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May 8, 1997

Participant;

The MEND Prediction and Monitoring Committee would like to take this opportunity to express
our appreciation for your participation in the recent MEND workshop held in Edmonton May 5,
1997. The workshop, “Managing Mine Wastes in Permafrost Zones”, was a success primarily
due to the high degree of interest and involvement by the participants. The comments on specific
gaps in technology will be used by the MEND Secretariat to assist for formulating the

requirements for post-MEND research in northern climates.

We also appreciate your suggestions for additional topics, and for ways of making these
technology transfer sessions more effective.

A summary of the panel discussion is provided in Section 2. Copies of the presentations and in
some cases additional technical materials are included in Section 2.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely, @M

Carl Weatherell

Coordinator, MEND Prediction and Monitoring
TEL: (613) 995-3097

FAX: (613) 947-5284

E-mail: weathere@nrcan.gc.ca

WWW: http://www.nrcan.gc.ca/mets/mend
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2. SUMMARY OF OPEN DISCUSSION

An open discussion on current practice and priorities for future research on the issue of
permafrost to manage mine wastes was held at the end of the workshop. Grant Feasby initiated
the discussion by summarizing the information presented during the day and indicating the areas
where substantial uncertainty remains. These comments are detailed in section 3.11 and capture
the essence of the discussion.

In summary, although engineered structures incorporating permafrost have been used
successfully for mine waste control, there is a lack of fundamental knowledge pertaining to the
geochemical aspects of the behaviour of mine wastes in northern environments. A number of
competing factors need to be studied to fully understand the fundamentals of mine waste

oxidation at low temperatures. Technical issues yet to be resolved include:
1. Oxidation kinetics at low temperatures;

2. Unfrozen water in tailings;

3. Freezing point depression by process chemicals;

4. Thermal effects of oxidation at low temperatures; and

5. Effective covers in permafrost zones.

Future areas of research should focus on addressing the issues above.
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3.1.

INTRODUCTION TO WORKSHOP

Carl Weatherell
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MANAGEMENT OF MINE
WASTES IN PERMAFROST
ZONES

A MEND Workshop

May 5, 1997

Objectives

OTo present and discuss currently
available knowledge on managing mine
wastes in permafrost zones;

m AMD focus

0 To identify knowledge gaps that need to
be filled.




Program

Q Introduction

0 Operator Experience
0 Research Results

0 Discussion - Practice, Requirements,
Priorities

Coming Attractions

0 Fourth International Conference on Acid
Rock Drainage

“Application of Technology”
May 31-June 6, 1997

a Visit MEND on Internet
www.nrecan.ge.ca/mets/mend




3.2 OVERVIEW OF MEND

Grant Feasby
MEND Secretariat



Mine Environment
Neutral Drainage (MEND)

Q A 9-year cooperative research program,
financed and managed by three partners

0 1997 is 9 and final year
m New initiative under discussion
m Better prediction tools

m Cold weather environments

MEND is composed of..

QO 20 companies, 5 provinces, Canada
0 $18 million, tripartite funding
Q Volunteers

O Defined program for technology
development




MEND Organization

EBoard of Director_sl

Management

Prediction Prevention Treatment | | Technolo
; gy Transfer
& Monitoring & '———I &
Control . ..
International Liaison

Funding

0 Initial commitment
m 1/3 Industry, 1/3 Canada, 1/3 (5) Provinces
0 Annual plan and budget

0 Project-by-project basis buy-in

Q To date approximately $16 million spent




What was Needed

O Reduction in liability associated with
acidic drainage

What was Needed

0 More accurate prediction techniques

O Cheaper closure methods for tailings and
rock and mine sites

0O More site-specific options

® new mines without acid

Q Cheaper, widely applicable monitoring
tools




MEND Results

O No magic bullets
QO Prevention best strategy
O Existing sites:

m reduce, treat, monitor
O New mines

m underwater disposal

m “walkaway” possible

11

Some of MEND successes

Q Buy-in by stakeholders
m commitment to technology only
® mining industry shares results
m full disclosure

0 Volunteer participation




Other MEND Successes

O Governments working with industry
W decision-makers at the table

0 Expertise widely available

0 New mines opening without AMD

O Major reduction in liability

Unfinished Business and
Challenges

Q Better science for acid generating waste
rock

m Predictive methods - acid/no acid, rate,
onset

m Delay of onset of acid
0 Walkaway technology for old tailings areas
0 Control of AMD in mine openings

Q Reduce the mountain of information




Post MEND

O Retain network and expand to include
international expertise

Q Monitoring & Reporting Results

O Non-acid Issues

MEND

A Successful Canadian
Enterprise




3.3.

SUMMARY OF MEND STUDY - STATE-OF-
THE-ART

Richard Dawson
Norwest Mine Services



NORWEST

AN OVERVIEW OF
PERMAFROST
FOR ARD
CONTROL

RICHARD DAWSON
NORWEST MINE SERVICES



NORWEST

OUTLINE

-BACKGROUND

- ISSUES
- CONTROL STRATEGIES

- RESEARCH REQUIREMENTS



Figure 1.1 ~ Canada’s Northern Permafrost Regions
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Figure 2.1 @ NWT and Yukon Minesites
Exhibiting Acid Mine Drainage
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NORWEST

COLD TEMPERATURE
ARD ISSUES

- FREEZE AND THAW RATES

- OXIDATION RATES
-UNFROZEN WATER
-FREEZING POINT DEPRESSION



ESTIMATED ACTIVE LAYER THICKNESSES
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Figure 4.1: Seasonal Thawing Thickness for Mine Waste in Permafrost Regions
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RELATIVE RATE TO 25°C
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NORWEST

CONTROL STRATEGIES
FOR TAILINGS

1. FREEZE CONTROLLED*

- PERIMETER FREEZING
- TOTAL FREEZING

2. FREEZE-THAW DEWATERING*

3. ENGINEERED COVERS

4. SUBAQUEOUS DISPOSAL

5. COLLECTION AND TREATMENT
6. SEGREGATION AND BLENDING

*UNIQUE TO COLD CLIMATES



Legend

Loam core

Sand prism
Rock blanket
Rock prism
Freezing cofumn

Frozen alluvlal deposit

Bedrock

ONCNCONONONONS!

. ) o
00000 000006600000.

006/00900¢606000660060N

A A A AN

. 4 \)
26202007 200 M S0 :
02020260 2020l 020 0%% .
0RX M 1% FoIAAS
0262026 €D %67 26%° » o2
020200 D208 4%Y 20% 0%
90%020%050 0% £26¥ /4%%
Yolodete® Q% 2%’
23 o0 0 %
%

"
—

Pt R S et DG ‘/ ot WD UND WP SN UD GED WES U PP WS P - e
o o ottt ey ey e R S DO TR R D S S W T GG WD SUD DS W ) O B G G MR M D P (P S TR v o W e S it st W) NS SN EAR GEED WP B9 WY
P S A GRS B 0 - D S S G e ed — e i — o - P Ay N G S S D NS S GRS W M ST v e s N S D MM SE GEN SR S VP AN WD S
LT ) T AN M G S S0 S B0 SN G SN NI SUG PR A0N SR it AU U UV BB BN ED GAR SEN SN WD SRG AN S G A0 @ | | A AU G TWD SR (D WD ST SN D A S S [ T s v v A e S S G D G SN SU W W
O R D A S R G AR @ e s e reen s ol WD O 0 SR D S0 W D R PV e T S A S S SIS G WD SRS GHD GED YIS NS
- e e s e . o= e - © B W us S SIS D S W S S S G v P e T Sy S . S S S S D S W
D G M S . W W Yo T e - — S B A OIS W G S SN S S S S ey Y S A S ST SED GED i SN WD S0
ARED A S D S GHD WED SIS D A e . 1 D SMD S TS B0 U N S SIS S A G v e w— - S G e
S T P D G G W e e e e ) D G b W G WD N G W VA D SR GV A S D SR A W S0 GRS S G WU SUN SIS GNP B T S o A e WS D SV T A S W G W s e o IO D G G S S S GED S S S
U S S S G S s VR o P EmS S S W S EMD W M S SED S G G GO I SED MG GRS G GG W WG I G SUR B St ey e S T R AR I S SED GIR GRS ENS SO0 AP W o . Y S GG W W SR GED S
B G0 00 Y I G D are W T ) D WD S I S SSUS N B 4NN SN SN VD 00 S AN SN NS SR 5 S GNP SN G S D D A s S ¢ SIS GU S WS KD S S S SO B S A S " D S GED G S W TED S

- o
T G S IR G Gy R B o o T Ot S G G S SR U G G G SR G G D G SRS SA SE TP SN SV S G W Gl G SW TG AT S W . D G A S S S G D S 4 Jagh ST P SVCr o AP S 0 i G SIS ST G SN
v

D N W D D P S e == U 00 DR G SR S GO S e o e G Gow WS - -

D G S SR GRS 408 i T o — o — . — W D B S WS SRS SIS GUL S D PR GRS GAD s S GNS D WP LIS M BNt AR S R SN S S S S S G G S A B T e Y . S GRS S0 S D SED W D

T S U S S A S O THY N W S S G W S D SRS S S A D T S T S SIS G W S SV GUS U S VP S S D S S S AN SR S S0 b DS WS SUR e O - oy e L T LT T T™

G0 G TU TR s See g Sy ~— o T S S S VD W D G S B S SN G

D SN G P P S W | W LY D G D B D A SR SN TEY S I uR M S G G (D LD AR S G O SRS SR ARl e Smut | B T S
y -

- o o T S0P G S S W M I A S
WD SN S W S e T W O s S T S W SO G S
T G —— - Y G S S S W D
W RO s P B P v - Sy S S S TR 4 A GO SRS G
S G s Gt Sae G T Y - e S
D AED M S - P T 0 e G Y D G B B W
-

) P M W WS S W WD G Sy GvE T W W §

U G G G G G M SR GRS G AD G S S P G AT M S G SN TN TP R G B WOY S e G - - . v RS VR G W WD WD e
D Q) SN G0 GUR SN SMP S GV GO0 SN SMD G SLE R 0 G4 BYA NMT Wl WA W WD D WS A SN G SR s
- - TS GRS G I U FDY SR P W W
TP s A B G S0 T MW .
- aw

LT T Ty |

1'7 r«d Ceoss YQc‘v

& -




[ STARTER DYKE M eroZEN
| OVERBOARD

A YEAR I-WINTER
S FROZENCELL MATERIAL

I THAWED TAIUNGS

i " HLH U ——

B. YEAR [-SUMMER

= ([

v
mm

I

l.c( IR v~
J“xmh]h it e s

......
141

= | S

Figure 4.4: Tailings Thin Layered Freezing Design Concept
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Figure 4.3: Tailings Sand Freezing Layer Thicknesses
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NORWEST

CONTROL STRATEGIES
FOR WASTE ROCK

1. FREEZE CONTROL *- layered freezing

2. CLIMATE CONTROL*- segregation and zoning

3. ENGINEERED COVER
4. COLLECTION AND TREATMENT
5. SEGREGATION AND BLENDING

*COLD WEATHER STRATEGIES
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MINE WASTE ROCK
VOID RATIO VS SATURATION RELATIONSHIPS
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Introduction

The Lupin Operation is an underground gold mine on the west shore ofContwoyto
Lake, about 400 km northeast of Yellowknife and 80 km south of the Arctic Circle.
The deposit was discovered in 1960 by the Canadian Nickel Company, a subsidiary
of INCO Ltd. Between ‘61 and ‘64, Canadian Nickel conducted exploration at the site
including geological mapping, geophysical surveying, trenching, stripping and channel
sampling. The site was purchased by Echo Bay Mines from INCO in the late 70s, and
initiated an underground exploration program in 1979. The information gained from
this program indicated enough ore reserves to provide six years of production at amill
processing rate of 950 tons per day. In August 0f1980 the decision was made to

proceed with development and construction of the mine. Commercial production
began in 1982.

The mineralogy of the ore at Lupin consists mainly of amphibole, quartz, garnet,
pyrrhotite, arsenopyrite, minor pyrite and trace chalcopyrite. The gold is fine grained,
generally less 100 microns in diameter and is associated mainly with pyrrhotite and
arsenopyrite. Although not common, visible gold has been reported, usually in close
proximity to quartz veining.

The ore at Lupin has been shown through various studies to be capable of generating
acid upon oxidation. The waste rock produced in the mining process contains very
little sulphur (about 0.5%) and is considered to have very little potential of acid
production.

In regards to site facilities, other than the transportation requirement for materials and
supplies necessary to sustain the workforce and industrial operation, theLupin site is

completely self contained. The two main complexes on the site are the
kitchen/residential/accommodation buildings and the industrial complex which
includes the mill and various maintenance areas, the headframe, powerhouse, and

warehouse areas and office facilities. Associated with the two complexes mentioned
are support areas consisting of shops and various yards, cold storage buildings,
explosives magazines, tank farms, the sewage facilities, the landing strip and aircraft
control office, the mill tailings line and the tailings containment area.
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Mining

As I mentioned, Lupin is an underground mine. Presently, the bottom of the mine is
at about 1300 metres. Equipment employed includes diesel scoop trams and haul
trucks and electric/hydraulic drilling equipment. Production is accomplished through
a process of drilling, blasting and mucking. Broken ore is hauled to ore passes where
it is put through a rock breaker to reduce the amount of oversize material, and routed
to the skips for transport to the surface for milling.

Milling

The ore brought from underground is stored in a600 ton coarse ore bin. From the

coarse ore bin, the ore is fed through cone crushers to two1000 ton capacity fine ore
bins. The fine ore is then fed into the grinding circuit, first through a rod mill thertwo

ball mills in a parallel configuration. The discharge from the ball mills is classified
using hydrocyclones. The underflow from the cyclones, +200 mesh or coarse
material, is fed back to the ball mills, while the overflow from the cyclones, -200 mesh
or fine material, is pumped to the pre-aeration circuit.

The -200 mesh material enters pre-aeration thickener for settling of the solid fraction.
The overflow solution from this thickener is returned to a recycle water tank while the
underflow slurry is pumped to the first of three pre-aeration tanks. These pre-aeration
tanks provide air to oxidize the sulphide minerals which would otherwise consume
large amounts of cyanide later in the milling process as well as increasing the risk of
the formation of acid rock drainage in the tailings containment area. The pre-aeration
circuit operates under alkaline conditions and has a lead nitrate reagent added and is
diluted with recycle water.

Slurry from the pre-aeration circuit is pumped to a series of six agitated and aerated
tanks where the gold is leached with cyanide. The gold particles are dissolved by a
reaction between the cyanide, oxygen and water. Lime is used to maintain the system
pH at about 10. After approximately 30 hours of retention, the slurry is transferred to
the cyanidation thickener for separation of the solid and liquid fractions. The liquid
fraction is known as the pregnant or gold bearing solution and is routed to the pregnant
solution tank. The underflow slurry, which also contains some gold is pumped to the
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filtration circuit.

A two stage filtration system separates the dissolved gold from the solids by washing
with barren or non-gold bearing solution. Each of the two stages consists of four
vacuum drum filters. The slurry is retained on the outside of the filter unit while the
solution is drawn through, taking the dissolved gold with it. The filter cake from the
filtration circuit is either repulpedand pumped out to the tailings containment area or
transferred to the paste backfill system for placement underground.

The pregnant solution is processed through three pressureclarifiers to remove fine
suspended solids. Oxygen is then removed in a de-aeration orCrowne tower prior to

precipitation. Zinc dust is added to precipitate thegold which is collected in the

precipitation presses. Once the press becomes loaded with precipitate, it is transferred
to the refinery. The precipitate is smelted in the bullion furnace to producedore
bullion and slag. The slag is returned to the mill to be reprocessed. The bullion
contains approximately 85% gold and 12% silver, the remaining impurities being base
metals.

Paste Backfill

The first method of mine waste management thatI will briefly talk about is paste
backfill. As I mentioned earlier, the solids collected on the vacuum filters areeither
repulped and pumped to the tailings containment area or used as backfill underground.
In general, the paste formed is a high density mixture of water and the fine filter
solids. Cement is added to the mixture and it is pumped underground through a
pipeline to inactive mine voids or to active stopes. In 1997, we expect to dispose of
50-60% of the tailings solids produced through the paste backfill operation.

Tailings Containment Area

The use of the tailings containment area is the second method of mine waste
management used at Lupin. Any tailings solids not disposed of underground and all
excess waters from the milling process are handled at the tailings containment area.
The slurry is pumped from the mill to the TCA through an insulated 8" steel pipeline.
The TCA is about 6 km south of the minesite and covers 361 hectares within a750
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hectare lease. There are three main components to the TCA, the solids retention cells,
Pond 1 and Pond 2.

The tailings slurry pumped from the mill is ﬁrst. dumped into one of the solids
retention cells where separation of the liquid and solid fractions occurs. These
pictures show the slurry being dumped into an almost full area of the TCA.

At times, the tailings lines are strung out into the cells to fill in low areas of the cells

and to avoid creating tailings beaches that are too close to the surface of the internal
dams that divide the TCA.

The water is collected in Pond 1 and stored for up to 11 months before it is transferred
to Pond 2. Pond 2 also retains the water for up to 11 months before it is discharged
to the environment. This long retention period allows natural degradation to reduce
the contaminants in the water. Typically, the cyanide concentration is reduced by up
to 90% by the time the water is collected in Pond 1. Metals such as Zinc, Nickel and
Copper are reduced by 70 to 80% in the first phase of the retention.

Arsenic, on the other hand, is only reduced by about 25%. For this reason, during the
transferred from Pond 1 to Pond 2, an iron salt (ferric sulphate) is added to the water
to form a stable iron/arsenic precipitate which settles in Pond 2. Lime is also added
for pH adjustment.

The TCA is impounded through natural terrain relief and a series of engineered
retaining structures. Due to the selection of natural lakes as polishing ponds and the
low relief of the surrounding land, the perimeter dams generally vary up to about3
metres in height.

This schematic shows a general cross-section of the dams. The upstream side employs
a synthetic liner covered with sand andriprap. The synthetic liner is for initial control
of seepage while the frozen core of the dam develops.

Various studies have been initiated over the life of the mine to evaluate the extent of
the development of the frozen dam cores as well as the thickness of the active thaw
zones in reclaimed sections of the tailings containment area. These reclaimed areas
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are sedimentation cells that have been filled to capacity with tailings and covered with
a layer of esker gravels. The intent of covering the tailings is to form a barrier to
prevent the oxygen transfer responsible for the eventual formation of acid rock
drainage. As well, the depth of esker cover will be adjusted to place the long-term
active thaw zone above the tailings, thereby keeping the tailings in a permanently
frozen condition, further reducing the risk of ARD production. The following series
of overheads shows the results of some of the ground temperature work undertaken
over the past couple of years.



ATLANTIC
OCEAN

HUDSON
BAY

PACIFIC
OCEAN




Photo 1

Aerial view of Lupin minesite on 29 June 1993 Note extent of ice cover on waterbodies

Photo 2

Aerial view of Norma Lake (left) and Norma Pond (right) with tailings pond in the
background. Photo on 29 June 1993.
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FREEZE BACK OF RECLAIMED TAILINGS
AT NORTH RANKIN NICKEL MINE

Larry Dyke
Geological Survey of Canada



Preliminary Report on Investigation of Reclaimed Tailings at Rankin Inlet, N.W.T.

L.D. Dyke, M. Douma, and C. Hyde
Geological Survey of Canada, 601 Booth St., Ottawa, Ontarlo K1A OE8

Background

Between 1992 and 1994, tailings, originally produced by nickel ore
concentration at Rankin Inlet, were excavated, re-deposited in the drained open pit
portion of the mine workings, and covered with gravel. This operation was part of a
program to render inert this potentially hazardous material. Sulphide minerals in the
tailings consist mainly of pyrrhotite with lesser amounts of pentlandite and
chalcopyrite. Ponds in the tailings impoundment area (Fig. 1) exhibited near-neutral
pH but acidic conditions were recorded in ephemeral streams draining into the area.
Dust from the tailings surface was a continuing nuisance and potential health hazard,
while the land occupied by the tailings was desired for town expansion.

The reclamation program was funded by the federal Department of Indian and
Northern Affairs and carried out by consultants and contractors under the direction
of the territorial Department of Public Works. Tailings reclamation involved treatment
and drainage of water filling the abandoned mine depression, backfilling of the
depression with oxidized tailings, and placement of a gravel cover over this and the
remaining undisturbed tailings. An additional dike was constructed to supplement
existing protection from wave erosion along the Hudson Bay shore. The expectation
is that the reclaimed tailings will become permanently frozen and protected from
erosion by the gravel cap and dikes. In late March, 1997, the Geological Survey of
Canada (Larry Dyke, Martin Douma, and Christoff Hyde) and Queen’s University
(Heather Jamieson and Joanna Meldrum) assisted DPW (Paul Erickson) in assessing
both the progress of permafrost aggradation into the reclaimed tailings and chemical
changes which may be taking place in the remaining unfrozen pore fluids as freezing
advances.

Site Activities

The primary means of assessment was by air-rotary drilling. The objective of
this drilling was to:
1. Allow installation of thermistor cables -
2. Obtain cuttings samples of frozen and thawed tailings
3. Manually determine the depth of freeze-back
4. Obtain boreholes for electrical conductivity logging
5. Obtain boreholes to different depths in frozen tailings for subsequent core sampling.

The air-rotary drilling was carried out in two stages over two days. Twenty five
holes, 6.5 inches in diameter and ranging in depth from 1.5 to 3.5 m, were completed
across the reclaimed tailings area. These holes were intended for subsequent
collection of cores. Because rocks or metallic debris within the tailings would halt



coring, these holes were drilled in clusters to several depths to increase the likelihood
of avoiding such obstructions. A further 7 boreholes were attempted to the bottom
of the reclaimed tailings (Fig.2, Boreholes 1-7). Although drilling could not continue
into unfrozen tailings, casing was pushed and vibrated below the top of the unfrozen
zone, meeting refusal due to the rock bottom or debris at depths between 6 and 12
m. These boreholes and one 18 m borehole through remaining undisturbed tailings,
till, and bedrock (Fig. 2, Borehole 8) were logged for electrical conductivity.
Thermistor cables were installed in the borehole penetrating bedrock (to 16 m) and in
the two deepest boreholes in the reclaimed tailings (to 8 and 11 m).

Electrical conductivity (EM) surveys were also carried out over the surface of
the reclaimed tailings and over part of the remaining undisturbed tailings. The two
instruments used allowed apparent conductivities to be recorded over a range of
depths between about 2 and 30 m across. the 200 x 300 m grid area. The primary
objective of this survey is to provide a means of extending borehole data on the
thickness of the frozen and unfrozen parts of the reclaimed tailings.

Due partly to a delay in the arrival of equipment and to poor weather, coring
was carried out in only one of the shallow boreholes. However, the cuttings samples
from all levels in the frozen part of the reclaimed tailings, as well as limited sampling
from within the unfrozen tailings, and core from the top of the frozen tailings, will
permit a preliminary analysis of pore water chemical evolution accompanying freeze-
back. The site will be revisited in late-May to collect at least one complete core
through frozen tailings. All samples were shipped to Queen’s University in the
condition collected and will be analyzed there and at GSC for mineralogy and pore
fluid composition. '

Results

Cuttings samples were collected from the series of shallow holes. Several
samples of thawed tailings and associated pore water were collected from the series
of deeper holes. The water is highly saline with an electrical conductivity of about
50,000 umhos/cm and a pH ranging between about 5.5 and 7. One piezometer was
installed, showing a static fluid level of 2.5 m below the ground surface. This level
was also reached by fluid leaking into the casing of two of the deeper boreholes.
These water levels are lower than would be expected if consolidation were actively
taking place. Given that they appear to be at an elevation approximately equal to sea
level, the remaining unfrozen part of the tailings may be hydraulically connected with
the ocean.

Drilling and ground temperature measurements indicate that the tailings were
ice-bonded to a depth of about 4 m, as of March 31, 1997. To this depth the
temperature warmed steadily to about-4°C and continued to warm gradually to about
-1.5°C at a depth of 11 m (Fig. 3). Thus the tailings are partially frozen between
about 4 and 6 m, or between temperatures of about -4 and -2°C, and completely
unfrozen below a depth of 6 m or above a temperature of -2°C. Even below -4°C



there may be a considerable fraction of unfrozen fluid. These observations are
confirmed by electrical conductivity logging of the deep borehole series, whereby
conductivity in general increases between depths of about 4 and 6 m, reflecting the
contribution to conductivity of increasing unfrozen water content (Fig. 4). Although
no determination of pore water salinity has yet been made, the apparent freezing point
depression in the reclaimed tailings suggests a pore water salinity roughly that of sea
water, i.e. about 30 parts per thousand.

Ultimately, the reclaimed tailings should fall to a temperature of about -7°C.
This is suggested by the temperature profile for the borehole placed outside the
reclaimed tailings area (Borehole 8 in Fig. 2) where ground temperatures are probably
in equilibrium with the climate. The time taken for the reclaimed tailings to completely
freeze will be included in the final report for this project. It is dependent on the
thermal conductivity of frozen tailings and on any increase in unfrozen pore water
salinity which may accompany continued freeze-back. Increases in pore water salinity
to date should be revealed by pore water chemistry analyses which are to be carried
out on samples presently in hand.

Surface EM surveys outlined a high conductivity area coincident with the
reclaimed tailings area. Presumably the high conductivities are associated with the
unfrozen part of the tailings. An interpretation of the survey data will allow the
thickness of this unfrozen part to be determined over the entire reclaimed tailings area.
The part of the survey extended over adjacent undisturbed tailings showed a circular
zone of negative readings surrounded by a zone of very high positive readings. This
also awaits interpretation but the circular pattern may reflect the original depositional
pattern of this part of the tailings and segregation of conductive sulphide minerals
down the sides of a tailings spoil pile.
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Cullaton Lake MEND Permafrost Workshop
Edmonton, May 5, 1997

Objectives:

e To evaluate oxidation and leaching characteristics of
Cullaton Lake B and S- Zone tailings at:

= 25 °C
2 °C and
10 °C

= Acid Rock Drainage is an issue as the orebodies contained
pyrite, pyrrhotite and other sulphide and metal bearing
minerals

= Preparation of final decommissioning plan etc.

CANMET, Elliot Lake Laboratory 2



Cullaton Lake MEND Permafrost Workshop
Edmonton, May 5, 1997

Site Location:

. District of Nunavut and Keewatin sub-district,
Northwest Territories

. Located 416 Km northwest of Churchill, Manitoba

. Site is at tree line and in the zone of continuous to wide
spread discontinuous permafrost

. Cullaton Lake Gold Mines Ltd. (Company) operated 300
tonnes gold mill from October 1981 to August 1985.

. Ore from two distinct orebodies, B - and Shear (S) - Zones

. Total of 373,000 tonnes milled, 150,00 from B - zone and
the balance 223,000 tonnes from S - zone

CANMET, Elliot Lake Laboratory 3
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Cullaton Lake MEND Permafrost Workshop
Edmonton, May 35, 1997

B - Zone:

. Gold bearing iron formation in a turbiditic sedimentary
basin which formed part of the Rankin Inlet - Ennadi

Archean greenstone belt in the Keewatin district of
Nunavut (NWT).

Shear (S) - Zone

. Gold occurred in fractured and sheared orthoquartzite .
Mineralization in altered shears, breccia zones, pyritic
shears, and pyritic impure quartzite.

CANMET, Elliot Lake Laboratory 4
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Table 1.  Physical characteristics of B and Shear (S) - Zones tailings.

Parameter B - Zone Shear (S) Zone
Colour Greenish grey Brownish orange
Texture sandy silt sandy silt
Particle size 70% less than 100 um | 50% less than 100 um
Dso 65 um 100 um

Do 35 um 45 pm
Moisture content (% wt) 93 9.5

Wet bulk density (tonne / m®) 1.80 1.58

Grain density (tonne / m®) 3.00 2.50
Porosity (%) 40 36.8

Wet mass of tailings in Column (kg) 9.7 9.7

Total bulk volume dry tailings (1) 4.89 5.56

Total pore volume dry tailings (1) 1.95 2.05

% pore volume moisture saturation 46 45




Table 2.

190

Chemical characteristics of B and Shear (S) - Zones tailings. All concentration
values are given in percentiles, except where noted.

Parameter / Element B - Zone Shear (S) Zone
Al (%) 1.62 £ 0.008 0.47 £ 0.003
Ba (ug/g) 83.6+0.6 101.5+£0.8
Ca (%) 2.371£0.032 0.09 £ 0.002
Cd (ug/g) <10 <10

Co (ug/g) <10 16.1 £0.52
Cr (ug/g) 36.4+02 244+0.2
Cu (ug/g) 45.4+0.3 15.5+£0.3
Fe (%) 20.07 £ 0.085 296 +0.01
K (%) 0.305 £ 0.07 0.15 £0.025
Mg (%) 0.88 £ 0.006 0.057 £ 0.003
Mn (%) 0.09 £ 0.0003 0.01 £ 0.0001
Na (%) 0.14 £ 0.001 0.06 £ 0.002
Ni (ug/g) 60.6 £ 10.8 48.6+ 1.1
Total phosphorus (% P) 0.06 £ 0.014 0.009 % 0.006
Pb (ug/g) 65.8+1.9 48.4+0.9
Total sulphur ( % S) 2.63 £0.32 049 +£0.1
Soluble sulphur ( as % S) 0.32 £0.01 0.09 £ 0.01
Total sulphide sulphur ( as % S) 2.31+0.33 04+0.11
Ti (%) 0.069 £ 0.0008 0.012 £ 0.0002
V (ug/g) 58.6+2.0 154104
Zn (ug/g) 45.71£0.4 12.1+£0.1
Zr (ug/g) 53.1+3.0 444112
Total acid generation potential, kg 72.2 12.5
CaCOgs/tonne

Total alkalinity, kg CaCOs/tonne 45.36 20

Net neutralization potential, kg -26.84 -10.5

CaCOs/tonne




Cullaton Lake | MEND Permafrost Workshop
Edmonton, May 5, 1997

Leaching Procedure:

. Leaching in cylindrical columns

. Inoculation of tailings with T-ferrooxidans culture in the
columns

. Batch leaching using natural lake water (pH ~6.8, acidity
3-5 mg/l, SO4 ~ 6-8 mg/l, etc. )

. Sampling at intervals of 1 to 2 weeks

. Effluent analyzed for pH, Eh, total potential acidity, total
alkalinity, total sulphate, major metals and cyanide

. Cold temperature: placement in a walk in freezer
maintained at the desired temperature(s)

CANMET, Elliot Lake Laboratory 5
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Cullaton Lake - B-Zone at 2 °C
pH vs. Time
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Fig.6a B - Zone: effluent pH’s at 2 °C and room temperature.
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Cullaton Lake - B-Zone at 10 °C
pH vs. Time
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Cullaton Lake - B-Zone at 2 °C
Acidity vs. Time
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Cullaton Lake - B-Zone at 10 °C
Acidity vs. Time
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Cullaton Lake - B-Zone at 2 °C
Sulphate Concentration vs. Time
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Fig. 11a B - Zone: effluent dissolved sulphate concentration at 2 °C.
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Cullaton Lake - B-Zone at 2 °C
Total Iron Concentration vs. Time
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Cullaton Lake - S-Zone at 2 °C
pH vs. Time
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Cullaton Lake - S-Zone at 10 °C
pH vs. Time
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Acidity, mg/l as CaCQO3

Cullaton Lake - S-Zone at 2 °C
Acidity vs. Time
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Cullaton Lake - S-Zone at 10 °C
Acidity vs. Time
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Cullaton Lake

MEND Permafrost Workshop
Edmonton, May 5, 1997

Results:

. Both B and S - Zones tailings have low sulphide contents

(2.4 and 0.5 % S, respectively)

. Negative NNP (-31.6 and -14.3 Kg CaCOs/tonne) and

hence acid generating

. ARD more pronounced for B - zone then S - zone at 25 °C

. At 2 °C the acid generation rate is low providing a longer

neutralization period and delayed ARD for B- zone than S-
zone

. Upon freeze thaw continuity of ARD ceases

. At 10 °C some initial ARD occurs, but in all cases the high

moisture retention characteristics of the tailings controls
the duration of ARD

CANMET, Elliot Lake Laboratory 6



Cullaton Lake MEND Permafrost Workshop
Edmonton, May 5, 1997

Results:

. Calculated rate of acid generation at 2 °C for B - Zone
tailings is approximately 10% of that at 25 °C, which is
comparable to reported value of ~ 16%

. Lowering of tailings temperature would delay occurrence
of ARD but would not prevent it unless porewater is
permanently frozen

CANMET, Elliot Lake Laboratory 7



Oxygen Concentration in Tailings (Unsaturated)
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Figure 4.1 Oxygen concentration profiles as a function of depth at 25°, 4°, and 0°C in unsaturated tailings (air filled
pore spaces) without cover. The air/tailings interface is at 0 m.



Oxygen Concentration in Tailings (Saturated)
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Figure 4.2  Dissolved oxygen concentration profiles as a function of depth at 25°, 4°, and 0°C in saturated tailings
(water filled pore spaces) with no additional cover.  The air/tailings interface is at 0 m.
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Figure 4.3 Dissolved oxygen concentration profiles (expanded scale) as a function of depth at 25°, 4°, and 0°C in
saturated tailings (water filled pore spaces) with no additional cover. The air/tailings interface is at 0 m.



Oxygen Concentration Profiles
1 m Water Cover (Stagnant) on Tallings
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Figure 4.4 Dissolved oxygen concentration profiles as a function of depth at 25°, 4°, and 0°C in unmixed water
cover of depth 1 m and underwater deposited tailings. The tailings-water interface is at depth 1.0 m
from the surface of the water cover.



Oxygen Concentration Profiles
1 m Water Cover (Well Mixed) on Tailings
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Figure 4.6  Dissolved oxygen concentration profiles as a function of depth at 25°, 4°, and 0°C in a well mixed water
cover of depth 1 m and underwater deposited tailings. The tailings-water interface is at depth 1.0 m from
the surface of the water cover.



Table 4.2: Steady state oxygen diffusion flux J(0) in the waste at the interface boundary (g
m™? y') and the total time (y) in years to completely oxidize a tailings pile, 100
ha in area containing 10 million tonnes of tailings at 20% pyrite.

Scenario Flux J(0),
g m-2 y-l

10,926 (25°C) 181.2 (25°C)
No cover: air exposed and 5,463 (4°C) 362.4 ( 4°C)
unsaturated 4,234 (0°C) 467.6 ( 0°C)

Water saturated waste: zero 3.49 (25°C) 5.67 x 10° (25°C)
depth of water cover above 2.60 ( 4°C) 761 x 10° ( 4°C)
the interface 2.28 ( 0°C) 8.68 x 10° ( 0°C)

Water covered waste: depth of 0.47 (25°C) 4.21 x 10° (25°C)
water 1 m above the interface 0.62 ( 4°C) 3.19 x 10° ( 4°C)
without mixing (stagnant) 0.65 ( 0°C) 3.05 x 10° ( 0°C)

Water covered waste: depth of 0.25 (25°C) 7.92 x 10° (25°C)
water 2 m above the interface 0.35 ( 4°C) 5.66 x 10°% ( 4°C)
without mixing (stagnant) 0.38 ( 0°C) 5.21 x 10° ( 0°C)

Water covered waste: depth of |  3.49 (25°C) 5.67 x 10° (25°C)
water 1 m above the interface 2.60 ( 4°C) 7.61 x 10° ( 4°C)
and well mixed 2.28 ( 0°C) 8.68 x 10° ( 0°C)
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. Measurement of ThermalProperties
Saturated Talhngs
(ARD Control ln Permafrost Reglons)
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Outline of presentatlon.

e Objective of research study

e Laboratory test program

e Test equlpment and preliminary results
¢ Physical and chemical propertles
o Consolldatlon and hydraulic conductw:ty
e Unfrozen water content versus temperature
e Thermal eonduetlwty versus temperature
e Frost heave -



\ Objectlve Of research carrled out

sulﬁdes on the unfrozen water content ef saturated
tailings.

Need for i*éséareh to be carried out

The thermal and hydraulic ﬂew properttes of freezmg
and frozen tailings are strongly tnﬂueneed by amount
of unfrozen water in tailings at temperatures below

freezing point.



Proposed t'estf?program:

The fellowmg test to be carried out on each

tailings and with different fluids supplled
® Physwal characterlzatzon (grain size dlstrlbutmn,
specific grawty, atterberg limits, mineralogy)
° Chemzcal characterzzatwn ( pH, conductlwty, acid
base accounting, pore water sulfates)

e Saturated ﬂow and defermatzon characterzstzcs of
unfrozen and frozen samples (consolldatlon and
hydraulic conductivity) N

e Unfrozen water content versus tempemture
o Thermal conductivity versus temperature
e Frost heave test |




Physical and chemical properties
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" Lupin Tailings
Grain Size Distribution:
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ConSOlidétiOn and hydraulic coﬁductivity
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Unfrozen water content versus temperature
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Figure 2.17 TDR circuit (modified from Herkelrath et al., 1991).



Apparent Dielectric. Constant (Ka) ‘

Appérent_ Dielectric Constant versus Unfrozen Water Content
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Apparent Dielectric Constant (Ka)

Apparent Dielectric Constant versus Temperature
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Apparent Dielectric Constant.(ka)

Apparent Dielectric Constant versus Temperatﬁre‘
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:. Volumetric Water Content versus Temperature
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Thermal conductivity versus telﬁperature
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i Frost heave
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Summary of T_ést Results:

e Hydraulic conductmty are con51stent with
granular materials

o leformatlon behavior is also con51stent

° Unfrozen water content exists below zero C and
must be accounted for in all thermal calculatlons |

o Thermal conductlwty ,-;’.«easurements confirm
unfrozen water content .{,-easurements. - |

. Samples frost heave ie attract water to freezing

front




Conclusions

. P@tentlal eX1sts for water movement in frozen
tailings due to thermal potentlal electrlcal
p@tentlal and chemlcal potentlal gradlents.



3.8.

PERMAFROST: IMPLICATIONS FOR
MINESITE-DRAINAGE CHEMISTRY

Kevin Morin
Morwijck Enterprises



Permafrost:

Implications for Minesite-Drainage Chemistry

Minesite Drainage Assessment Group



Y

A pyrite grain oxidixes,
generating acidity and heat.

v

grains.

Some heat is “absorbed” by
the pyrite grain and surrounding

v

Some heat is conducted away by grain
and porewater and/or carried away by
moving porewater

w

v

Does any heat generated by the
pyrite grain remain around the grain?

YES

NO

Temperature increases;
rate of oxidation increases;
Greater amount of heat is

Is there a deficit of
heat around the
pyrite grain?"

generated.

Steady state;
No change in temperature;
No change in rate of oxidation;

Temperature decreases;
rate of oxidation decreases;
Less heat is generated.

No change in rate of heat generation.

Y
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Humidity Cell Sample NHC-1
pH vs Time at
Ambient, +6°C and -20°C

8.0
A p 7
AR TR
6.0 — Yy l' A ' WL
: ]
m 4.0 —
=
Ambient
2.0 —
— —+6degC
y T =20 deg C
0T T 1T T T T T T 1
Sep-89 Mar-90 Sep-90 Mar-91 Sep-91

Time




Sulphate Production Rate (mg/kg/wk)
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Humidity Cell Sample NHC-1
Zinc Leach rate vs Time at
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Humidity Cell Sample NHC-1
Copper Leach rate vs Time at
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RELATIVE RATE TO 30°C
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RELATIVE RATE OF
BIOLOGICAL OXIDATION
VERSUS TEMPERATURE
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THIOBACILLUS

Kalin (1987) reported on slow-growing Thiobacillus at the
Nanisivik Mine that had apparently acclimatized to cold temperatures
and would generally not reproduce at a warmer temperature of 12°C
It 1s possible that 7. ferrooxidans could adapt to unusual conditions,
perhaps even to sub-zero temperatures when sufficient oxygen and
unfrozen water are present.

14



NWT MASSIVE-SULPHIDE DEPOSITS

Agricola Lake~480 km northeast of Yellowknife
(Cameron, 1977); continuous permafrost; “intensive” sulphide
oxidation near surface and at depth; natural acidic drainage and

metal leaching with pH as low as 2.4; jarosite minerals.

Melville Peninsula: continuous permafrost (Cameron,
1979); pH as low as 3.1; active layer roughly 1 m thick, but
oxidation believed occurring to tens of meters; attributed to
graphite and/or sulphide minerals acting as inert conductors of

electrons, which passed from the deep sulphide minerals to
atmospheric oxygen.

15



CAMERON (1977):

"Permafrost is no deterrent to active oxidation of sulphide
bodies. In fact O, is more soluble in cold water and the
exothermic nature of many oxidation processes provides a
continuing energy source. In frozen ground, thin, intergranular
water films allow chemical processes to be active, even in
winter.... The presence of springs and sink holes in the vicinity
of the mineralization show that taliks (thawed channels) exist in
the permafrost."

16
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3.9.

A MODEL FOR PERMAFROST FORMATION
IN WASTE ROCK PILES AT THE BHP
DIAMONDS PROJECT

Don Hayley
EBA Engineering Ltd.



A Model For Permafrost Formation In
Waste Rock Dumps
BHP, NWT Diamonds Project

by:

Don Hayley

Wim Van Gassen
Edward Gu




Air Temperature (°C)

20 . : —
! i : :
! ! b
i : . .
: ; : i ;
10 ; |
h L)
¥y
0 !
i v Y
{
0 .
. 1]
b
- . } ’
10l =
N
] I
i | a s
------- Koala 1993 measurements oo
N
/ Koala 1994 measurements (O
1 A v [} ‘\
'20 ] - . B |" 1 [
F —k—Koala 1993 mean monthly 1 &INI
] U [}
\ «lly
L
—l—Koala 1994 mean monthly i) M
. 1l
AF I
—2A——Koala long-term mean '.-; B
-30 ! monthly (interpolated) ¥ Higr——
[
~——&—Lupin 1993-94 mean i ::
| monthly ' :‘
1 —O——Lupin long-term mean 1 !
monthly !
'40 !
-50 } ;

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
Month

Climate at Lac de Gras




Dump Characteriétics.

e Granite |
* sand to 2 m boulders
* 2 mg/médry density
* 1 % water content

* Foundation
* Rock or Till
* Permafrost @ -5°C




TABLE 1
MATERIAL PROPERTIES IN THERMAL ANALYSIS FOR BHP WASTE DUMPS
MATERIAL WASTE ROCK SATURATED FOUNDATION
: WASTE ROCK TILL
Water Content 1.0 12.0 8.0
(%)
. Frozen Dry Density 2,000 2,000 2,100
kgim) ) '
Unfrozen Dry Density 2,000 2,000 2,100
(kg/m®) '
Clay Fraction - 0.0 0.0 0.0
(%}
Frozen Thermal conductivity 0.94 2.89 2.03
{(W/mC)
Unfrozen Thermal conductivity 0.60 2.10 1.70
(W/mC°)
Bulk Density 2,020 2,240 2,270
(kg/m®)
Frozen Specific Heat 0.75 0.88 0.83
(KJ/kg C%)
Unfrozen Specific Heat 0.77 1.10 0.99
(KJikg C°)
Latent Heat -7.0 -80.0 -56.0
(MJ/m®)

Material Properties




Construction Sequence

e 2 m thick lifts

* 20 m total height in 3 years

* Rock at bottom placed @ -5°C
* Rock at top placed @ -0.5°C

* Construction sequence modeled in 10
temperature steps

* Dump temperature at end of construction -5°C
except at top
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Water Impacts

"« 300 mm annual precipitation, 50 % falls as
show

o Assume about half will infiltrate the dump
* 40 % of the snhow
* 60 % of the rain
* 150 mm total

e Snowmelt infiltrates in 6-10 mm daily
episodes (60 mm)

* Rainfall infiltrates as 9- 10 mm episodes over
10 days (90 mm)

e Drops to the bottom saturating a 40 mm high
portion of the rockfill (porosity of 25%)

e Water percolates slowly toward dump
perimeter

* How far will it travel before it freezes?




Retention Time

« Initial hydraulic gradient 2%

+ Hydraulic conductivity 5 x 102 m/sec

« Seepage velocity from Darcy's Law - 3.6 m/hr

. Water is typically retained for several days




Welcome Screen Search

Report List

Freezing Time ( hours )

100

80

60

40

20

10 mm water infiltration per day
from thawing snow for 6 days

P R4
NN N NN

LA YA YA YA TR
f 2. 72 72 7 /7
A YA YA A TR
F 7. 72 7 7 7

I I S

SN NN NN NN NN

EE A LR SR ST

o O, L N N T . SN NN

b . . . Y

S NN

I
Y
Vg
S N
L

NN
s
~
7
~
L

~
NN NN
~

LAY

s
AT TR Y
L4
AR
P
TN NN
PRI A
SN N NS
PRI
Lkl il b

s
'S
NN NN
P
s
'
Lk

NN
N

Id
rs
I3

e
'S
\’\\'\\\\‘\

.
~
NS

b
L
s
s
3

L

1-Jun 2-Jun 3-Jun
Date

4-Jun

5-Jun

Freezing Time For Snowmelt

l

»
1
o
c
>




Freezing Time ( hours )
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Results

 Exfiltration fringe about 150 m wide

e An ice saturated core will form at the rate of
600 mm/yr

* The core will gradually increase the gradient
and seepage velocity

 Eventually all the infiltration (150 mm/ m?) will
exfiltrate through the fringe.

* The core will remain frozen and ice saturated.




Optimization Options

* A berm of finer grained rock around perimeter
* Increased retention time
» decrease fringe width

e Selectively place ARD potential rock in the
core zone

* Increase surface slope and decrease lift
thickness.

e Enhance saturation rate by adding water




Research Priorities

» Temperature profile within dumps
* Fox dump @ Koala

e Confirmation of ice saturation
* Insitu permeability
» Geophysics (GPR)

o Careful site observations




3.10. RESEARCH PRIORITIES FOR NORTHERN
ARD

Stephen Day
Norecol Dames & Moore



Stephen Day
Norecol, Dames & Moore,

Vancouver, BC




CONLUSIONS OF 1993
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OPTIONS FOR ARD CONTROL
IN SUB-REGIONS
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3.11. SUMMARY OF GAPS IN CURRENT
KNOWLEDGE
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SUMMARY OF GAPS IN CURRENT KNOWLEDGE

1. Oxidation rates of S*
1.1. Relatively undefined at low temperature

(6°C > <-2°C)

2. Competing Factors in Cold Climates — for example:

2.1. Heat generation during sulphide oxidation vs freezing

2.2. Increased oxygen solubility vs decreased reaction
rates at low temperatures

2.3. Observed reaction rates higher at low temperatures
than ambient temperature (e.g. Cu in Windy Craggy
test cells)

2.4. Biotic oxidation — bacteria adapting at low
temperature vs biotic oxidation rate at low

| temperature

2.5. Electrochemical oxidation

3. Natural Analogues — What are they telling us?

4, Test Methods
4.1. Are chemical prediction tests performed at ambient
temperature (25 °C) relevant for northern climates?
4.2. Are chemical models using oxidation rates
‘calibrated’ to ambient temperature applicable to
northern climates?



5. Waste Rock Dumps
5.1. Hydrogeology of waste rock dumps still a large
unknown
5.2. Thermal effects in waste rock dumps at low
temperatures not well defined
5.2.1. Freezing mechanisms

6. Field Experience
6.1. Tailings and waste rock in northern climates limited
compared to more ‘southern’ areas (i.e. non-
permafrost zones)

7. ARD, Alkaline drainage, Metal Fluxes
7.1. Data, field experience for northern climates needed

8. Treatment for remote, cold sites — lime treatment the only
option?

9. Freezing Point Depression due to Process Chemicals
9.1. Is this a significant effect?

10. Economic Insulating Cover Designs
10.1. With lack of cover materials in north and no
‘proven’ designs, can a protocol for covers in the
north be designed with the above in mind?
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