no independent data
from the analytical laboratory because pH is not stable; therefore the accuracy of the
environmental laboratory’s results cannot be determined. The usefulness of accurate pH
readings would in any case be limited by the apparently brief time period they represent.
The daily record (Figure 8) shows a high frequency of variation in the range of 10 to 12.
This series was evaluated for autocorrelation using Box-Jenkins time series methods and
the findings were that the daily pH levels are independent; less than 10% of the
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Qgure  8 Daily Record of pH in Treated Effluent from Mine ‘c’.
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differences between daily pH levels can be explained by lag effects. In other words, the
pH observed today has no significant relationship to the pH observed yesterday or
tomorrow. This result was surprising because the average retention time in the treatment
ponds is claimed to be 1 day, and a significant 1 day lag would be expected for outflow
from such a system.

Table 3: Comparison of Daily and Monthly pH Data from Mine ‘A’.

Monthly Monthly Single Monthly Mean
Mean s.d. Grab vs. Single

--__-___-______--__----------------------------------------------------------------
Jan 10.82 0.716 11.31 0.49
Feb 11.11 0.444 11.66 0.55
Mar 11.05 0.481 11.13 0.08
Apr 10.97 0.555 10.55 -0.42
May 10.63 0.463 10.71 0.08
Jun 10.96 0.402 11.13 0.17
Jul 11.28 0.546 11.55 0.27
Aug 10.94 0.594 10.96 0.02
Sep 10.66 0.921 11.50 0.84
act 11.00 0.557 11.84 0.84
Nov 10.30 0.746 9.17 -1.13
Dee 10.53 0.434 10.34 -0.19

Mean 10.85 10.96 0.11

Figure 9 Frequency Distribution of pH Values in
Treated Effluent at Mine ‘C’.
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A frequency distribution graph of the daily pH values (Figure 9) shows a curve skewed
to the left. The mean of 10.8 is influenced by 4 values  below  8.2, which probably
represent episodes of higher volume of ARD during heavy rains.

The monthly grab samples are shown in Figure 10 (dark bars) and compared to monthly
averages based on the complete data record (light bars). Three of the 12 monthly grabs
were more than one standard deviation from the corresponding monthly means (calcu-
lated from daily data); these occurred in February, October and November, when flows
are highly variable. Based on daily data, the 95% confidence interval for the true mean
ranged from +l.$  pH units in the most variable month to kO.8  pH units in the least var-
iable month. This indicates that the 9 grabs that were very close to true monthly means
were ‘lucky’; an average grab would be expected to have an error of > 1 pH unit.

-

JF;MAiMJJASOh’DMean

Figure 10 Monthly Means ;i;ig  and Single Monthly Samples 1 of pH at Mine C.

Using the monthly values to monitor for compliance, we note that in 9 out of 12 months
the ‘true’ mean is 511.0,  while the monthly grabs were compliant only 5 times in 12.
Clearly the mine exceeded its permit value of 11.0 frequently; the difference in distinc-
tion between grab and daily data is probably not important.

What is perhaps of greater importance is the fact that the episodes of lower pH are
completely missed by the monthly samples. Although the low pH’s that occurred during
these episodes are compliant, they probably flag very different results in the treatment
facility, which may be associated with high levels of other ARD components. Note that
these episodes are of very short duration: only single days at pH’s  below 9.0. In fact, the
daily data record is consistent with the possibility that sharp dips in pH occur quite
frequently for durations of less than half a day.
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4.1.3 Total Zinc
The daily record of total zinc (n=215)  is graphed in Figure 11. Here again a high level
of daily variation is evident. Time-series analysis could not be done on this fragmented
data set, but a regression of daily total zinc concentrations on the previous day’s
concentration was insignificant (pC.9,  r 2 = .23), meaning that each day’s concentration is
essentially independent of the previous or following day’s concentration. Total zinc
concentrations are positively (but weakly) correlated with flow (r=.32)  and negatively
correlated with pH (r=-.59). The permit value of 1.0 mg/l was exceeded in 5 of the 215
daily samples; these exceedances occurred on days with low pH’s and moderate to high
flows. These data show a highly  skewed non-normal distribution.
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Figure 11 Daily Record of Total Zinc, Mine ‘C’.

A check on the mine’s analytical accuracy shows that the mine’s results are consistently
lower than the independent lab’s results for the same day (Table 4). This difference
averages 0.02 mg/l for the twelve pairs of samples, and is approximately 9% of the mean
of the 215 sample set. The daily data must therefore be assumed to be low by about 9%
each day. It should be noted, however, that for the highest sample of the twelve pairs
(November’s sample) the mine recorded a higher value than the independent lab. It is
impossible to distinguish between analytical error and instantaneous variation as the
cause for this difference.

Monthly average concentrations, based on daily samples, are compared to monthly single
grab samples in Figure 12. Most months are close in terms of mg/l  differences, but the
proportional errors [(‘true’/grab)  - l] averaged 0.47; ie. each grab was likely to be almost
50% high or low. Because positive and negative errors cancel eachother, the mean of
the monthly grabs, 0.36 mg/I, is closer to the adjusted annual mean of the 215 samples,
0.28 mg/l,  but still  represents and error of 22%.
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Table 4:Total  Zinc: Monthly Means and Single Samples from Mine ‘C’.

Single Same Day Monthly
Grab Envir. Lab Diff Mean

Jan 0.18 0.13 -0.05 0.35
Feb 0.39 0.34 -0.05 0 . 3 0
Mar 0.42 0 . 3 2 -0.10 0.35
Apr 0.23 0.21 -0.02 0.11
May 0.63 0 . 5 0 -0.13 0 . 5 5
Jun 0.15 0.13 -0.02 0.15
Jul 0.10 0.03 -0.07 0 . 0 8
Aug 0.12 0.10 -0.02 0 . 1 8
Sep 0.22 0 . 2 2 0 . 0 0 . 1 7
Ott 0 .03 co.01 -0.03 0 . 0 5
Nov 1.70 1.94 0 . 2 4 0 . 5 8
Dee 0.20 0 . 1 8 -0.02 0 . 1 9
Annual 0.36 -0.02* 0 . 2 6

“9% of annual mean of 0.26

Adjusted Single Grab -
Mean(9%)  Adj. Mean

0 . 3 8 -0.20
0 . 3 2 0 . 0 7
0 . 3 8 0.04
0 . 1 2 0.11
0 . 5 9 0 . 0 4
0 . 1 7 -0.02
0 . 0 9 0.01
0 . 2 0 -0.08
0.18 0.04
0 . 0 6 -0.02
0 . 6 4 1.06
0.21 -0.01
0 . 2 8 0 . 0 9

November’s high concentration was a real event, not an ‘outlier’; the mine’s record for
that day showed a concentration of 1.94 mg/l. However, the mine’s record also shows
the previous day’s concentration at only 0.94, and three days later (after two days with
no samples) the concentration had dropped to 0.27 mg/l. The daily record also shows an
even greater exceedance three week’s earlier: concentrations of 2.04 and 2.94 for two
days, flanked by 0.03 and 0.36 mg/l. The year’s data shows two other exceedances, in
January and May, in which the high concentrations were sustained for only one day,
flanked by concentrations well below the permit value.

Since these high values occur during above average flows, the inadequacy of monthly
grab samples is even greater when used for calculating monthly or annual loads. Figure
13 compares loads calculated from monthly grab sample concentrations and monthly
flows (dark bars) vs. ‘true’ loads calculated from daily concentration and flow data (light
bars). The ‘true’ loads are of course not exactly accurate: the error due to averaged
flows has already been mentioned; estimates for the missing days’ zinc data were the
averages of the two flanking values. These two estimates of annual load are quite
different; the monthly grab data has over-estimated the annual load by almost 1.2 tonnes
of total zinc.

Since zinc concentrations were >l.O  in 5 days of the 215 sampled, it seems likely that
other exceedances may have occurred during the other 151 days. Such events would
have an impact on annual loads.
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Figure 13 Zinc Loads Based on Mean Cones. :..j:  and on Single Samples 1.

An attempt to estimate the missing daily zinc concentrations, based on a multiple
regression of zinc concentration on flow and pH, was not good enough to use (R’=.38).
These relationships are probably not linear, due to the hysteresis effect on rising and
falling flows. A more sophisticated model incorporating the hysteresis effect can’t be
built on the fragmented data available. However the link between high levels of zinc
and low pH’s is strong enough to invite the following observation: the pH fell below 9.6
on 13 days, 10 of which were sampled for zinc concentration and 3 of which were not.
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Of the 10 measured, 5 had zinc concentrations >I.O  mg/l. So the unsampled 3 days may
have missed one or two additional peak values. We would conclude that the calculated
annual load shown in Figure 13 may be low because of this missing data.

4.1.4 Total Copper
The daily record for total copper (n=212)  is graphed in Figure 14. The concentrations
are much lower than total zinc, and much more compliant than pH, but the pattern of
variation is very similar. As with pH and total zinc, the daily total copper concentrations
were found to be independent (pc.9  for a lag effect, t-2 =.17).  Daily concentrations of
total copper never exceeded the permit value of 0.6 mg/l. Total copper concentrations
are positively correlated with flow (r=0.32)  and negatively correlated with pH (r=-.56).
The mine’s analytical accuracy was poor for the total copper samples, which is to be
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‘igure  14 Daily Record of Total Copper, Mine ‘C’.

expected in this low range. Comparing the mine’s results with those of the independent
lab for the same day (Table 5), and accounting for rounding errors, the mine’s results
are high by an average of 0.016 mg/l, which is approximately 40% of the mean (n=212).

Monthly average concentrations, based on adjusted daily samples, are compared to
monthly single grab samples in Figure 15. Very few months have similar mean values,
although the differences are much smaller in mg/l than those observed for total zinc.
The annual means are almost identical: 0.024 mg/l for the single grab samples and 0.025
for the mean of the adjusted monthly means. Thus, even though the monthly samples
taken for zinc overestimated the true mean, the copper samples taken on the same days
have given an accurate estimate.
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Table 5: Total Copper: Monthly Means and Single Samples, Mine ‘C’.

Single SameDay Accuracy Monthly Adjusted Grab
Grab Envir.Lab Difference Means Mean(37%)  v&kan

Jan 0.021 0.03 0.009 0.054 0.034 -0.013
Feb 0.009 0.06 0.051 0.039 0.025 -0.016
Mar 0.055 0.07 0.015 0.047 0.030 0.025
Apr 0.015 0.025 0.010 0.020 0.013 0.002
May 0.052 0.04 -0.012 0.065 0.041 0.011
Jun 0.014 0.03 0.016 0.034 0.022 -0.008
Jul 0.004 0.02 0.016 0.035 0.022 -0.018
Aug 0.000 0.01 0.010 0.037 0.023 -0.023
Sep 0.016 0.016 0.000 0.027 0.017 -0.001
Ott  o.ooo 0.01 0.010 0.012 0.008 -0.008
Nov 0.094 0.12 0.026 0.064 0.041 0.053
Dee 0 . 0 0 9 0.03 0.021 0.037 0.023 -0.014
Ann. 0.024 0.014” 0.039 0.025 -0.00 1

*37%  of annual mean of .039

O.i30
JF$fAhiJJASON D Mean

Figure 15 True Monthly Means II;; and Single Samples u of Total Copper, Mine ‘c’.
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Calculated monthly loads based on daily samples versus monthly samples are compared
in Figure 16. (Note the low values compared to zinc loads.) The monthly grabs have
underestimated the annual load of total copper by only 14 kilograms. If additional peak
values of copper discharge were missed by the daily data, as was postulated for zinc,
then the ‘true’ annual load would have been a little higher.

4.1.5 Conclusions
Bearing in mind the weaknesses of the data set used, we can nevertheless conclude:

Analvtical Accuracy: The differences between the mine’s environmental lab and
the independent lab, while substantial, were less than the day-to-day variations in metal
concentration.

Single Samnles  as Estimators of Monthly Mean Values: Daily values for pH, zinc
and copper were found to be independent and appear to change rapidly, making a single
sample a weak indicator of monthly means. Monthly single grab samples for pH had
95% confidence limits >l  pH unit for most months. For total zinc, monthly grab
samples had errors averaging +O.l4mg/l  (47% of the ‘true’ monthly means). The errors
of monthly grab samples for total copper averaged +O.O16mg/l.

Single Samnles as Estimators of Exceedances: Monthly single grabs are virtually
useless for indicating the frequency or magnitude of short-term exceedances that
occurred in this data set. The duration of these high values appeared to be less than 24
hours.
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4.2 Outimum  Samuliw  of Treated ARD Effluent
The fixed frequency monitoring schedule in Mine ‘C’s permit is suited to the monitoring
of most industrial liquid effluents, where the industrial and treatment processes are
tightly controlled. Mine ‘C’s effluent data appears to represent a poorly controlled
treatment process: the rapidly fluctuating pH levels indicate both that the treatment is
not being adjusted for varying inputs of acid drainage, and that the mixing and settling
time before discharge is less than 24 hours. When too little acid drainage is available,
the pH of their effluent is > 11.0, which happens very frequently. When a large pulse of
ARD comes into the system, non-compliant concentrations of total zinc are released.

The key to better effluent monitoring and better control of the treatment process is to
monitor incoming and outgoing pH closely. Although pH does not correlate tightly with
metals, it is a good indicator of the system state. The mine needs incoming pH data in
order to adjust the treatment procedure. Improvements in treatment would reduce the
variance in the outflow, allowing compliance monitoring to be kept to a minimum.

Given a treatment system that seemed to function in a manner similar to Mine ‘C’s in
the above data, what would be the optimum monitoring strategy? First, of course, it is
essential to do a preliminary study, in order to confirm variance patterns. Secondly, it is
necessary to specify whether it is peak values, monthly means, or loads that must be
accurately detected.

4.2.1 Monitoring for Peak Values
We have seen that peak metal discharges are associated with low pH values, and that the
pH can change so rapidly that a daily sequence of measures are virtually independent.
Clearly the pH in this system should be monitored continuously as the best simple
indicator of effluent quality.

For metal analysis, single water samples should be taken on days when the pH drops
below 10.0. In 1988, this sampling program would have required 30 samples and would
have ‘caught’ all pulses of metal in the effluent. (Note: if the system were in better
control, neutralizing the high pH values of the effluent more consistently, the pH of
incoming acid drainage would be a better signal to initiate sampling of the effluent.)

The exact peak concentration is not easy to measure, since it occurs so briefly. For
many ARD components, the low risk associated with very short term exceedances
reduces the need to measure them precisely. Unfortunately it is impossible to know at
the start of an incident of rising concentration how high it will go or how long it will last.
And there are some ARD components that are very dangerous in elevated concentra-
tions. In situations where high values are associated with high risk to the environment, it
is necessary to monitor them more closely. The best way to do this is to take hourly
water samples during the exceedance episode, and subsequently choose which ones to
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analyze, based on the pH  and flow records. Lacking an hourly data set, it is impossible
to estimate the number of such samples that would be needed to adequately characterize
the peak values. Note that the cost of obtaining such information is high and should be
assessed with regard to the environmental risk.

4.2.2 Monitoring for Mean Values
Since pH  values are so variable in this system, the best and easiest way to get accurate
pH  means (weekly, monthly, annually) is to monitor continuously and use a data logger
to calculate mean values.

For metals, which cannot be monitored continuously, a choice must be made regarding
the level of accuracy required. The single monthly samples taken in 1988 gave monthly
estimates that averaged 0.56 standard deviations from the ‘true’ monthly means for total
zinc. However, 1988 was actually a ‘lucky’ year: using the 215 daily zinc measures in a
Monte Carlo random resampling simulation, the average error (i.e. 50% likelihood) of
single monthly samples is 0.80 standard deviations from the ‘true’ monthly means.’

In calculating annual means from the monthly samples, positive and negative errors
cancel each other, so that calculated annual means should converge toward the ‘true’
annual means. However, this convergence is biased by the fact that the single monthly
samples are ‘drawn’ from populations of different variances. Using Monte Carlo
methods, we find that the standard deviation of annual zinc means calculated from single
monthly samples in the 1988 data is +0.39  mg/l. With a permit value of only 1.00 mg/l,
this is a very high level of error to work with.

The corresponding figures for total copper were that the single samples in 1988 averaged
0.61 standard deviations from the ‘true’ monthly means. The Monte Carlo estimate for
the average performance of single monthly samples in calculating the annual mean is
~026  mg./l,  which is only 4% of the permit level of 0.60 mg/l. The error is smaller for
copper because its variation is lower; it is easier to monitor accurately.

In general, monitoring programs for mean values should be based on the most variable
metal, which for Mine ‘c’ is zinc. (The exception to this rule is when the receiving
environment is relatively insensitive to the most variable contaminant, in which case the
program should be based on the most variable of the high risk contaminants.)

The accuracy of the total zinc monitoring can best be improved by reallocating the
sampling effort according to the pattern of variation. It is a basic principle in statistics to

’ If  the data were normally distributed,  the average error of single monthly samples would be expected to be 0.68
standard deviations, corresponding to 50% of the area under the normal curve. The higher finding in this case is caused
by the non-normal distribution of the data and illustrates the wisdom of choosing the non-parametric Monte Carlo method.
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allocate samples so that subunits are sampled with equal and adequate efficiency;
variation in efficiency of sampling from time unit to time unit can seriously bias the
results (Green, 1979),  as we have seen in the total zinc data from Mine ‘C’.

One way of selecting appropriate time strata is shown in Table 6. There are 8 months
with standard deviations x.2, three with standard deviations between .2 and .5,  and one
with a standard deviation of .8.  If there were no further information about the variation,
these values could be used to define three time strata. There is additional information in
the climatological record for 1985-1989, which indicates that October in 1988 was
unusually dry. Additionally, we know that fall rains (Ott  & Nov) and spring runoff (Am-
& May) are times when peak ARD flows occur.

A  I \ I

Table 6: Information for Stratification
Three strata are proposed,
consisting of: 1. summer months
(Jun, Jul, Aug & Sept) as the
low variation strata; 2. winter
months (Dee,  Jan, Feb and
Mar) of moderate variation;
and 3. the freshet and snow
melt months of Apr, May, Ott
and Nov with the highest vari-
ation.

Zinc Precip. Precip.
s.d. 1988 85-89 Season

Jan 0.306 50.5 59.1 Winter
Feb 0.154 23.7 51.4 Winter
Mar 0.233 33.2 45.5 Winter
Apr 0.079 41.7 22.0 Snowmelt
May 0.461 21.5 17.2 Snowmelt
Jun 0.085 8.0 9.9 Summer
Jul 0.051 2.2 3.7 Summer
Aug 0.147 2.8 2.2 Summer
Sep 0.175 11.3 16.7 Summer
Ott 0.037 5.3 26.7 Fall Freshet
Nov 0.799 80.5 66.0 Fall Freshet
Dee 0.079 58.1 40.0 Winter

Monte Carlo techniques have
been used to estimate the stan-
dard deviations that would be
found with increasing sample
sizes within these seasonal
strata (Figure 17). The current
sampling frequency corresponds to 4 (once each month for 4 months) in this graph. At
this frequency, the standard deviation of observed means (Le. mean of the four samples)
around the ‘true’ mean (based on available daily data) is ~063  mg/l for the summer
months, 2.091  mg/l for the winter months, and 2.283  mg/l  for the freshet months.
Therefore the sampling efficiency during in the summer and winter months is 3 to 4
times greater than the sampling efficiency of the freshet months.

To sample with equal efficiency in all strata, sample numbers corresponding to the
intersection of one horizontal line on the graph should be chosen. For instance, a
standard deviation of ~135  mg/l  achieved by sampling 14 times during the freshet
months is close to the standard deviation of sampling 3 times during the winter months,
and (k.128  mg/l),  and once or twice during the summer (~165  or ~086).  Using this
allocation of sampling effort (14 freshet, 3 winter and 1 summer) to calculate an annual
mean would have an expected standard deviation of ~15 mg/l. Thus by increasing the
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Figure  17  Sampling  Efficiency in Three Seasonal Strata, Total Zinc at Mine ‘c’.  The  best etticiency  tor me
Freshet  s tratum (14 samples)  corresponds to l+ samples for  the Summer stratum and -3 for the Winter  s tratum.

official monitoring of this system by only 6 samples per year, the standard deviation of
the estimates of annual means can be more than halved, from +0.39  mg/l to ~15  mg/l.

This is still 15% of the permit value, and may be judged to be too wide a confidence
interval. However it is clear that the curve for improvements in efficiency with higher
sample numbers has levelled out for the freshet months; increased sampling frequency
will not narrow the confidence interval significantly. Also note that additional sampling
during the winter and summer seasons will increase the accuracy of these seasonal
estimates somewhat, but would not improve the estimate of the annual mean. A second
summer sample is recommended, in order to have minimal replication.

I
I I ! I I I

4 7 10 13
Number of Samples

. .^^.. . . .

The timing of these samples within time strata should be random, although the finding
that the day-to-day records are virtually independent reduces the sensitivity of the design
to randomness. There is no virtue in spacing samples evenly across a time stratum. A
schedule for sampling according to this design might look like this:

Summer Winter Freshet
July 18 Jan 30 Apr 17, 18,25
Sept 8 Dee lo,20 May 4, 6, 12, 28

act 10, 12, 17
Nov 1, 19, 26,29
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Such a schedule should be established before the start of each year. If weekends
represent additional expense or delays in analysis, then days can be randomly selected
from weekdays only (assuming that there are no operational differences in the mine on
weekends that would thus be missed). Once the schedule is set it should be adhered to.
A different random schedule should be established each year. While the results of this
monitoring would constitute the ‘official record’, it would additionally be very valuable
for the mine to continue monitoring more frequently for its own information.

The last step is to be sure that all parties with an interest in the monitoring program are
aware of the expected accuracy of the results and are comfortable with it.

The statistical methods used in the exercise above are not the only means of optimizing
sampling effort. For instance, Monte Carlo methods used to define the sampling
efficiency curves (Figure 17) were used in this case because proper preliminary data was
not available. When a good preliminary study has been done, and assuming that the
data distributions within strata are acceptably normal, the preferred method of choosing
sample sizes is the standard parametric sample size calculation (see, for example, Sokal
and Rohlf, 1979).

The method of stratification chosen for the example is also not the only method. For
instance, if daily flow events were the driving force behind variation differences, it would
be more efficient to stratify based on daily flow levels. Thus, instead of using broad
calendar month groupings to define seasons, the actual flow record could be watched,
and freshets and snowmelt  periods could be identified as they occurred. The choice of
stratification method should consider whether the advantage in sampling efficiency
warrents the additional man-hours or equipment needed for operation. In any case, the
the stratification scheme cannot be expected to ‘fit’ the ‘real’ variance pattern of a site
very accurately if the preliminary data on which it is based is weak.

To recap the basic steps in designing this monitoring strategy:
b Examine the preliminary study data or fullest data record to determine

appropriate strata (in this case time-strata [seasons] were used, but other data might be
stratified according to flow levels or pH).

b Determine the sampling efficiency in each stratum (e.g. Figure 17).
b Allocate samples to strata in such a way as to give approximately equal

accuracy in each one. Estimate the overall accuracy of the monitoring program.
b Discuss the accuracy level with all interested parties, so that the limitations of

the program are understood in advance.
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4.2.3 Monitoring for Accurate Loads
The error of a calculated load is greater than the errors of the flow and concentration
measurements on which it is based. The comments made above regarding estimating
mean concentration apply to the concentration data used to calculate load: a stratifica-
tion scheme that yields more accurate concentration estimates will yield more accurate
load estimates. Similarly, flows need to be measured, not estimated from watershed size
or annual rainfall. The more frequently flow is monitored, and the more accurately the
corresponding concentrations can be assigned, the more accurate the load estimate will
be. Calculations of load should always include a calculation of standard error.

One important source of error in estimating ARD loads is short term peak concentra-
tions of metals, which are associated with above average flows. While these peak values
may be of very short duration, they can contribute very substantially to the load. Thus
we have three challenges in accurately estimating loads:

b Accurate measurements of flow,
b Accurate estimates of concentration, and
b Assessing the contribution of short term peak values.

The accuracy of Mine ‘C’s flow record cannot be assessed because there is no indepen-
dent information. The standard deviations given in the following discussion are based on
concentration data only, and would be larger if the errors in flow data were known. In
any case, continuous (as opposed to cumulative) monitoring of discharge volumes would
be a definite asset to any load monitoring program.

As discussed above, the seasonal estimate of mean zinc concentrations for Mine ‘C’
cannot be improved much beyond the level achieved with 14 samples during the 4 freshet
months. Using Monte Carlo random resampling from the 1988 data, we find that the
standard deviation of loads calculated from random monthly single samples (Le. the
current monitoring schedule) is +2712  kg. This can be improved substantially to +1043
kg when seasonal means are multiplied by accumulated seasonal discharges. Such an
estimate will always be biased low because it will not accurately reflect the contribution
of short term peak values.

In the daily 1988 data from Mine ‘C’, 12% of the estimated annual load was contributed
during short term episodes of high values: 5 days in which concentrations wcrc  > 1 .O
mg/l. Obviously it is important to measure the concentrations and discharges during
these peak occurrences. The best way to monitor for peak values is to monitor pH
continuously, as described in Section 4.2.1, taking a water sample when the pH drops
below a threshold value. The standard deviation of the annual mean load can be
reduced to +663  kg when peak values are sampled separately.

The instantaneous concentration can change very rapidly during an episode of peak
release. Due to the hysteresis effect, the maximum concentration usually occurs while
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the flow rate is increasing. For variables that cannot be monitored continuously, catching
the ‘average’ concentration that should be attributed to a short term peak is an elusive
task. The number of samples taken during an excursion should be determined by
considering the associated risk. For many ARD components there may be little environ-
mental risk associated with the short term peak values that occur at a specific site;
therefore a single sample for each episode of high values probably gives adequate
accuracy. (The actual accuracy thus achieved cannot be estimated without reference to
an hourly data set.)

The case would be different for the most toxic ARD components, or any ion for which
the peak concentrations reached and the durations of the episodes could have severe
impact on fauna. The amount of information necessary (i.e. frequency of sampling)
should be determined by assessing environmental risk. As mentioned in section 4.2.1.,
the greatest accuracy is obtainable by collecting water samples hourly during such an
episode, and choosing which and how many to analyze afterwards, based on continuous
pH or flow records.

In systems that have extreme variability in effluent flows, and where concentrations of
ARD components are strongly correlated with flow, the accuracy of load estimates can
also be improved by measuring concentrations on peak flow days. The increased
accuracy obtainable this way in the Mine ‘C’ data set is small because the correlation
between total zinc and flow is weak.

Three options for load monitoring are compared in Table 7 below; flows have been
assumed to be measured without error in this exercise done with Mine ‘C’s daily total
zinc data.

Table 7: Sampling Options for Monitoring Zinc Loads at Mine
‘C’.

Num. of Standard Bias of
Options Samples Deviation the Mean

1. Monthly single
grab samples 1 2 +2,712 low

2. Seasonal means 1 8 +1,043 low

3. Seasonal means plus
daily peak data 4 8 + 663 none

4. As above plus daily
data during high flows 66 + 639 none
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4.3 Bioassavs
Regardless of the accuracy and completeness of ARD effluent water quality monitoring
records, it is often impossible to base defensible decisions regarding management and
regulation on them. This is because the limit values in permits do not relate directly to
environmental cause and effect relationships. Such a link will probably remain elusive
for many decades to come. In the meantime, bioassays provide an important ‘reality
check’ to the problem of monitoring ARD effluent for environmental hazards.

The mines whose data were reviewed for this study are required to conduct quarterly
static LC, tests on undiluted effluent. The mines pass these bioassay tests almost
without exception. These results indicate that the ARD treatment methods are working
at least to the extent that samples of the undiluted effluent are not acutely lethal to fish.

In general, quarterly static LC, tests are best suited to monitoring industrial effluent
which is the result of closely controlled processes. We have seen in the data record for
Mine ‘C’ that high day-to-day variability in water quality is a feature of this effluent. If
water for the tests is collected in a very short period of time, it will be relatively uniform,
and the static LC,, conducted with this water will not reflect the stress of frequent and
rapid changes in water chemistry. Flow-through LC,‘s  conducted with water samples
collected in a short time period also will not reflect the effects of the high day-to-day
variability of this water.

Two other pollution stresses not evaluated by LC,‘s are the effects of infrequent
episodes of short term high concentrations of dissolved metals or pH changes, and the
chronic effects (over years and generations) of small elevations in heavy metal levels.

Other sorts of bioassays would probably give a more rigorous evaluation of ARD
effluent. The use of in situ bioassays (e.g. fish cages) or streamside ‘on line’ flow-
through bioassays would be much more relevant to the real impact of the effluent on the
environment.

As noted in Section 3, the timing of peak ARD discharges can coordinate with critical
salmonid  life stages. It would be extremely valuable to conduct in situ bioassays with the
appropriate species and life stages of fish in order to evaluate the permit levels now

being used.

In summary, the LC,‘s currently used to monitor ARD effluents are evaluating short
term acute lethality, but they are not testing the effects of the particular sorts of stresses
that can result from highly variable ARD discharges: high frequency of water chemistry
changes, short term episodes of high concentrations, and chronic effects.
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5.0 MONITORING UNTREATED SURFACE WATER, SEEPS AND GROUNDWATER

5.1 At the Mine Site
Surface water and seeps should never be assumed to be ‘clean’ unless they have been
monitored during the seasons and flow levels that correspond to peak ARD releases. In
the absence of other indications of a problem, such as staining or elevated metals at a
downstream station that is not otherwise accounted for, it should be adequate to monitor
surface water and seeps only at the peak times. The resulting single annual figure does
not represent an annual mean, but rather the highest concentration. Decisions regarding
interception and treatment of contaminated water at the mine site generally should be
based on the peak value and not the mean.

Mines could pursue this monitoring on their own, with analyses done in their own labs,
even though their accuracy at very low levels is poor. The purpose is to be able to
sample frequently enough to flag high values. A lot of ‘noise’ around the detection limit
is no problem in this case. Analytical error is easy to determine via comparison with
independent laboratory analyses, and it is likely to be smaller than day to day differences
observed for elevated variables.

Groundwater may not show any of the seasonal patterns we see in surface water, or it
may show them with a lag. In any case, annual or semi-annual monitoring cannot be
considered adequate to prove that there is no problem with groundwater contamination.
A preliminary study would be needed in order to estimate the autocorrelation in the
groundwater data, Without one, it is impossible to say what frequency of monitoring
would be appropriate.

5.2 Backmound  and Contimrous  Watersheds
For background monitoring of upstream water, unimpacted areas of the mine’s water-
shed, and other watersheds that drain into the same receiving water, annual monitoring
timed to coincide with the peak ARD release will give the most valuable indication of
whether an ARD problem exists or not. If evidence of ARD is found, accurate esti-
mates of mean concentration or estimates of load may be needed. These waters should
then be sampled on a time-stratified schedule (such as the one devised for Mine ‘C’s
effluent), and seasonal means calculated from these samples. This represents a signifi-
cant increase in monitoring, but it needs to be done only when annual peak monitoring
has shown that contamination exists. It is in the mine’s interest to have accurate
information on the magnitude of other sources of contamination to downstream water
bodies.
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Again, there is no reason to send all these samples to an independent lab unless the
confidence limits of the mine’s lab results exceed the needed confidence, or overlap an
important threshold value.
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6.0 MONITORING THE RECEIVING ENVIRONMENT -- WATER QUALITY

6.1 Streams and Rivers.
Monitoring streams and rivers has much in common with monitoring treated effluent:
exceedances and lesser variations may occur in short time intervals. Fixed-frequency,
exceedance-driven or Markovian sampling are not suited to the very high variability that
may occur with ARD contamination unless the sole purpose of monitoring is to provide
crude estimates of mean concentration. The design of a monitoring program must be
guided by decisions on the required accuracy for estimates of mean and peak values; the
choice of accuracy level should be based on the magnitude of the minimum changes or
differences that must be detected. These are management and biological decisions, not
statistics.

The most efficient sampling designs are those which are stratified according to the
dominant pattern of variation in the data, which for ARD contaminated streams and
rivers would be seasonal or flow related. Therefore preliminary studies for sampling
design should determine the best stratification scheme for each study site.

When the seasonal pattern of ARD release from the mine site is the dominant variance
pattern, and if accurate seasonal means are the identified management goal of the
monitoring, receiving streams or rivers should be monitored on a time-stratified schedule
(see Section 4.2.2). Other schemes of stratification (e.g. flow levels) may be superior in
different situations. Random sampling (i.e. sampling days selected randomly) within
strata is necessary to avoid bias.

The virtues of randomly timed sampling within time strata apply to estimates of mean
concentrations, not to the detection of exceedences. No program designed to efficiently
estimate means will do a good job of surveillance in a rapid flow-thru situation. If the
preliminary study shows that ARD components are strongly correlated with pH in the
stream, a continuous pH probe can provide a continuous indicator of concentration
changes, and could be used to signal alert conditions. The technology of remote data
logging has advanced to the point where such installations can be relatively trouble-free
and reliable. The advantage of having a continuous record with a signalling capability is
that it gives the mine an early warning of excursions before they are at their worst. In
some cases, quick feedback prompting operational adjustments or intervention could
prevent an acute toxicity event from occurring. Extra data collected as a result of such
signalling should not be combined with routine monitoring data in the calculation of
mean values.

There are cases where the concentrations of ARD contaminants rise downstream from
the effluent discharge point, despite collection and treatment of surface water from the
minesite. This is evidence of contaminated seeps and groundwater entering the stream.
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The best way to pinpoint the location of the source is to collect replicated samples along
the two sides of the stream during the peak ARD release (for seeps) and/or during
summer low flows (for groundwater). The number of replicates needed would depend
on the relative magnitude of the increase one wished to be able to detect.

6.2 Lakes
Lake monitoring tends to expand to ever more stations, depths, sampling dates, etc.
because the interpretation of water chemistry data can be very elusive (see Section 3.3.2).
Good monitoring design requires that managers first identify the nature of the impacts
that are likely from ARD, the water quality changes that might preceed  or accompany
such impacts, the resolution (i.e. smallest magnitude of change) needed, and make
careful selections of the chemical species to be targeted. In particular, the manager
should consider what s/he would do with data that showed a small increase in mean
concentration of some ARD component but without an identifiable environmental
response. Water quality data is likely to serve its most useful role as corroborative
evidence when changes in living tissue and/or species distribution and abundance are
noted. Therefore an economical lake monitoring program seeks evidence for the
expected impacts of contamination, which are mostly in the sphere of biological monitor-
ing (see Section 7.1), rather than attempting to infer impact from water quality data.
This allows water quality monitoring to be reduced to the estimation of annual and/or
peak loads and means of biologically active chemical forms.

For example, a manager concerned about cadmium contamination in a lake could set up
a program to monitor the inflow load (dissolved, extractable and total Cd) and the
outflow load, as well as sampling the most likely ‘sinks’ of cadmium in the lake: sedi-
ments, and aquatic organisms. At the end of the first year of monitoring the manager
knows approximately how much cadmium was retained in the lake, what chemical form it
is in, and where it is accumulating. This plan for monitoring is efficient because it allows
the manager to identify low risk situations, such as lakes with nil accumulation of
biologically active forms of Cd. It also alerts the manager to increase biological
monitoring if the lake is accumulating more Cd than can be accounted for in the
sampled sediments and biota. In other words, it allows the manager to assess the risk to
the lake in a simple way that is free of hypotheses about changes over time (which
require good baseline data) or relative impact (which require good control data).

There are several ARD threatened lakes in B.C. that have been studied intensively
and/or frequently but with inconclusive results for the following reasons: lack of baseline
data, lack of controls, insufficient replication, failure to sample appropriate chemical
species, failure to sample at the right time of year, failure to sample ‘cause’ data and
‘effect’ data in appropriate times and quantities, etc. Most of these problems were
failures of experimental design, and could have been corrected in the proposal stage.
The Waste Management Branch should give consideration to retaining the services of a
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statistician for experimental design consultation. The following comments are offered as
guidelines for the planning of water quality studies in lakes.

Proper baseline data (i.e. including estimates of variance) and the monitoring of control
lakes are very important references in interpreting the validity of any trends in water
quality over time. What appear to be short term trends may turn out to be random
variations within the pre-operational variance of the lake. Comparisons made only over
time (instead of to control lakes) assume that the mine is the only agent of change
affecting the lake. Climate variation, acid precipitation, and random factors could also
have caused the observed changes over time. Only proper control and baseline data
allow the researcher to distinguish subtle changes [Section 2.01.

Since few lakes have a perfectly matched pristine ‘twin available to serve as a control,
often the best strategy is to sample several of the most similar lakes available. Cluster
analysis or more sophisticated multivariate statistical methods can then be used to
indicate the degree of differences between the impacted lake and the multiple controls.

Monitoring of background and uncontaminated drainages that flow into the lake is
essential. An impact, if observed, can be more securely ‘sourced’  to the mine if other
sources of contamination are found to be insignificant.

For standard univariate comparisons of concentrations over time, or comparisons
between different lakes, samples should be taken only during corresponding seasons (e.g.
spring turnover). These samples should always be replicated to estimate the variation of
the ‘population’ from which they are drawn. Since the variation between replicate
samples may vary with seasonal influences, the number of samples needed to reach a
predetermined level of confidence may also vary with the seasons. Determining the
optimum sampling schedule and effort is a simple experimental design problem. A
second year of sampling on a lake should never be undertaken without using the first
year’s data for design. [Time series analysis can make use of unreplicated fixed-fre-
quency samples, if sufficient data (e.g. lO+ years of monthly data) is available, but the
‘noisier’ the data are, the higher the data requirements become for conclusive results.]

For monitoring impacts based on water quality data, accurately measured input and
outflow loads may be more valid than seasonal ‘spot’ concentrations. An annual
contamination load ‘budget’ (i.e.  input minus output) can demonstrate that contaminants
are accumulating, even if the biological or physical ‘sinks’ are not identified. The
different chemical forms (dissolved, extractable and total) of a contaminant may have
very different fates in a lake, and should be monitored separately. In order to optimize
the accuracy of the ‘budget’, the export load should be measured at least as accurately as
the inflow load, since the errors on these estimates are additive when calculating their
difference. In most cases the concentration variables in the outflow stream will be more



highly autocorrelated and therefore will require fewer samples  to achieve the same level
of accuracy as the inflow stream(s).

Accurately estimating import and export loads requires a major investment of sampling
effort, since both flows and concentrations must be measured frequently. For situations
that do not warrent this level of expenditure, taking replicated samples of concentration
during turnover can provide reliable and consistent representations of (admitedly limited)
information. These data can be used in detecting trends over many (>lO) years, and are
especially valuable if pre-operational samples were taken, control lakes are also moni-
tored, and appropriate chemical species are monitored.

In summary, lake monitoring should produce data that is consistent (in terms of accu-
racy) and interpretable with reference to valid comparisons. Enlarging the ‘grab bag’ of
variables (chemical species, sampling times, locations, depths, etc.) usually does not
improve the experimental design. Detecting trends and making comparisons require
good baseline and background data and good controls.

6.3 Marine
Water influenced by tidal flushing or ocean currents can absorb huge amounts of
contamination before elevated concentrations can be detected with water samples. This
is just as well, since observing changes in water chemistry may be the ‘booby prize’ of the
investigation:

“Contaminant concentrations in the physical environment (for example,
sediments and water) have in many instances been shown to bear little rela-
tionship to the uptake of contaminants by organisms and to biological
effects. Therefore, managers gain only a limited quantity of useful inf or-
mation  concerning possible ecological effects or seafood contamination
from monitoring contaminant concentrations in the physical environment.”
(Segar, et al, 1987)

What, then? At the ‘New Approaches to Monitoring Aquatic Ecosystems’ conference,
bioassays were the universal monitoring recommendation. The same design features
emphasized for lakes apply to marine investigations: an adequately described baseline
and proper controls. (Data on background is much harder to get because of the vast
number of other possible sources.)
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7.0 MONITORING THE RECEIVING ENVIRONMENT -- BIOLOGICAL

The challenge in designing good biological monitoring is to avoid the temptation to ‘look
for changes’ in an open-ended fashion; a change can only be interpreted as evidence of
contamination by comparison with a proper control or adequate baseline data, both of
which are often lacking. Natural variation from site to site and from year to year is a
major ‘noise” factor in determining impact; it is unwise to interpret any change as being
caused by any independent factor unless data from a control site (preferably several) is
available for comparison. For example, the absence of metal sensitive species in a single
year’s study cannot be accepted as proof of metal pollution.

Biological monitoring that depends on relative abundance of species, such as diversity
indexes, yield information only to the expert and experienced taxonomist, and are very
subject to misinterpretation: a change may have occurred over time, but not necessarily
because of heavy metal contamination. For instance, the removal of forest cover from
long stretches of a stream due to minesite  development will alter the temperature regime
and siltation, and therefore the biota.

Tissue levels of metals provide a much more direct ‘reading’ of bioavailable metals,
although there may be large differences between species and life stages; different
organisms pick up and metabolize metals differently. The data will have more internal
consistency if sampling is well replicated, and if carefully selected bioindicator species or
tissues are used. Bioassay methods that can be interpreted directly, such as hepatic
metallothionein as an indicator of zinc, copper and cadmium exposure, are the most
likely methods of producing ‘defensible’ numbers.

In the marine environment where water quality and planktonic populations tend to be
ephemeral, benthic sampling is more likely to give clear results. There has been great
progress in the identification of ‘sentinel organisms’, tissue analyses, and strategies that
serve to standardize results and improve their interpretability. (Segar, et al., 1987)

There are many sorts of bioassays available and it is not the purpose of this report to
evaluate them. However, there are some statistical points to remember in planning
bioassay monitoring and interpreting the results:

b It is not valid to compare results with pristine habitats, unless the pristine
character of the pre-mine water body was well documented and shown to have been
similar. Usually the only fair comparisons are with its own past record or with similar
unimpacted habitats in the same (or near by) watershed(s). Using several controls can
compensate for the lack of a perfect match, and is an excellent way to evaluate the
relative condition of a water body.
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. It is not legitimate to compare results with ‘provincial averages’ which were not
random samples and are very likely to be biased. If there were a random sample
available for comparison, the comparison should be made using a method that incorpor-
ates the variances of the two samples.

b Caging fish that normally are free to select their own microhabitats may
subject them to temperature stress, dietary differences and other factors that would tend
to bias the findings. Results of caged (and other contrived sorts of) bioassays should
only be compared with data obtained under similar circumstances.

It is interesting to examine the required marine monitoring in the permits issued for
Mine ‘A’ regarding the discharge of tailings into Rupert Inlet. The mine has been
monitoring the inlet and adjacent waters in essentially the same way for 19 years. In
addition to extensive monitoring of the physical oceanography of the inlet and tailings,
they are required to sample 5 stations (4 depths each) quarterly for dissolved metals (80
samples/year); 28 stations 3 times annually for phytoplankton biomass; 16 stations
quarterly for periphyton; 16 zooplankton tows semi-annually to ‘determine the zooplank-
ton population’; 4 night tows of zooplankton for metals analysis; 72 samples of benthic
organisms annually ‘to monitor the effect of tailings’, and 6 stations annually for crabs,
clams and mussels for tissue metal analysis and body condition. The expense of this
program is enormous, and the resulting information ‘thin’. The 32 zooplankton tows
alone probably cost as much to collect and analyze as the entire water monitoring
program at many mines, and are incapable of producing a ‘defensible’ number.

This program was originally designed in an attempt to provide early detection of a
problem if one occurred, but without rigorous consideration to the certainty with which
small changes could be detected. The water chemistry data, for the reasons mentioned
above, is probably of very little value. The taxonomy and phytoplankton abundance
measures are subject to enormous natural variation, and are not properly controlled.
The metal concentrations in ‘grabbed’ plankton and benthos are of dubious value
because of species and age/exposure differences.

The metal concentrations in bivalve and crab tissues are the most valuable components
of the program; this data has the potential to reveal, for instance, that “the bioavailable
abundance of contaminant W, as determined by bioindicators X, in area Y, at time T
after startup, does (or does not) differ from the baseline mean concentration by more
than Z%“.  Good monitoring programs can be designed using data of this type; they
require the manager (or Environmental Audit Committee) to make decisions about the
rate and magnitude of change that is necessary and worthwhile to detect.

The other types of data in Mine ‘A’s monitoring program have much less value for any
kind of decision making; they are not ‘defensible’ in the sense of Section 1.1.3, and risk
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producing fuzzy results indefinately. This constitutes an unfair bias in the monitoring,
since observed differences may be more apparent than real, and it will almost certainly
lead to ever escalating costs for inconclusive results.
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S.OCONCLUSIONS

1. Fixed-frequency single samples, as required in current Waste Management
permits, are inaccurate for estimating mean concentrations of ARD contaminants. In
the one data set in which their accuracy could be explored, single monthly samples were
found to have an average error of 0.8 standard deviations from the true monthly means
(Section 4.2.2), [ie. there is a 50% chance that the concentration observed was as close
to the true mean as 0.8 standard deviations, and a 50% chance that it was higher or
lower than that!].

2. For calculating contaminant loads, the inaccuracy of means estimated by single
samples is compounded when accurate flow measurements are not available. Indirect
and proxy estimates of flow (e.g. ‘estimated annual discharge per hectare’) are not
accurate enough for load calculations, and loads based on such estimates should not be
taken seriously in any management context.

3. Monthly single samples are virtually useless for indicating the frequency or
magnitude of short-term exceedances. This is due largely to the rapid rate at which
concentrations in surface water can vary, especially during short seasonal episodes. For
example, in a record of a year’s daily pH measurements in treated effluent, the daily
values were found to be independent: each day’s pH had no predictive value for the
following day’s pH.

4. The existing monitoring data sets do not contain the information needed to
design improved monitoring schedules because they have not measured variation, which
is the essence of monitoring design. Even data sets from many years of unreplicated
samples do not provide the necessary information.

5. Monitoring programs can be developed for each mine that would greatly
increase accuracy without large increases in sampling effort. For example, the error of
the estimate of annual zinc load at Mine ‘C’ could be decreased by more than 60%
(from 22712  kg/yr  to +1043  kg/yr)  by taking only 6 additional samples (18 instead of 12).
This improvement is accomplished by allocating samples in accordance with the observed
seasonal variance pattern instead of fixed monthly periods.

6. Analytical accuracy has been overemphasized as a priority in ARD monitoring:
the day to day variations occurring in surface water are much greater than the mine’s
laboratory vs. analytical laboratory results. Slow feedback of sample results further
reduces the value of sending samples to independent labs for analysis.
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9.0 RECOMMENDATIONS

The need to revise and improve ARD monitoring is obvious; the goal of designing
optimized monitoring schedules cannot be reached without two prerequisites. The first
and most important requirement is to critically examine the information needed for
management: the accuracy, threshold concentrations, time lags, cost constraints and risks
associated with each ARD component that might have any bearing on management
decisions (Section 1.1). If these choices and decisions are clear, the new monitoring
program can truly enhance the management of ARD sites.

The second requirement is to conduct a proper preliminary sampling program at each
site in order to measure variation and distinguish strata (Section 2.6). With these two
requirements ‘in hand’, a statistician can easily determine how and when to sample in
order to collect the information needed. It will be necessary to do both steps individ-
ually for each ARD site.

Given the rapid rate of variation in surface waters, the speed with which analytical
results can be obtained is generally of more importance than analytical accuracy.
Monitoring via probes and using proxy variables (Sections 1.3.6 and 1.3.7) should be
encouraged in situations where surveillance is a high priority.

A much higher priority should be given to accurately measuring flows. Accurate load
calculations, and therefore impact predictions, are impossible without accurate discharge
records.

The permit for each site should be rewritten to incorporate specific infhnation  goals of
monitoring (e.g. confidence limits for estimates) rather than the sampling methods.
Submissions of data and annual reports should demonstrate that these goals have been
met.

Preoperational  studies at proposed mine sites should include measures of natural
variation and should span the season(s) of anticipated high ARD discharge. There is no
excuse for collecting inadequate baseline data for future projects.

Background monitoring also should measure natural variation and should span the
season(s) of anticipated high ARD discharge.

The Waste Management Branch should retain the services of a statistician to review
proposed monitoring methods and field studies, recommend appropriate data analysis
methods, and ensure that final reports (both in-branch and those submitted by industry)
are statistically correct.
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APPENDIX I: GLOSSARY OF STATISTICAL TERMS

a priori planned in advance

UCCUl%CJ'  the closeness of a measured or computed
value to i ts  t rue value.

ANOVA  analysis of variance; a parametric statistical
test  used to compare means.

aUtOCOlT6!latiOU  serial dependency; see Section 2.4.

bimodal (of a distr ibution) having two peaks;  repre-
senting the probable combination of two different
popula t ions .

CCIMOF  with respect  to frequency distr ibutions,  to cut
off or mask variation.

cO4?ffh!k~t  of Varhdion  the standard deviation
expressed as a percentage of the mean (CV = s  *  100 /
x); used to compare relative variation in different
popula t ions .

confidence interval the difference between the
upper and lower confidence l imit .

confidence limits the upper and lower bound&s
within which a populat ion parameter a  mean)  is  es t i -
mated to lie with a certain certainty & 95% confi-
dence l imits) .

COkT&ttC  vary in association with; no cause and effect
or  dependence relat ionship is  implied.

Correlation the functional relationship between two
covarying variables.

design to plan a course of data collection and analysis
suited to testing a specific hypothesis at a chosen level of
certainty.

error the difference between the observed or estimated
value and the true value.

estimated derived by computat ion using data  f rom a
sample,  as opposed to the true parametric value.

frequency distribution the curve tracing the
outl ine of a histogram of the frequency of observations
within equal  divis ions of  the range of  variat ion.

i

heterogeneity the property of being poorly mixed or
composed of different  subgroups.

heteroscedasticity inequality of variances; usually
evaluated using an F test  on their  rat io .

homogeneity the property of being well mix&,  ran-
domly sor ted .

homoscedasticity equality of variances.

hypothesis a proposition set forth as an explanation
or description of some phenomena to guide inves-
tigation.

hysteresis the phenomenon exhibited by a system in
which the reaction of the system to changes is
dependent upon i ts  past  reactions to change.

instantaneous existing simultaneously.

mean the arithmetic mean, obtained by adding several
quant i t ies  together  and dividing the sum by the number
of  quant i t ies .

model a mathematical  construct designed to preserve
the structure and characterist ics of a natural  phenom-
enon or  populat ion.

Monte Carlo technique consists of repeated
random resamplmg  from an exist ing data set  to produce
‘simulated samples’ with the same frequency distribution
as the original data. Applying the Central Limit
Theorem, the means of hundreds of such samples are
taken as est imates of  populat ion parameters.

multimodal (of a distribution) having several peaks.

noise random and/or uncontrolled variation which
increases error in parameter estimates.

normal a bell-shaped curve describing the probability
of occurance  of different values of a variate.

parameter a population statistic describing the abso-
lute characteristics of a population distribution; 9&
mean, variance.



parametric refering to the entire population; usually
used with reference to populations with known fre-
quency dis t r ibut ions,  such as  the normal  dis t r ibut ion.

power of a test the ability of a statistical test to
reject  a false hypothesis .

population the finite or infinite number of individual
items subject to a statistical study.

precision the closeness of repeated measurements of
the same quant i ty .

random every possible sample that could be collected
from the population has an equal probability of being
selected.

range the l imits  between which variat ion exis ts  or  is
poss ible ;  the  maximum minus  the  minimum value .

regression the functional  relat ionship between an
independent variable and a dependent variable.

replication repeated measures of the same entity
which jointly represent  parametric values.

resolution the smallest difference between two
enti t ies  that  can be dist inguished accurately.

sensitivity the resolution with which a change can be
detected.

SigtifiCanCe  the probability that the conclusion
drawn regarding the hypothesis  being tested is  correct .

simulation the use of a model or models to generate
proxy data or parameters.

spatial existing across space.

standard deviation a measure of  dispersion in  a
frequency distr ibution,  equal to the square root of the
mean of the squares of the deviations from the arith-
metic  mean.

Stratify to divide into strata.

Stk%&UU  (PI.  Stl’Uti)  a division within a larger
population in which the data are homogeneous and
homoscedastic.

t-t&  one of several tests using the Student’s t distribu-
t ion for  s ignif icance test ing.

tail  with respect  to frequency distr ibutions,  the far  ends
of the curve representing the extremes of the range.

temporal existing over time.

tUIW-%~eS  UUt3lySiS  a set of statistical methods
used on data that  is  serial ly dependent and may show
cyclical  patterns.

hW'WfOI'lIl  the reversible mathematical translation of
a unit from a linear or arithmetic scale to a non-linear
scale.

tI’Ue the parametric value derived from the entire
populat ion,  as  opposed to ‘est imated’ which is  derived
from a sample.

VUriUUCe  the square of the standard deviation; a
measure of  dispersion.

Variation  the scatter or spread of observed values of
a variable.

&CON! the number of  s tandard deviat ion units  from
the mean of  a  normally dis t r ibuted populat ion.



APPENDIX 2 

Treatment Ponds Effluent, Mine \C', 1988 
January 

Datx_ Flow ..- pH Zn-T Cu-T 
1 60850 10.7 
2 60850 11.4 
3 60850 11.3 
4 60850 11.55 0.12 0.01 
5 . ...-26440 I%,56 0.1 0.03 
6 32610 11.23 0.23 0.05 
7 31110 11.41 0.3 0.07 
8 22450 11.2 0.49 0.05 
9 18780 10.7 

10 18780 11.1 
11 18780 11.66 0.21 0.02 
12 23550 11.66 0.05 
13 21090 11.50 0.08 
14 37180 11.27 0.19 
15 60660 10.15 0.86 0.09 
16 65260 9.6 
17 65260 9.5 
18 65260 11.31 0.13 0.03 
19 26950 11.51 0.19 0.04 
29. 30570 11.12 0.65 0.06 
21 30020 11.29 0.15 0.03 
22 42500 10.98 0.58 0.07 
23 44450 10.0 
24 44450 10.3 
25 44450 10.82 0.33 0.06 
26 34560 9.56 1.29 0.12 
27 36300 10.64 0.36 0.05 
28 40770 10.91 0.22 0.05 
29 56770 10.07 0.4 0.08 
30 41410 9.2 
31 41410 10.2 

February 
Flow pH 

41410 9.8 
25810 10.8 
34750 10.97 
32380 10.93 
33410 11.22 
30580 10.8 
30580 11.4 
30580 11.32 
28960 11.34 
34460 11.19 
34630 11.44 
36640 11.2 
51950 11.1 
51950 11.2 
51950 11.4 
54060 11.47 
42870 10.98 
46980 10.73 
49290 10.96 
39020 10.3 
39020 10.7 
39020 11.88 
39590 11.66 
37290 11.71 
34210.11.3 
34210 11.6 
31620 11.4 
31620 10.5 
31620 10.96 

Zn-T Cu-T 
0.44 0.08 
0.3 0.05 
0.46 0.05 
0.42 0.1 
0.21 0.0 

0.19 0.01 
0.1 0.03 
0.13 0.02 
0.15 0.03 
0.28 0.04 

0.26 0.03 
0.29 0.02 
0.46 0.08 
0.29 0.06 
0.6 0.06 

0.1 
0.34 
0.12 

0.21 

0.02 
0.06 
0.02 

0.01 

0.58 0.02 

March 
Flow pH Zn-T Cu-T 

33250 11.04 0.27 0.01 
37150 10.95 0.52 0.07 
30150 10.37 0.2 0.05 
30560 10.71 0.13 0.04 
43040 11.3 
43040 11.4 
43040 9.92 0.94 0.14 
31150 10.05 0.7 0.07 
34140 11.13 0.4 0.08 
30330 11.13 0.32 0.07 
36290 10.66 0.45 0.05 
32450 11.5 
32450 11.5 
32450 10.7 0.4 0.02 
26670 11.08 0.23 0.01 
32860 11.0 0.3 0.03 
25050 10.39 0.31 0.02 
22650 11.15 0.16 0.02 
29420 11.1 
29420 11.1 -___ -. -... 
29420 11.24 0.13 0.09 
30700 10.16 0.8 0.08 
41190 11.48 0.26 0.04 
36710 11.65 0.18 0.05 
39150 11.43 0.67 0.05 
37110 11.0 
37110 11.0 
37110 11.46 0.2 0.04 
36460 11.48 0.14 0.03 
35470 11.85 0.14 0.01 
31620 11.52 0.14 0.01 



Treatment Ponds Effluent, Mine \C’, 1988 

Day . . 
1 
2 
3 
4 

-5--- 
6 
7 
8 
9 

10 -- 
11 
12 
13 
14 

17 
18 
19 
20 -. 
21 
22 
23 
24 

April 
Flow pH 

40760 11.5 
40760 11.0 
40760 11.0 
40760 11.0 
30760 11.0 
40760 11.13 
40020 10.05 
40020 10.7 
40020 11.0 
40020 12.0 
40020 11.41 

8350 11.23 
5260 10.92 

11950 10.9 
11950 11.7 . - - 
32240 10.8 
32240 10.9 
32240 11.47 
23550 10.6 
23550 10.55 
23550 10.39 
32140 10.0 
32140 10.5 
32140 10.0 
32140 9.8 
32140 11.55 
33210 11.75 
40090 11.31 
48670 11.5 
37490 11.0 

May 
Zn-T Cu-T 

0.14 

15 - . 
16 

0.05 
0.03 
0.06 

0.07 

0.05 

0.21 
0.08 

2 3 . ,. 
26 
27 
28 
29 
30 
31 

0.1 
0.1 
0.3 
0.17 

0.02 

0.02 
0.01 
0.02 

0.02 

0.01 

0.03 
0.02 

0.02 
0.01 
0.04 
0.02 

Flow pH Zn-T Cu-T 
37490 10.6 
37490 10.5 
46920 10.8 
35390 10.57 0.86 0.1 
41420 10.3 
41420 10.7 
41420 10.5 
41420 10.4 
41420 9.09 1.6 0.09 
39390 10.71 0.5 0.04 
39420 10.54 
42440 11.5 0.35 0.12 
42810 10.9 
42810 10.8 
42810 10.5 
42810 11.45 0.26 0.04 
42660 11.61 0.15 0.06 
50350 10.25 0.9' 0.1 
43780 10.5 
43780 10.5 
43780 10.3 
43780 10.5 
43780 10.7 
43780 10.56 0.5 0.08 
40190 10.9 0.22 0.02 
40190 11.4 0.11 0.0 
38370 10.8 
42520 10.8 
42520 10.3 
42520 10.4 
42520 10.3 

June 
Flow PH 

42520 10.7 
42520 10.7 
42520 10.4 
42520 10.8 
42520 10.5 
42520 10.66 
38030 10.27 
42150 10.30 
43120 11.13 
41970 11.51 
39970 11.2 
39970 11.1 
39970 11.31 
40940 11.13 
45050 11.08 
42000 10.76 
44330 11.05 
33330 11.2 
33330 10.3 
33330 11.44 
39380 11.56 
39170 11.43 
38760 11.15 
38900 11.25 
38810 10.3 
38810 10.5 
38810 11.38 
38570 11.29 
35690 10.98 
38010 11.30 

Zn-T Cu-T 

'6.18 0.02 
0.33 0.05 
0.28 0.05 
0.13 0.03 
0.23 0.03 

0.26 0.04 
0.21 0.04 
0.18 0.02 
0.13 0.04 
0.21 0.04 

0.16 0.02 
0.05 0.02 
0.14 0.02 
0.12 0.04 
0.12 0.04 

0.04 0.05 
0.04 0.03 
0.06 0.04 
0.06 0.02 



Treatment Ponds Effluent, Mine \C', 1988 
July 

!?aY Flow . _ _.-_ - pH Zq_T Cu-T 
1 34180 11.2 
2 34180 11.2 
3 34180 10.05 
4 34180 11.38 0.09 0.04 
5 30740 11.58 0.15 0.03 -- ..--.. - ..- . . . . 
6 19400 11.42 0.04 0.09 
7 24100 11.40 0.03 0.03 
8 29280 11.48 0.04 0.04 
9 35720 11.0 

~0. -35720 g-7 
11 35720 9.79 0.22 0.06 
12 33880 11.46 0.06 0.06 
13 38870 11.55 0.03 0.02 
14 35480 11.76 0.04 0.01 
15 36140 11.85 0.06 0.00 
'i6" -.33570 11.6 
17 33570 11.5 
18 33570 11.19 0.08 0.04 
19 36090 11.12 0.08 0.03 
20 36650 11.43 0.06 0.04 
-21 34720 11.70 0.06 0.04 
22 34290 11.64 0.08 0.01 
23 33400 11.8 
24 33400 11.7 
25 33400 11.61 0.08 0.03 
26' 38120 11.55 0.07 0.02 
27 37330 11.36 0.11 0.05 
28 30930 11.06 0.13 0.03 
29 31640 10.97 0.18 0.03 
30 31640 10.9 
31 31640 11.5 

August 
Flow pH 

31640 11.6 
31640 11.20 
33100 9.73 
32070 10.48 
27850 10.97 
33020 11.0 
33020 10.8 
33020 10.98 
32260 11.40 
35750 10.96 
34790 9.89 
33920 9.72 
30900 10.9 
30900 11.2 
30900 11.38.. 
36020 11.14 
34900 11.30 
36630 11.30 
30190 11.00 
38450 9.7 _ 
38450 11.3 
38450 11.79 
32760 11.49 
32340 11.87 
33990 11.57 
39150 10.89 
33670 10.8 
33670 11.2 
33670 11.04 
31320 10.34 
34310 10.17 

Zn-T Cu-T 

0.23 0.02 
0.65 0.07 
0.14 0.02 
0.12 0.02 

0.48 0.06 
0.11 0.02 
0.10 0.01 
0.24 0.02 
0.34 0.03 

0.12 0.04 
0.12 0.05 
0.06 0.02 
0.15 0.03 
0.11 0.04 

0.04 0.04 
0.13 0.02 
0.04 0.04 
0.07 0.02 
0.24 0.07 

0.21 0.06 
0.13 0.04 
0.25 0.08 

September 
_ Flow pH Zn-T Cu-T.- 

32010 10.28 0.19 0.05 
34630 10.68 0.36 0.06 
30560 10.7 
30560 10.4 
30560 10.8 - . . 
30560 11.15 0.04 0.00 
32290 10.6 0.13 0.01 
37560 9.5 0.13 0.03 
26030 11.2. 
26030 22.3 
26030 10.61 
26030 7.95 0.77 0.20 
24420 11.0 0.1 0.02 
30950 10.6 
30950 10.85 0.2 O.OQ 
25650 11.35 0.09 0.00 
27340 11.5 
27340 10.5 
27340 11.5 0.22 0.02 

_ 2-4550 19: 5 _. ~ 
24550 9.6 
24550 7.75 0.11 0.0 
24550 11.5 0.18 0.03 
20420 11.2 
20410 11.3 
20410 11.0' 0.06 O,oi 
28880 10.88 0.11 0.01 
26130 10.60 0.11 0.01 
31240 11.47 0.02 0.00 
26630 11.55 0.06 0.01 



. 

Treatment Ponds Effluent, Mine \C', 1988 

Ray 
1 
2 
3 
4 
5 
ii- 
7 
8 
9 

October 
Flow PH Zn-T Cu-T 

29430 10.6 
29430 11.0 
29430 11.8 
25558 10.5 

-25558 JO.2 
25558 10.0 
25558 10.3 
25558 10.6 
25558 10.2 

0.01 0.0 

‘0.09 
0.00 

10 25558 lo,,5 ,--.-- .__. 
11 25558 11.98 
12 26360 11.84 
13 27912 11.5 
14 27912 11.1. 
$5,,279$2 10.81 
16 27912 11.20 
17 27912 11.43 
18 26750 11.31 
19 31660 11.12 
20 19460 10.80 --. . _ ..-. _._ 
21 27280 10.96 
22 27427 10.0 
23 27427 10.6 
24 24727 11.54 
25 28820 11.5.. I,. _ _ _ . 
26 28820 11.6 
27 28730 11.6' 
28 25972 11.2 
29 25972 11.3 
30 25972 10.7 
31 25972 11.3 

0.01 
0.01 

0.07 
0.07 
0.08 
0.04 
O.Ci4 

0.02 
0.02 
0.01 
0.02 
0;0T- 

0.03 

o.oj 
0.13 

0.02 

0.0 
0.01 

November 
Flow pH Zn-T Cu-T 

46875 11.2 
46875 9.01 2.04 0.18 
56410 7.82 2.94 0.34 
53810 9.90 0.36 0.06 

_ 58797 10.6 
58797 10.0 
58797 10.23 0.32 0.07 
41700 10.39 0.11 0.02 
46700 9.71 0.28 0.03 
+408O,lQ.,25 0.09 (II02 
46218 9.5 
46218 10.2 
46218 10.3 
46218 10.91 0.09 0.02 

,, 30970 10.87 p.o7.-p.o2, 
35790 10.99 0.06 0.02 
33320 10.90 0.13 0.03 
26640 11.08 0.56 0.0 
35547 10.6 
35547 9.9 
35547 10.11 0.32 0.06 
51890 10.98 0.76 0.08 
59970 10.29 0.15 0.03 
48110 9.86 0.94 0.10 
41760 ".. 9.17 1.94.0,12- 
33758 11.0 
33758,10.8 
33758 10.56 0.27 0.04 
33758 11.20 0.15 0.02 
35110 10.75 0.10 0.03 

0.03 0.01 

December 
Flow pH 

38270 9.84 
31420 11.18 
40700 10.6 
40700 10.6 
40700 10.25 
34800 10.23 
42390 9.45 
38410 10.99 
38410 10.49 
39390 10,9. 
39390 11.1 
39390 10.72 
52860 10.34 
40960 10.32 
38630 10.42 
39470 10.83 
39137 10.8 
39137 11.0 
39137 10.23 
35630 10.10 

'38720 9.95 
31020 10.33 
32320 9.59 
31010 10.5 

..31010.- 10 l 7 
31010 10.8 
31010 10.8 
31010 11.15 
34460 10.56 
36770 10.82 
29320 10.7 

Zn-T Cu-T 
0.14 0.04 
0.17 0.04 

0.16 
0.22 
0.2 
0.26 
0.20 

0.13 0.03 
0.18 0.03 
0.14 0.03 
0.09 0 .?.02 
0.14 0.04 

0.1 0.03 
0.11 0.04 
0.3 0.06 
0.41 0.05 
0.25 0.05 

0.27 
0.18 
0.13 

0.03 
0.03 
0.06 
0.04 
0.02 

. . 

0.03 
0.03 
0.03 
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